---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
pipeline_tag: image-classification
---
# MobileNet v1
## **Use case** : `Image classification`
# Model description
MobileNet is a well known architecture that can be used in multiple use cases.
Input size and width factor called `alpha` are parameters to be adapted to various use cases complexity. The `alpha` parameter is used to increase or decrease the number of filters in each layer, allowing also to reduce the number of multiply-adds and then the inference time.
The original paper demonstrates the performance of MobileNet models using `alpha` values of 1.0, 0.75, 0.5 and 0.25.
(source: https://keras.io/api/applications/mobilenet/)
The model is quantized in int8 using tensorflow lite converter.
## Network information
| Network Information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| MParams alpha=1.0 | 1.3 M |
| Quantization | int8 |
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet |
| Paper | https://arxiv.org/abs/1704.04861 |
The models are quantized using tensorflow lite converter.
## Network inputs / outputs
For an image resolution of NxM and P classes
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, P) | Per-class confidence for P classes in FLOAT32|
## Recommended platforms
| Platform | Supported | Recommended |
|----------|-----------|-----------|
| STM32L0 |[]|[]|
| STM32L4 |[x]|[]|
| STM32U5 |[x]|[]|
| STM32H7 |[x]|[x]|
| STM32MP1 |[x]|[x]|
| STM32MP2 |[x]|[x]|
| STM32N6 |[x]|[x]|
# Performances
## Metrics
- Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
- `tfs` stands for "training from scratch", meaning that the model weights were randomly initialized before training.
- `tl` stands for "transfer learning", meaning that the model backbone weights were initialized from a pre-trained model, then only the last layer was unfrozen during the training.
- `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 588 | 0.0 | 321.66 | 10.0.0 | 2.0.0 |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 588 | 0.0 | 1025.63 | 10.0.0 | 2.0.0 |
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 1568 | 0.0 | 3649.97 | 10.0.0 | 2.0.0 |
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 588 | 0.0 | 549.88 | 10.0.0 | 2.0.0 |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 588 | 0.0 | 1478.58 | 10.0.0 | 2.0.0 |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 1568 | 0.0 | 4552.42 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.83 | 353.36 | 10.0.0 | 2.0.0 |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 6.06 | 165.02 | 10.0.0 | 2.0.0 |
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 16.94 | 59.03| 10.0.0 | 2.0.0 |
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 3.57 | 280.11 | 10.0.0 | 2.0.0 |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 7.38 | 135.50 | 10.0.0 | 2.0.0 |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 19.41 | 51.53 | 10.0.0 | 2.0.0 |
### Reference **MCU** memory footprint based on Flowers dataset and ImageNet dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.38 KiB | 214.69 KiB | 68.05 KiB | 289.34 KiB | 282.74 KiB | 10.0.0 |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 449.58 KiB | 16.38 KiB | 812.61 KiB | 81.46 KiB | 465.96 KiB | 894.02 KiB | 10.0.0 |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H7 | 66.96 KiB | 16.33 KiB | 214.69 KiB | 68 KiB | 83.29 KiB | 282.69 KiB | 10.0.0 |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H7 | 52.8 KiB | 16.33 KiB | 214.55 KiB | 70.27 KiB | 69.13 KiB | 284.82 KiB | 10.0.0 |
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.43 KiB | 467.33 KiB | 70.02 KiB | 283.63 KiB | 537.35 KiB | 10.0.0 |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 431.07 KiB | 16.43 KiB | 1314 KiB | 83.38 KiB | 447.5 KiB | 1397.38 KiB | 10.0.0 |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 1331.13 KiB | 16.48 KiB | 4157.09 KiB | 110.11 KiB | 1347.61 KiB | 4267.2 KiB | 10.0.0 |
### Reference **MCU** inference time based on Flowers dataset and ImageNet dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 163.78 ms | 10.0.0 |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 485.79 ms | 10.0.0 |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 29.94 ms | 10.0.0 |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.34 ms | 10.0.0 |
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 166.75 ms | 10.0.0 |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 504.37 ms | 10.0.0 |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1641.84 ms | 10.0.0 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|-----------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.29 ms | 6.04 | 93.96 | 0 | v5.1.0 | OpenVX |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 32.74 ms | 3.41 | 96.59 | 0 | v5.1.0 | OpenVX |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.740 ms | 14.20 | 85.80 | 0 | v5.1.0 | OpenVX |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.68 ms | 11.47 | 88.53 | 0 | v5.1.0 | OpenVX |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 33.97 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 91.42 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.40 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 5.83 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.51 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|[MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 145.4 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.75 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|[MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.01 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### Accuracy with Flowers dataset
Dataset details: [link](http://download.tensorflow.org/example_images/flower_photos.tgz) , License [CC BY 2.0](https://creativecommons.org/licenses/by/2.0/) , Quotation[[1]](#1) , Number of classes: 5, Number of images: 3 670
| Model | Format | Resolution | Top 1 Accuracy |
|-------|--------|------------|----------------|
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 88.83 % |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 89.37 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.83 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.24 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 93.05 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 92.1 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 92.1 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 91.55 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 88.56 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 87.74 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 95.1 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 94.41 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft.h5) | Float | 96x96x3 | 87.47 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | 87.06 % |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs.h5) | Float | 96x96x1 | 74.93 % |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | 74.93 % |
### Accuracy with Plant-village dataset
Dataset details: [link](https://data.mendeley.com/datasets/tywbtsjrjv/1), License [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/), Quotation[[2]](#2) , Number of classes: 39, Number of images: 61 486
| Model | Format | Resolution | Top 1 Accuracy |
|-------|--------|------------|----------------|
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 99.92 % |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.92 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.38 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.7 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 99.95 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.82 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 99.9 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.83 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 93.05 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 92.7 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 99.94 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.85 % |
### Accuracy with Food-101 dataset
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[3]](#3),Number of classes: 101 , Number of images: 101 000
| Model | Format | Resolution | Top 1 Accuracy |
|-------|--------|------------|----------------|
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 72.16 % |
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 71.13 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 43.21 % |
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 39.89 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 72.36 % |
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 69.52 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 76.97 % |
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 76.37 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 48.78 % |
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 45.89 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 76.72 % |
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 74.82 % |
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft.h5) | Float | 224x224x3 | 80.38 % |
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite) | Int8 | 224x224x3 | 79.43 % |
### Accuracy with ImageNet dataset
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4)
Number of classes: 1000.
To perform the quantization, we calibrated the activations with a random subset of the training set.
For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
|model | Format | Resolution | Top 1 Accuracy |
|---------|--------|------------|----------------|
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224.h5) | Float | 224x224x3 | 48.96 % |
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | 46.34 % |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224.h5) | Float | 224x224x3 | 62.11 % |
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | 59.92 % |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224.h5) | Float | 224x224x3 | 69.52 % |
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | 68.64 % |
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
[1]
"Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers.
[2]
J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1
[3]
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014.