File size: 2,243 Bytes
8863f2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
language:
- sr
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- espnet/yodas
metrics:
- wer
model-index:
- name: Whisper Large v3 Turbo Sr Test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Yodas
type: espnet/yodas
config: sr
split: None
args: sr
metrics:
- name: Wer
type: wer
value: 0.1377668019050979
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v3 Turbo Sr Test
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Yodas dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1195
- Wer: 0.1378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.6455 | 0.2439 | 500 | 0.1869 | 0.1928 |
| 0.5858 | 0.4878 | 1000 | 0.1694 | 0.1870 |
| 0.5608 | 0.7317 | 1500 | 0.1507 | 0.1641 |
| 0.4547 | 0.9756 | 2000 | 0.1388 | 0.1542 |
| 0.3905 | 1.2195 | 2500 | 0.1341 | 0.1461 |
| 0.3857 | 1.4634 | 3000 | 0.1291 | 0.1450 |
| 0.3656 | 1.7073 | 3500 | 0.1243 | 0.1415 |
| 0.3369 | 1.9512 | 4000 | 0.1195 | 0.1378 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.20.3
|