File size: 6,736 Bytes
18e8e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from typing import List, Dict, Union
from tqdm import tqdm
import torch
import safetensors
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, CLIPTextModelWithProjection
from diffusers import (
StableDiffusionXLPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
from diffusers.loaders import LoraLoaderMixin
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
JSDXL_REPO = "stabilityai/japanese-stable-diffusion-xl"
L_REPO = "ByteDance/SDXL-Lightning"
def load_state_dict(checkpoint_file: Union[str, os.PathLike], device: str = "cpu"):
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == "safetensors":
return safetensors.torch.load_file(checkpoint_file, device=device)
else:
return torch.load(checkpoint_file, map_location=device)
def load_from_pretrained(
repo_id,
filename="diffusion_pytorch_model.fp16.safetensors",
subfolder="unet",
device="cuda",
) -> Dict[str, torch.Tensor]:
return load_state_dict(
hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
),
device=device,
)
def reshape_weight_task_tensors(task_tensors, weights):
"""
Reshapes `weights` to match the shape of `task_tensors` by unsqeezing in the remaining dimenions.
Args:
task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
weights (`torch.Tensor`): The tensor to be reshaped.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
weights = weights.view(new_shape)
return weights
def linear(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using `linear`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def merge_models(
task_tensors,
weights,
):
keys = list(task_tensors[0].keys())
weights = torch.tensor(weights, device=task_tensors[0][keys[0]].device)
state_dict = {}
for key in tqdm(keys, desc="Merging"):
w_list = []
for i, sd in enumerate(task_tensors):
w = sd.pop(key)
w_list.append(w)
new_w = linear(task_tensors=w_list, weights=weights)
state_dict[key] = new_w
return state_dict
def split_conv_attn(weights):
attn_tensors = {}
conv_tensors = {}
for key in list(weights.keys()):
if any(k in key for k in ["to_k", "to_q", "to_v", "to_out.0"]):
attn_tensors[key] = weights.pop(key)
else:
conv_tensors[key] = weights.pop(key)
return {"conv": conv_tensors, "attn": attn_tensors}
def load_evosdxl_jp(device="cuda") -> StableDiffusionXLPipeline:
sdxl_weights = split_conv_attn(load_from_pretrained(SDXL_REPO, device=device))
dpo_weights = split_conv_attn(
load_from_pretrained(
"mhdang/dpo-sdxl-text2image-v1",
"diffusion_pytorch_model.safetensors",
device=device,
)
)
jn_weights = split_conv_attn(
load_from_pretrained("RunDiffusion/Juggernaut-XL-v9", device=device)
)
jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))
tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
new_conv = merge_models(
[sd["conv"] for sd in tensors],
[
0.15928833971605916,
0.1032449268871776,
0.6503217149752791,
0.08714501842148402,
],
)
new_attn = merge_models(
[sd["attn"] for sd in tensors],
[
0.1877279276437178,
0.20014114603909822,
0.3922685507065275,
0.2198623756106564,
],
)
del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
torch.cuda.empty_cache()
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
unet.load_state_dict({**new_conv, **new_attn})
state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(
L_REPO, weight_name="sdxl_lightning_4step_lora.safetensors"
)
LoraLoaderMixin.load_lora_into_unet(state_dict, network_alphas, unet)
unet.fuse_lora(lora_scale=3.224682864579401)
new_weights = split_conv_attn(unet.state_dict())
l_weights = split_conv_attn(
load_from_pretrained(
L_REPO,
"sdxl_lightning_4step_unet.safetensors",
subfolder=None,
device=device,
)
)
jnl_weights = split_conv_attn(
load_from_pretrained(
"RunDiffusion/Juggernaut-XL-Lightning",
"diffusion_pytorch_model.bin",
device=device,
)
)
tensors = [l_weights, jnl_weights, new_weights]
new_conv = merge_models(
[sd["conv"] for sd in tensors],
[0.47222002022088533, 0.48419531030361584, 0.04358466947549889],
)
new_attn = merge_models(
[sd["attn"] for sd in tensors],
[0.023119324530758375, 0.04924981616469831, 0.9276308593045434],
)
new_weights = {**new_conv, **new_attn}
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
unet.load_state_dict({**new_conv, **new_attn})
text_encoder = CLIPTextModelWithProjection.from_pretrained(
JSDXL_REPO, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16"
)
tokenizer = AutoTokenizer.from_pretrained(
JSDXL_REPO, subfolder="tokenizer", use_fast=False
)
pipe = StableDiffusionXLPipeline.from_pretrained(
SDXL_REPO,
unet=unet,
text_encoder=text_encoder,
tokenizer=tokenizer,
torch_dtype=torch.float16,
variant="fp16",
)
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
pipe = pipe.to(device, dtype=torch.float16)
return pipe
if __name__ == "__main__":
pipe: StableDiffusionXLPipeline = load_evosdxl_jp()
images = pipe("犬", num_inference_steps=4, guidance_scale=0).images
images[0].save("out.png")
|