File size: 15,073 Bytes
8161e20 64f3c1f 8161e20 64f3c1f 8161e20 64f3c1f 8161e20 64f3c1f 8161e20 64f3c1f 8161e20 64f3c1f 8161e20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
pipeline_tag: object-detection
---
# SSD MobileNet v1 quantized
## **Use case** : `Object detection`
# Model description
The mobilenet-ssd model is a Single-Shot multibox Detection (SSD) network intended to perform object detection.
Mobilenet-ssd is using MobileNet as a backbone which is a general architecture that can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby reduce inference cost on mobile devices.
The model is quantized in int8 using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet |
| Paper | https://arxiv.org/abs/1704.04861, https://arxiv.org/abs/1512.02325 |
The models are quantized using tensorflow lite converter.
## Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, NA, 8 + NC) | FLOAT values Where NA is thge number of anchors and NC is the number of classes|
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [x] |
| STM32MP1 | [x] | [x] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|[ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 694.64 | 0.0 | 827.16 | 10.0.0 | 2.0.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1002.64 | 0.0 | 826.91 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 9.63 | 103.84 | 10.0.0 | 2.0.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 10.37 | 96.43 | 10.0.0 | 2.0.0 |
### Reference MCU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 266.3 | 29.93 | 483.16 | 95.39 | 296.23 | 578.55 | 10.0.0 | |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 379.6 | 34.34 | 675.64 | 106.01 | 413.94 | 781.65 | 10.0.0 | |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 456.1 KiB | 33.75 | 675.64 | 105.26| 489.85 | 780.9 | 10.0.0 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 149.18 ms | 10.0.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 218.99 ms | 10.0.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 267.18 ms | 10.0.0 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 12.34 ms | 15.35 | 84.65 |0 | v5.1.0 | OpenVX |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 18.65 ms | 14.02 | 85.98 |0 | v5.1.0 | OpenVX |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.33 ms | 14.12 | 85.88 |0 | v5.1.0 | OpenVX |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 67.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 100.20 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 119.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 95.36 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 139.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 168.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### AP on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP* |
|-------|--------|------------|----------------|
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | 35.80 % |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192.h5) | Float | 192x192x3 | 35.80 % |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | 46.10 % |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224.h5) | Float | 224x224x3 | 46.90 % |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | 50.50 % |
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256.h5) | Float | 256x256x3 | 51 % |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014. "Microsoft coco: Common objects in context". In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing. [Online]. Available: https://cocodataset.org/#download.
|