File size: 2,128 Bytes
29e6b15 5c6e2e3 29e6b15 ae6924a 644a042 ace7e14 caf396e 6311832 eac123c 72e9fdc 8a8f7a0 d02f75a 6e54bb8 82ef071 5c6e2e3 29e6b15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_keras_callback
model-index:
- name: SaladSlayer00/new_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# SaladSlayer00/new_model
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.2935
- Validation Loss: 1.6986
- Validation Accuracy: 0.5619
- Epoch: 11
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:---------------:|:-------------------:|:-----:|
| 7.0613 | 4.8451 | 0.0134 | 0 |
| 4.6529 | 4.5201 | 0.0658 | 1 |
| 4.3215 | 4.1158 | 0.0992 | 2 |
| 3.8808 | 3.6981 | 0.1806 | 3 |
| 3.4497 | 3.2741 | 0.2553 | 4 |
| 3.0361 | 2.9681 | 0.3177 | 5 |
| 2.6734 | 2.6529 | 0.3690 | 6 |
| 2.3306 | 2.3803 | 0.4091 | 7 |
| 2.0284 | 2.1731 | 0.4738 | 8 |
| 1.7542 | 1.9839 | 0.4883 | 9 |
| 1.5084 | 1.8335 | 0.5284 | 10 |
| 1.2935 | 1.6986 | 0.5619 | 11 |
### Framework versions
- Transformers 4.36.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0
|