Tom Aarsen commited on
Commit
7260df6
·
1 Parent(s): 7e90d35

Add ST-specific configuration files with model.save()

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 4096,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  tags:
3
  - mteb
 
4
  model-index:
5
  - name: Salesforce/SFR-Embedding-2_R
6
  results:
@@ -2007,11 +2008,13 @@ print(scores.tolist())
2007
 
2008
  ### Sentence Transformers
2009
  ```python
2010
-
2011
- from sentence_transformers import SentenceTransformer, util
2012
 
2013
  model = SentenceTransformer("Salesforce/SFR-Embedding-2_R")
2014
 
 
 
 
2015
  def get_detailed_instruct(task_description: str, query: str) -> str:
2016
  return f'Instruct: {task_description}\nQuery: {query}'
2017
 
@@ -2028,9 +2031,9 @@ passages = [
2028
  ]
2029
 
2030
  embeddings = model.encode(queries + passages)
2031
- scores = util.cos_sim(embeddings[:2], embeddings[2:]) * 100
2032
  print(scores.tolist())
2033
- # [[40.132083892822266, 25.032529830932617], [15.006855010986328, 39.93733215332031]]
2034
  ```
2035
 
2036
 
 
1
  ---
2
  tags:
3
  - mteb
4
+ - sentence-transformers
5
  model-index:
6
  - name: Salesforce/SFR-Embedding-2_R
7
  results:
 
2008
 
2009
  ### Sentence Transformers
2010
  ```python
2011
+ from sentence_transformers import SentenceTransformer
 
2012
 
2013
  model = SentenceTransformer("Salesforce/SFR-Embedding-2_R")
2014
 
2015
+ # Reduce the max length if desired
2016
+ model.max_seq_length = 4096
2017
+
2018
  def get_detailed_instruct(task_description: str, query: str) -> str:
2019
  return f'Instruct: {task_description}\nQuery: {query}'
2020
 
 
2031
  ]
2032
 
2033
  embeddings = model.encode(queries + passages)
2034
+ scores = model.similarity(embeddings[:2], embeddings[2:]) * 100
2035
  print(scores.tolist())
2036
+ # [[40.13203811645508, 25.032546997070312], [15.00684642791748, 39.937339782714844]]
2037
  ```
2038
 
2039
 
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }