File size: 15,103 Bytes
8b664ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python3
import sys
import torch
import logging
import speechbrain as sb
from pathlib import Path
import os
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from speechbrain.tokenizers.SentencePiece import SentencePiece
from speechbrain.utils.data_utils import undo_padding
from speechbrain.utils.distributed import run_on_main

"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
The system employs a wav2vec2 encoder and a CTC decoder.
Decoding is performed with greedy decoding (will be extended to beam search).

To run this recipe, do the following:
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml

With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
The wav2vec2 model is pretrained following the model given in the hprams file.
It may be dependent on the language.

The neural network is trained with CTC on sub-word units estimated with
Byte Pairwise Encoding (BPE).

The experiment file is flexible enough to support a large variety of
different systems. By properly changing the parameter files, you can try
different encoders, decoders, tokens (e.g, characters instead of BPE),
training languages (all CommonVoice languages), and many
other possible variations.

Authors
 * Titouan Parcollet 2021
"""

logger = logging.getLogger(__name__)


# Define training procedure
class ASR(sb.core.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""

        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
        if stage == sb.Stage.TRAIN:
            if hasattr(self.hparams, "augmentation"):
                wavs = self.hparams.augmentation(wavs, wav_lens)

        # Forward pass
        feats = self.modules.wav2vec2(wavs, wav_lens)
        x = self.modules.enc(feats)
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)

        return p_ctc, wav_lens

    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC) given predictions and targets."""

        p_ctc, wav_lens = predictions

        ids = batch.id
        tokens, tokens_lens = batch.tokens

        loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)

        if stage != sb.Stage.TRAIN:
            predicted_tokens = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )
            # Decode token terms to words
            if self.hparams.use_language_modelling:
                predicted_words = []
                for logs in p_ctc:
                    text = decoder.decode(logs.detach().cpu().numpy())
                    predicted_words.append(text.split(" "))
            else:
                predicted_words = [
                    "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
                    for utt_seq in predicted_tokens
                ]
            # Convert indices to words
            target_words = [wrd.split(" ") for wrd in batch.wrd]

            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        """Train the parameters given a single batch in input"""
        should_step = self.step % self.grad_accumulation_factor == 0
        # Managing automatic mixed precision
        # TOFIX: CTC fine-tuning currently is unstable
        # This is certainly due to CTC being done in fp16 instead of fp32
        if self.auto_mix_prec:
            with torch.cuda.amp.autocast():
                with self.no_sync():
                    outputs = self.compute_forward(batch, sb.Stage.TRAIN)
                loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            with self.no_sync(not should_step):
                self.scaler.scale(
                    loss / self.grad_accumulation_factor
                ).backward()
            if should_step:

                if not self.hparams.wav2vec2.freeze:
                    self.scaler.unscale_(self.wav2vec_optimizer)
                self.scaler.unscale_(self.model_optimizer)
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.scaler.step(self.wav2vec_optimizer)
                    self.scaler.step(self.model_optimizer)
                self.scaler.update()
                self.zero_grad()
                self.optimizer_step += 1
        else:
            # This is mandatory because HF models have a weird behavior with DDP
            # on the forward pass
            with self.no_sync():
                outputs = self.compute_forward(batch, sb.Stage.TRAIN)

            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)

            with self.no_sync(not should_step):
                (loss / self.grad_accumulation_factor).backward()
            if should_step:
                if self.check_gradients(loss):
                    if not self.hparams.wav2vec2.freeze:
                        if self.optimizer_step >= self.hparams.warmup_steps:
                            self.wav2vec_optimizer.step()
                    self.model_optimizer.step()
                self.zero_grad()
                self.optimizer_step += 1

        self.on_fit_batch_end(batch, outputs, loss, should_step)
        return loss.detach().cpu()

    def evaluate_batch(self, batch, stage):
        """Computations needed for validation/test batches"""
        predictions = self.compute_forward(batch, stage=stage)
        with torch.no_grad():
            loss = self.compute_objectives(predictions, batch, stage=stage)
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            if not self.hparams.wav2vec2.freeze:
                sb.nnet.schedulers.update_learning_rate(
                    self.wav2vec_optimizer, new_lr_wav2vec
                )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                    "lr_wav2vec": old_lr_wav2vec,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):
        "Initializes the wav2vec2 optimizer and model optimizer"

        # If the wav2vec encoder is unfrozen, we create the optimizer
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
                self.modules.wav2vec2.parameters()
            )
            if self.checkpointer is not None:
                self.checkpointer.add_recoverable(
                    "wav2vec_opt", self.wav2vec_optimizer
                )

        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)

    def zero_grad(self, set_to_none=False):
        if not self.hparams.wav2vec2.freeze:
            self.wav2vec_optimizer.zero_grad(set_to_none)
        self.model_optimizer.zero_grad(set_to_none)


# Define custom data procedure
def dataio_prepare(hparams):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions."""

    # 1. Define datasets
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
    )

    if hparams["sorting"] == "ascending":
        # we sort training data to speed up training and get better results.
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "descending":
        train_data = train_data.filtered_sorted(
            sort_key="duration",
            reverse=True,
            key_max_value={"duration": hparams["avoid_if_longer_than"]},
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["dataloader_options"]["shuffle"] = False

    elif hparams["sorting"] == "random":
        pass

    else:
        raise NotImplementedError(
            "sorting must be random, ascending or descending"
        )

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
    )
    # We also sort the validation data so it is faster to validate
    valid_data = valid_data.filtered_sorted(sort_key="duration")
    test_datasets = {}
    for csv_file in hparams["test_csv"]:
        name = Path(csv_file).stem
        test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
            csv_path=csv_file, replacements={"data_root": data_folder}
        )
        test_datasets[name] = test_datasets[name].filtered_sorted(
            sort_key="duration"
        )

    datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]


    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(wav):
        info = torchaudio.info(wav)
        sig = sb.dataio.dataio.read_audio(wav)
        resampled = torchaudio.transforms.Resample(
            info.sample_rate, hparams["sample_rate"],
        )(sig)
        return resampled

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
    label_encoder = sb.dataio.encoder.CTCTextEncoder()

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("wrd")
    @sb.utils.data_pipeline.provides(
        "wrd", "char_list", "tokens_list", "tokens"
    )
    def text_pipeline(wrd):
        yield wrd
        char_list = list(wrd)
        yield char_list
        tokens_list = label_encoder.encode_sequence(char_list)
        yield tokens_list
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
    lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
    special_labels = {
        "blank_label": hparams["blank_index"],
        "unk_label": hparams["unk_index"]
    }
    label_encoder.load_or_create(
        path=lab_enc_file,
        from_didatasets=[train_data],
        output_key="char_list",
        special_labels=special_labels,
        sequence_input=True,
    )

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets, ["id", "sig", "wrd", "char_list", "tokens"],
    )
    return train_data, valid_data,test_datasets, label_encoder


if __name__ == "__main__":

    # Load hyperparameters file with command-line overrides
    hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
    with open(hparams_file) as fin:
        hparams = load_hyperpyyaml(fin, overrides)

    # If --distributed_launch then
    # create ddp_group with the right communication protocol
    sb.utils.distributed.ddp_init_group(run_opts)


    # Create experiment directory
    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file,
        overrides=overrides,
    )

    # Due to DDP, we do the preparation ONLY on the main python process
    # Defining tokenizer and loading it
    # Create the datasets objects as well as tokenization and encoding :-D
    train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams)
    if hparams["use_language_modelling"]:
        print("using langauge_modeeling")
        from pyctcdecode import build_ctcdecoder
        ind2lab = label_encoder.ind2lab
        print(ind2lab)
        labels = [ind2lab[x] for x in range(len(ind2lab))]
        labels = [""] + labels[1:-1] + ["1"] 
        # Replace the <blank> token with a blank character, needed for PyCTCdecode
        print(labels)
        decoder = build_ctcdecoder(
            labels,
            kenlm_model_path=hparams["ngram_lm_path"],  # .arpa or .bin
            alpha=0.5,  # Default by KenLM
            beta=1.0,  # Default by KenLM
        )
    # Trainer initialization
    asr_brain = ASR(
        modules=hparams["modules"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
    )

    # Adding objects to trainer.
    asr_brain.tokenizer = label_encoder

    # Training
    asr_brain.fit(
        asr_brain.hparams.epoch_counter,
        train_data,
        valid_data,
        train_loader_kwargs=hparams["dataloader_options"],
        valid_loader_kwargs=hparams["test_dataloader_options"],
    )

    # Test
    for k in test_datasets.keys():  # keys are test_clean, test_other etc
        asr_brain.hparams.wer_file = os.path.join(
            hparams["output_folder"], "wer_{}.txt".format(k)
        )
        asr_brain.evaluate(
            test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
        )