File size: 12,532 Bytes
0d1350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""
Data preparation.
Download: https://voice.mozilla.org/en/datasets
Author
------
Titouan Parcollet
Luca Della Libera 2022
Pooneh Mousavi 2022
"""

from dataclasses import dataclass
import os
import csv
import re
import logging
import torchaudio
from tqdm import tqdm
import unicodedata
import functools
torchaudio.set_audio_backend("soundfile")
from speechbrain.utils.parallel import parallel_map
from speechbrain.dataio.dataio import read_audio_info

logger = logging.getLogger(__name__)


def prepare_common_voice(
    data_folder,
    save_folder,
    train_tsv_file=None,
    dev_tsv_file=None,
    test_tsv_file=None,
    accented_letters=False,
    language="en",
    skip_prep=False,
):
    """
    Prepares the csv files for the Mozilla Common Voice dataset.
    Download: https://voice.mozilla.org/en/datasets
    Arguments
    ---------
    data_folder : str
        Path to the folder where the original Common Voice dataset is stored.
        This path should include the lang: /datasets/CommonVoice/<language>/
    save_folder : str
        The directory where to store the csv files.
    train_tsv_file : str, optional
        Path to the Train Common Voice .tsv file (cs)
    dev_tsv_file : str, optional
        Path to the Dev Common Voice .tsv file (cs)
    test_tsv_file : str, optional
        Path to the Test Common Voice .tsv file (cs)
    accented_letters : bool, optional
        Defines if accented letters will be kept as individual letters or
        transformed to the closest non-accented letters.
    language: str
        Specify the language for text normalization.
    skip_prep: bool
        If True, skip data preparation.
    Example
    -------
    >>> from recipes.CommonVoice.common_voice_prepare import prepare_common_voice
    >>> data_folder = '/datasets/CommonVoice/en'
    >>> save_folder = 'exp/CommonVoice_exp'
    >>> train_tsv_file = '/datasets/CommonVoice/en/train.tsv'
    >>> dev_tsv_file = '/datasets/CommonVoice/en/dev.tsv'
    >>> test_tsv_file = '/datasets/CommonVoice/en/test.tsv'
    >>> accented_letters = False
    >>> duration_threshold = 10
    >>> prepare_common_voice( \
                 data_folder, \
                 save_folder, \
                 train_tsv_file, \
                 dev_tsv_file, \
                 test_tsv_file, \
                 accented_letters, \
                 language="en" \
                 )
    """

    if skip_prep:
        return

    # If not specified point toward standard location w.r.t CommonVoice tree
    if train_tsv_file is None:
        train_tsv_file = data_folder + "/train.tsv"
    else:
        train_tsv_file = train_tsv_file

    if dev_tsv_file is None:
        dev_tsv_file = data_folder + "/dev.tsv"
    else:
        dev_tsv_file = dev_tsv_file

    if test_tsv_file is None:
        test_tsv_file = data_folder + "/test.tsv"
    else:
        test_tsv_file = test_tsv_file

    # Setting the save folder
    if not os.path.exists(save_folder):
        os.makedirs(save_folder)

    # Setting ouput files
    save_csv_train = save_folder + "/train.csv"
    save_csv_dev = save_folder + "/dev.csv"
    save_csv_test = save_folder + "/test.csv"

    # If csv already exists, we skip the data preparation
    if skip(save_csv_train, save_csv_dev, save_csv_test):

        msg = "%s already exists, skipping data preparation!" % (save_csv_train)
        logger.info(msg)

        msg = "%s already exists, skipping data preparation!" % (save_csv_dev)
        logger.info(msg)

        msg = "%s already exists, skipping data preparation!" % (save_csv_test)
        logger.info(msg)

        return

    # Additional checks to make sure the data folder contains Common Voice
    check_commonvoice_folders(data_folder)
    # Creating csv files for {train, dev, test} data
    file_pairs = zip(
        [train_tsv_file, dev_tsv_file, test_tsv_file],
        [save_csv_train, save_csv_dev, save_csv_test],
    )
    for tsv_file, save_csv in file_pairs:
        create_csv(
            tsv_file, save_csv, data_folder, accented_letters, language,
        )


def skip(save_csv_train, save_csv_dev, save_csv_test):
    """
    Detects if the Common Voice data preparation has been already done.
    If the preparation has been done, we can skip it.
    Returns
    -------
    bool
        if True, the preparation phase can be skipped.
        if False, it must be done.
    """

    # Checking folders and save options
    skip = False

    if (
        os.path.isfile(save_csv_train)
        and os.path.isfile(save_csv_dev)
        and os.path.isfile(save_csv_test)
    ):
        skip = True

    return skip


@dataclass
class CVRow:
    snt_id: str
    duration: float
    mp3_path: str
    spk_id: str
    words: str


def process_line(line, data_folder, language, accented_letters):
    # Path is at indice 1 in Common Voice tsv files. And .mp3 files
    # are located in datasets/lang/clips/
    mp3_path = data_folder + "/clips/" + line.split("\t")[1]
    file_name = mp3_path.split(".")[-2].split("/")[-1]
    spk_id = line.split("\t")[0]
    snt_id = file_name

    # Setting torchaudio backend to sox-io (needed to read mp3 files)
    """
    if torchaudio.get_audio_backend() != "sox_io":
        logger.warning("This recipe needs the sox-io backend of torchaudio")
        logger.warning("The torchaudio backend is changed to sox_io")
        torchaudio.set_audio_backend("sox_io")
    """
    # Reading the signal (to retrieve duration in seconds)
    if os.path.isfile(mp3_path):
        info = read_audio_info(mp3_path)
    else:
        msg = "\tError loading: %s" % (str(len(file_name)))
        logger.info(msg)
        return None

    duration = info.num_frames / info.sample_rate

    # Getting transcript
    words = line.split("\t")[2]

    # Unicode Normalization
    words = unicode_normalisation(words)

    # !! Language specific cleaning !!
    words = language_specific_preprocess(language, words)

    # Remove accents if specified
    if not accented_letters:
        words = strip_accents(words)
        words = words.replace("'", " ")
        words = words.replace("’", " ")

    # Remove multiple spaces
    words = re.sub(" +", " ", words)

    # Remove spaces at the beginning and the end of the sentence
    words = words.lstrip().rstrip()

    # Getting chars
    chars = words.replace(" ", "_")
    chars = " ".join([char for char in chars][:])

    # Remove too short sentences (or empty):
    if language in ["ja", "ch"]:
        if len(chars) < 3:
            return None
    else:
        if len(words.split(" ")) < 3:
            return None

    # Composition of the csv_line
    return CVRow(snt_id, duration, mp3_path, spk_id, words)


def create_csv(
    orig_tsv_file, csv_file, data_folder, accented_letters=False, language="en"
):
    """
    Creates the csv file given a list of wav files.
    Arguments
    ---------
    orig_tsv_file : str
        Path to the Common Voice tsv file (standard file).
    data_folder : str
        Path of the CommonVoice dataset.
    accented_letters : bool, optional
        Defines if accented letters will be kept as individual letters or
        transformed to the closest non-accented letters.
    Returns
    -------
    None
    """

    # Check if the given files exists
    if not os.path.isfile(orig_tsv_file):
        msg = "\t%s doesn't exist, verify your dataset!" % (orig_tsv_file)
        logger.info(msg)
        raise FileNotFoundError(msg)

    # We load and skip the header
    loaded_csv = open(orig_tsv_file, "r").readlines()[1:]
    nb_samples = len(loaded_csv)

    msg = "Preparing CSV files for %s samples ..." % (str(nb_samples))
    logger.info(msg)

    # Adding some Prints
    msg = "Creating csv lists in %s ..." % (csv_file)
    logger.info(msg)

    # Process and write lines
    total_duration = 0.0

    line_processor = functools.partial(
        process_line,
        data_folder=data_folder,
        language=language,
        accented_letters=accented_letters,
    )

    # Stream into a .tmp file, and rename it to the real path at the end.
    csv_file_tmp = csv_file + ".tmp"

    with open(csv_file_tmp, mode="w", encoding="utf-8") as csv_f:
        csv_writer = csv.writer(
            csv_f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL
        )

        csv_writer.writerow(["ID", "duration", "wav", "spk_id", "wrd"])
        for line in tqdm(loaded_csv) : 

            row = line_processor(line)
            if row is not None  : 
                total_duration += row.duration
                csv_writer.writerow(
                    [
                        row.snt_id,
                        str(row.duration),
                        row.mp3_path,
                        row.spk_id,
                        row.words,
                    ]
                )

    os.replace(csv_file_tmp, csv_file)

    # Final prints
    msg = "%s successfully created!" % (csv_file)
    logger.info(msg)
    msg = "Number of samples: %s " % (str(len(loaded_csv)))
    logger.info(msg)
    msg = "Total duration: %s Hours" % (str(round(total_duration / 3600, 2)))
    logger.info(msg)


def language_specific_preprocess(language, words):
    # !! Language specific cleaning !!
    # Important: feel free to specify the text normalization
    # corresponding to your alphabet.

    if language in ["en", "fr", "it", "rw"]:
        words = re.sub(
            "[^’'A-Za-z0-9À-ÖØ-öø-ÿЀ-ӿéæœâçèàûî]+", " ", words
        ).upper()

    if language == "de":
        # this replacement helps preserve the case of ß
        # (and helps retain solitary occurrences of SS)
        # since python's upper() converts ß to SS.
        words = words.replace("ß", "0000ß0000")
        words = re.sub("[^’'A-Za-z0-9öÖäÄüÜß]+", " ", words).upper()
        words = words.replace("'", " ")
        words = words.replace("’", " ")
        words = words.replace(
            "0000SS0000", "ß"
        )  # replace 0000SS0000 back to ß as its initial presence in the corpus

    if language == "fr":
        # Replace J'y D'hui etc by J_ D_hui
        words = words.replace("'", " ")
        words = words.replace("’", " ")

    elif language == "ar":
        HAMZA = "\u0621"
        ALEF_MADDA = "\u0622"
        ALEF_HAMZA_ABOVE = "\u0623"
        letters = (
            "ابتةثجحخدذرزژشسصضطظعغفقكلمنهويىءآأؤإئ"
            + HAMZA
            + ALEF_MADDA
            + ALEF_HAMZA_ABOVE
        )
        words = re.sub("[^" + letters + " ]+", "", words).upper()
    elif language == "fa":
        HAMZA = "\u0621"
        ALEF_MADDA = "\u0622"
        ALEF_HAMZA_ABOVE = "\u0623"
        letters = (
            "ابپتةثجحخچدذرزژسشصضطظعغفقگکلمنهویىءآأؤإئ"
            + HAMZA
            + ALEF_MADDA
            + ALEF_HAMZA_ABOVE
        )
        words = re.sub("[^" + letters + " ]+", "", words).upper()
    elif language == "ga-IE":
        # Irish lower() is complicated, but upper() is nondeterministic, so use lowercase
        def pfxuc(a):
            return len(a) >= 2 and a[0] in "tn" and a[1] in "AEIOUÁÉÍÓÚ"

        def galc(w):
            return w.lower() if not pfxuc(w) else w[0] + "-" + w[1:].lower()

        words = re.sub("[^-A-Za-z'ÁÉÍÓÚáéíóú]+", " ", words)
        words = " ".join(map(galc, words.split(" ")))
    elif language == "es":
        # Fix the following error in dataset large:
        # KeyError: 'The item En noviembre lanzaron Queen Elizabeth , coproducida por Foreign Noi$e . requires replacements which were not supplied.'
        words = words.replace("$", "s")
    return words


def check_commonvoice_folders(data_folder):
    """
    Check if the data folder actually contains the Common Voice dataset.
    If not, raises an error.
    Returns
    -------
    None
    Raises
    ------
    FileNotFoundError
        If data folder doesn't contain Common Voice dataset.
    """
    files_str = "/clips"
    # Checking clips
    if not os.path.exists(data_folder + files_str):
        err_msg = (
            "the folder %s does not exist (it is expected in "
            "the Common Voice dataset)" % (data_folder + files_str)
        )
        raise FileNotFoundError(err_msg)


def unicode_normalisation(text):
    return str(text)


def strip_accents(text):
    text = (
        unicodedata.normalize("NFD", text)
        .encode("ascii", "ignore")
        .decode("utf-8")
    )
    return str(text)