File size: 1,908 Bytes
c8beb8e b1a09d0 c8beb8e b1a09d0 c8beb8e b1a09d0 c8beb8e b1a09d0 c8beb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- it
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small IT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small IT
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5372
- Wer: 130.3266
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1972 | 1.6 | 500 | 0.4266 | 105.1927 |
| 0.033 | 3.19 | 1000 | 0.4507 | 209.0820 |
| 0.0167 | 4.79 | 1500 | 0.4738 | 96.0643 |
| 0.0052 | 6.39 | 2000 | 0.4948 | 143.7616 |
| 0.0035 | 7.99 | 2500 | 0.5144 | 126.8133 |
| 0.0047 | 9.58 | 3000 | 0.5273 | 133.8966 |
| 0.0033 | 11.18 | 3500 | 0.5349 | 137.8580 |
| 0.0026 | 12.78 | 4000 | 0.5372 | 130.3266 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|