- README.md +104 -0
- added_tokens.json +945 -0
- config.json +48 -0
- configuration_codegen.py +236 -0
- merges.txt +0 -0
- modeling_codegen.py +747 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +156 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +10 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,107 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# CodeGen2 (CodeGen2-3.7B)
|
6 |
+
|
7 |
+
## Model description
|
8 |
+
|
9 |
+
[CodeGen2](https://github.com/salesforce/CodeGen2) is a family of autoregressive language models for **program synthesis**, introduced in the paper:
|
10 |
+
|
11 |
+
[CodeGen2: Lessons for Training LLMs on Programming and Natural Languages]() by Erik Nijkamp\*, Hiroaki Hayashi\*, Caiming Xiong, Silvio Savarese, Yingbo Zhou.
|
12 |
+
|
13 |
+
Unlike the original CodeGen model family (i.e., CodeGen1), CodeGen2 is capable of infilling, and supports more programming languages.
|
14 |
+
|
15 |
+
Four model sizes are released: `1B`, `3.7B`, `7B`, `16B`.
|
16 |
+
|
17 |
+
## How to use
|
18 |
+
|
19 |
+
This model can be easily loaded using the `AutoModelForCausalLM` functionality.
|
20 |
+
|
21 |
+
### Causal sampling
|
22 |
+
|
23 |
+
For regular causal sampling, simply generate completions given the context:
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3.7B")
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3.7B", trust_remote_code=True, revision="main")
|
28 |
+
|
29 |
+
text = "def hello_world():"
|
30 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
31 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
32 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
33 |
+
```
|
34 |
+
|
35 |
+
### Infill sampling
|
36 |
+
|
37 |
+
For **infill** sampling, we introduce three new special token types:
|
38 |
+
|
39 |
+
* `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill.
|
40 |
+
* `<sep>`: Seperator token between the suffix and the infilled sample. See below.
|
41 |
+
* `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output.
|
42 |
+
|
43 |
+
For example, if we want to generate infill for the following cursor position of a function:
|
44 |
+
```python
|
45 |
+
def hello_world():
|
46 |
+
|
|
47 |
+
return name
|
48 |
+
```
|
49 |
+
we construct an input to the model by
|
50 |
+
|
51 |
+
1. Inserting `<mask_1>` token in place of cursor position
|
52 |
+
2. Append `<sep>` token to indicate the boundary
|
53 |
+
3. Insert another `<mask_1>` to indicate which mask we want to infill.
|
54 |
+
|
55 |
+
The final snippet looks as follows:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3.7B")
|
60 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3.7B")
|
61 |
+
|
62 |
+
|
63 |
+
def format(prefix, suffix):
|
64 |
+
return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>"
|
65 |
+
|
66 |
+
|
67 |
+
prefix = "def hello_world():\n "
|
68 |
+
suffix = " return name"
|
69 |
+
text = format(prefix, suffix)
|
70 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
71 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
72 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):])
|
73 |
+
```
|
74 |
+
|
75 |
+
You might want to truncate the model output with `<eom>`.
|
76 |
+
|
77 |
+
## Training data
|
78 |
+
|
79 |
+
This checkpoint is trained on the stricter permissive subset of [the deduplicated version of the Stack dataset (v1.1)](). Supported languages (and frameworks) are as follows:
|
80 |
+
`c`, `c++`, `c-sharp`, `dart`, `go`, `java`, `javascript`, `kotlin`, `lua`, `php`, `python`, `ruby`, `rust`, `scala`, `shell`, `sql`, `swift`, `typescript`, `vue`.
|
81 |
+
|
82 |
+
## Training procedure
|
83 |
+
|
84 |
+
CodeGen2 was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
|
85 |
+
The input sequences are formatted in two ways: (1) causal language modeling and (2) file-level span corruption.
|
86 |
+
Please refer to the paper for more details.
|
87 |
+
|
88 |
+
## Evaluation results
|
89 |
+
|
90 |
+
We evaluate our models on HumanEval and HumanEval-Infill. Please refer to the [paper]() for more details.
|
91 |
+
|
92 |
+
## Intended use and limitations
|
93 |
+
|
94 |
+
As an autoregressive language model, CodeGen2 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
|
95 |
+
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
|
96 |
+
|
97 |
+
|
98 |
+
## BibTeX entry and citation info
|
99 |
+
|
100 |
+
```bibtex
|
101 |
+
@article{Nijkamp2023codegen2,
|
102 |
+
title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
|
103 |
+
author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
|
104 |
+
journal={arXiv preprint},
|
105 |
+
year={2022}
|
106 |
+
}
|
107 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257,
|
40 |
+
"<dummy_0>": 50295,
|
41 |
+
"<dummy_1>": 50296,
|
42 |
+
"<dummy_2>": 50297,
|
43 |
+
"<dummy_3>": 50298,
|
44 |
+
"<eom>": 50300,
|
45 |
+
"<mask_100>": 51100,
|
46 |
+
"<mask_101>": 51099,
|
47 |
+
"<mask_102>": 51098,
|
48 |
+
"<mask_103>": 51097,
|
49 |
+
"<mask_104>": 51096,
|
50 |
+
"<mask_105>": 51095,
|
51 |
+
"<mask_106>": 51094,
|
52 |
+
"<mask_107>": 51093,
|
53 |
+
"<mask_108>": 51092,
|
54 |
+
"<mask_109>": 51091,
|
55 |
+
"<mask_10>": 51190,
|
56 |
+
"<mask_110>": 51090,
|
57 |
+
"<mask_111>": 51089,
|
58 |
+
"<mask_112>": 51088,
|
59 |
+
"<mask_113>": 51087,
|
60 |
+
"<mask_114>": 51086,
|
61 |
+
"<mask_115>": 51085,
|
62 |
+
"<mask_116>": 51084,
|
63 |
+
"<mask_117>": 51083,
|
64 |
+
"<mask_118>": 51082,
|
65 |
+
"<mask_119>": 51081,
|
66 |
+
"<mask_11>": 51189,
|
67 |
+
"<mask_120>": 51080,
|
68 |
+
"<mask_121>": 51079,
|
69 |
+
"<mask_122>": 51078,
|
70 |
+
"<mask_123>": 51077,
|
71 |
+
"<mask_124>": 51076,
|
72 |
+
"<mask_125>": 51075,
|
73 |
+
"<mask_126>": 51074,
|
74 |
+
"<mask_127>": 51073,
|
75 |
+
"<mask_128>": 51072,
|
76 |
+
"<mask_129>": 51071,
|
77 |
+
"<mask_12>": 51188,
|
78 |
+
"<mask_130>": 51070,
|
79 |
+
"<mask_131>": 51069,
|
80 |
+
"<mask_132>": 51068,
|
81 |
+
"<mask_133>": 51067,
|
82 |
+
"<mask_134>": 51066,
|
83 |
+
"<mask_135>": 51065,
|
84 |
+
"<mask_136>": 51064,
|
85 |
+
"<mask_137>": 51063,
|
86 |
+
"<mask_138>": 51062,
|
87 |
+
"<mask_139>": 51061,
|
88 |
+
"<mask_13>": 51187,
|
89 |
+
"<mask_140>": 51060,
|
90 |
+
"<mask_141>": 51059,
|
91 |
+
"<mask_142>": 51058,
|
92 |
+
"<mask_143>": 51057,
|
93 |
+
"<mask_144>": 51056,
|
94 |
+
"<mask_145>": 51055,
|
95 |
+
"<mask_146>": 51054,
|
96 |
+
"<mask_147>": 51053,
|
97 |
+
"<mask_148>": 51052,
|
98 |
+
"<mask_149>": 51051,
|
99 |
+
"<mask_14>": 51186,
|
100 |
+
"<mask_150>": 51050,
|
101 |
+
"<mask_151>": 51049,
|
102 |
+
"<mask_152>": 51048,
|
103 |
+
"<mask_153>": 51047,
|
104 |
+
"<mask_154>": 51046,
|
105 |
+
"<mask_155>": 51045,
|
106 |
+
"<mask_156>": 51044,
|
107 |
+
"<mask_157>": 51043,
|
108 |
+
"<mask_158>": 51042,
|
109 |
+
"<mask_159>": 51041,
|
110 |
+
"<mask_15>": 51185,
|
111 |
+
"<mask_160>": 51040,
|
112 |
+
"<mask_161>": 51039,
|
113 |
+
"<mask_162>": 51038,
|
114 |
+
"<mask_163>": 51037,
|
115 |
+
"<mask_164>": 51036,
|
116 |
+
"<mask_165>": 51035,
|
117 |
+
"<mask_166>": 51034,
|
118 |
+
"<mask_167>": 51033,
|
119 |
+
"<mask_168>": 51032,
|
120 |
+
"<mask_169>": 51031,
|
121 |
+
"<mask_16>": 51184,
|
122 |
+
"<mask_170>": 51030,
|
123 |
+
"<mask_171>": 51029,
|
124 |
+
"<mask_172>": 51028,
|
125 |
+
"<mask_173>": 51027,
|
126 |
+
"<mask_174>": 51026,
|
127 |
+
"<mask_175>": 51025,
|
128 |
+
"<mask_176>": 51024,
|
129 |
+
"<mask_177>": 51023,
|
130 |
+
"<mask_178>": 51022,
|
131 |
+
"<mask_179>": 51021,
|
132 |
+
"<mask_17>": 51183,
|
133 |
+
"<mask_180>": 51020,
|
134 |
+
"<mask_181>": 51019,
|
135 |
+
"<mask_182>": 51018,
|
136 |
+
"<mask_183>": 51017,
|
137 |
+
"<mask_184>": 51016,
|
138 |
+
"<mask_185>": 51015,
|
139 |
+
"<mask_186>": 51014,
|
140 |
+
"<mask_187>": 51013,
|
141 |
+
"<mask_188>": 51012,
|
142 |
+
"<mask_189>": 51011,
|
143 |
+
"<mask_18>": 51182,
|
144 |
+
"<mask_190>": 51010,
|
145 |
+
"<mask_191>": 51009,
|
146 |
+
"<mask_192>": 51008,
|
147 |
+
"<mask_193>": 51007,
|
148 |
+
"<mask_194>": 51006,
|
149 |
+
"<mask_195>": 51005,
|
150 |
+
"<mask_196>": 51004,
|
151 |
+
"<mask_197>": 51003,
|
152 |
+
"<mask_198>": 51002,
|
153 |
+
"<mask_199>": 51001,
|
154 |
+
"<mask_19>": 51181,
|
155 |
+
"<mask_1>": 51199,
|
156 |
+
"<mask_200>": 51000,
|
157 |
+
"<mask_201>": 50999,
|
158 |
+
"<mask_202>": 50998,
|
159 |
+
"<mask_203>": 50997,
|
160 |
+
"<mask_204>": 50996,
|
161 |
+
"<mask_205>": 50995,
|
162 |
+
"<mask_206>": 50994,
|
163 |
+
"<mask_207>": 50993,
|
164 |
+
"<mask_208>": 50992,
|
165 |
+
"<mask_209>": 50991,
|
166 |
+
"<mask_20>": 51180,
|
167 |
+
"<mask_210>": 50990,
|
168 |
+
"<mask_211>": 50989,
|
169 |
+
"<mask_212>": 50988,
|
170 |
+
"<mask_213>": 50987,
|
171 |
+
"<mask_214>": 50986,
|
172 |
+
"<mask_215>": 50985,
|
173 |
+
"<mask_216>": 50984,
|
174 |
+
"<mask_217>": 50983,
|
175 |
+
"<mask_218>": 50982,
|
176 |
+
"<mask_219>": 50981,
|
177 |
+
"<mask_21>": 51179,
|
178 |
+
"<mask_220>": 50980,
|
179 |
+
"<mask_221>": 50979,
|
180 |
+
"<mask_222>": 50978,
|
181 |
+
"<mask_223>": 50977,
|
182 |
+
"<mask_224>": 50976,
|
183 |
+
"<mask_225>": 50975,
|
184 |
+
"<mask_226>": 50974,
|
185 |
+
"<mask_227>": 50973,
|
186 |
+
"<mask_228>": 50972,
|
187 |
+
"<mask_229>": 50971,
|
188 |
+
"<mask_22>": 51178,
|
189 |
+
"<mask_230>": 50970,
|
190 |
+
"<mask_231>": 50969,
|
191 |
+
"<mask_232>": 50968,
|
192 |
+
"<mask_233>": 50967,
|
193 |
+
"<mask_234>": 50966,
|
194 |
+
"<mask_235>": 50965,
|
195 |
+
"<mask_236>": 50964,
|
196 |
+
"<mask_237>": 50963,
|
197 |
+
"<mask_238>": 50962,
|
198 |
+
"<mask_239>": 50961,
|
199 |
+
"<mask_23>": 51177,
|
200 |
+
"<mask_240>": 50960,
|
201 |
+
"<mask_241>": 50959,
|
202 |
+
"<mask_242>": 50958,
|
203 |
+
"<mask_243>": 50957,
|
204 |
+
"<mask_244>": 50956,
|
205 |
+
"<mask_245>": 50955,
|
206 |
+
"<mask_246>": 50954,
|
207 |
+
"<mask_247>": 50953,
|
208 |
+
"<mask_248>": 50952,
|
209 |
+
"<mask_249>": 50951,
|
210 |
+
"<mask_24>": 51176,
|
211 |
+
"<mask_250>": 50950,
|
212 |
+
"<mask_251>": 50949,
|
213 |
+
"<mask_252>": 50948,
|
214 |
+
"<mask_253>": 50947,
|
215 |
+
"<mask_254>": 50946,
|
216 |
+
"<mask_255>": 50945,
|
217 |
+
"<mask_256>": 50944,
|
218 |
+
"<mask_257>": 50943,
|
219 |
+
"<mask_258>": 50942,
|
220 |
+
"<mask_259>": 50941,
|
221 |
+
"<mask_25>": 51175,
|
222 |
+
"<mask_260>": 50940,
|
223 |
+
"<mask_261>": 50939,
|
224 |
+
"<mask_262>": 50938,
|
225 |
+
"<mask_263>": 50937,
|
226 |
+
"<mask_264>": 50936,
|
227 |
+
"<mask_265>": 50935,
|
228 |
+
"<mask_266>": 50934,
|
229 |
+
"<mask_267>": 50933,
|
230 |
+
"<mask_268>": 50932,
|
231 |
+
"<mask_269>": 50931,
|
232 |
+
"<mask_26>": 51174,
|
233 |
+
"<mask_270>": 50930,
|
234 |
+
"<mask_271>": 50929,
|
235 |
+
"<mask_272>": 50928,
|
236 |
+
"<mask_273>": 50927,
|
237 |
+
"<mask_274>": 50926,
|
238 |
+
"<mask_275>": 50925,
|
239 |
+
"<mask_276>": 50924,
|
240 |
+
"<mask_277>": 50923,
|
241 |
+
"<mask_278>": 50922,
|
242 |
+
"<mask_279>": 50921,
|
243 |
+
"<mask_27>": 51173,
|
244 |
+
"<mask_280>": 50920,
|
245 |
+
"<mask_281>": 50919,
|
246 |
+
"<mask_282>": 50918,
|
247 |
+
"<mask_283>": 50917,
|
248 |
+
"<mask_284>": 50916,
|
249 |
+
"<mask_285>": 50915,
|
250 |
+
"<mask_286>": 50914,
|
251 |
+
"<mask_287>": 50913,
|
252 |
+
"<mask_288>": 50912,
|
253 |
+
"<mask_289>": 50911,
|
254 |
+
"<mask_28>": 51172,
|
255 |
+
"<mask_290>": 50910,
|
256 |
+
"<mask_291>": 50909,
|
257 |
+
"<mask_292>": 50908,
|
258 |
+
"<mask_293>": 50907,
|
259 |
+
"<mask_294>": 50906,
|
260 |
+
"<mask_295>": 50905,
|
261 |
+
"<mask_296>": 50904,
|
262 |
+
"<mask_297>": 50903,
|
263 |
+
"<mask_298>": 50902,
|
264 |
+
"<mask_299>": 50901,
|
265 |
+
"<mask_29>": 51171,
|
266 |
+
"<mask_2>": 51198,
|
267 |
+
"<mask_300>": 50900,
|
268 |
+
"<mask_301>": 50899,
|
269 |
+
"<mask_302>": 50898,
|
270 |
+
"<mask_303>": 50897,
|
271 |
+
"<mask_304>": 50896,
|
272 |
+
"<mask_305>": 50895,
|
273 |
+
"<mask_306>": 50894,
|
274 |
+
"<mask_307>": 50893,
|
275 |
+
"<mask_308>": 50892,
|
276 |
+
"<mask_309>": 50891,
|
277 |
+
"<mask_30>": 51170,
|
278 |
+
"<mask_310>": 50890,
|
279 |
+
"<mask_311>": 50889,
|
280 |
+
"<mask_312>": 50888,
|
281 |
+
"<mask_313>": 50887,
|
282 |
+
"<mask_314>": 50886,
|
283 |
+
"<mask_315>": 50885,
|
284 |
+
"<mask_316>": 50884,
|
285 |
+
"<mask_317>": 50883,
|
286 |
+
"<mask_318>": 50882,
|
287 |
+
"<mask_319>": 50881,
|
288 |
+
"<mask_31>": 51169,
|
289 |
+
"<mask_320>": 50880,
|
290 |
+
"<mask_321>": 50879,
|
291 |
+
"<mask_322>": 50878,
|
292 |
+
"<mask_323>": 50877,
|
293 |
+
"<mask_324>": 50876,
|
294 |
+
"<mask_325>": 50875,
|
295 |
+
"<mask_326>": 50874,
|
296 |
+
"<mask_327>": 50873,
|
297 |
+
"<mask_328>": 50872,
|
298 |
+
"<mask_329>": 50871,
|
299 |
+
"<mask_32>": 51168,
|
300 |
+
"<mask_330>": 50870,
|
301 |
+
"<mask_331>": 50869,
|
302 |
+
"<mask_332>": 50868,
|
303 |
+
"<mask_333>": 50867,
|
304 |
+
"<mask_334>": 50866,
|
305 |
+
"<mask_335>": 50865,
|
306 |
+
"<mask_336>": 50864,
|
307 |
+
"<mask_337>": 50863,
|
308 |
+
"<mask_338>": 50862,
|
309 |
+
"<mask_339>": 50861,
|
310 |
+
"<mask_33>": 51167,
|
311 |
+
"<mask_340>": 50860,
|
312 |
+
"<mask_341>": 50859,
|
313 |
+
"<mask_342>": 50858,
|
314 |
+
"<mask_343>": 50857,
|
315 |
+
"<mask_344>": 50856,
|
316 |
+
"<mask_345>": 50855,
|
317 |
+
"<mask_346>": 50854,
|
318 |
+
"<mask_347>": 50853,
|
319 |
+
"<mask_348>": 50852,
|
320 |
+
"<mask_349>": 50851,
|
321 |
+
"<mask_34>": 51166,
|
322 |
+
"<mask_350>": 50850,
|
323 |
+
"<mask_351>": 50849,
|
324 |
+
"<mask_352>": 50848,
|
325 |
+
"<mask_353>": 50847,
|
326 |
+
"<mask_354>": 50846,
|
327 |
+
"<mask_355>": 50845,
|
328 |
+
"<mask_356>": 50844,
|
329 |
+
"<mask_357>": 50843,
|
330 |
+
"<mask_358>": 50842,
|
331 |
+
"<mask_359>": 50841,
|
332 |
+
"<mask_35>": 51165,
|
333 |
+
"<mask_360>": 50840,
|
334 |
+
"<mask_361>": 50839,
|
335 |
+
"<mask_362>": 50838,
|
336 |
+
"<mask_363>": 50837,
|
337 |
+
"<mask_364>": 50836,
|
338 |
+
"<mask_365>": 50835,
|
339 |
+
"<mask_366>": 50834,
|
340 |
+
"<mask_367>": 50833,
|
341 |
+
"<mask_368>": 50832,
|
342 |
+
"<mask_369>": 50831,
|
343 |
+
"<mask_36>": 51164,
|
344 |
+
"<mask_370>": 50830,
|
345 |
+
"<mask_371>": 50829,
|
346 |
+
"<mask_372>": 50828,
|
347 |
+
"<mask_373>": 50827,
|
348 |
+
"<mask_374>": 50826,
|
349 |
+
"<mask_375>": 50825,
|
350 |
+
"<mask_376>": 50824,
|
351 |
+
"<mask_377>": 50823,
|
352 |
+
"<mask_378>": 50822,
|
353 |
+
"<mask_379>": 50821,
|
354 |
+
"<mask_37>": 51163,
|
355 |
+
"<mask_380>": 50820,
|
356 |
+
"<mask_381>": 50819,
|
357 |
+
"<mask_382>": 50818,
|
358 |
+
"<mask_383>": 50817,
|
359 |
+
"<mask_384>": 50816,
|
360 |
+
"<mask_385>": 50815,
|
361 |
+
"<mask_386>": 50814,
|
362 |
+
"<mask_387>": 50813,
|
363 |
+
"<mask_388>": 50812,
|
364 |
+
"<mask_389>": 50811,
|
365 |
+
"<mask_38>": 51162,
|
366 |
+
"<mask_390>": 50810,
|
367 |
+
"<mask_391>": 50809,
|
368 |
+
"<mask_392>": 50808,
|
369 |
+
"<mask_393>": 50807,
|
370 |
+
"<mask_394>": 50806,
|
371 |
+
"<mask_395>": 50805,
|
372 |
+
"<mask_396>": 50804,
|
373 |
+
"<mask_397>": 50803,
|
374 |
+
"<mask_398>": 50802,
|
375 |
+
"<mask_399>": 50801,
|
376 |
+
"<mask_39>": 51161,
|
377 |
+
"<mask_3>": 51197,
|
378 |
+
"<mask_400>": 50800,
|
379 |
+
"<mask_401>": 50799,
|
380 |
+
"<mask_402>": 50798,
|
381 |
+
"<mask_403>": 50797,
|
382 |
+
"<mask_404>": 50796,
|
383 |
+
"<mask_405>": 50795,
|
384 |
+
"<mask_406>": 50794,
|
385 |
+
"<mask_407>": 50793,
|
386 |
+
"<mask_408>": 50792,
|
387 |
+
"<mask_409>": 50791,
|
388 |
+
"<mask_40>": 51160,
|
389 |
+
"<mask_410>": 50790,
|
390 |
+
"<mask_411>": 50789,
|
391 |
+
"<mask_412>": 50788,
|
392 |
+
"<mask_413>": 50787,
|
393 |
+
"<mask_414>": 50786,
|
394 |
+
"<mask_415>": 50785,
|
395 |
+
"<mask_416>": 50784,
|
396 |
+
"<mask_417>": 50783,
|
397 |
+
"<mask_418>": 50782,
|
398 |
+
"<mask_419>": 50781,
|
399 |
+
"<mask_41>": 51159,
|
400 |
+
"<mask_420>": 50780,
|
401 |
+
"<mask_421>": 50779,
|
402 |
+
"<mask_422>": 50778,
|
403 |
+
"<mask_423>": 50777,
|
404 |
+
"<mask_424>": 50776,
|
405 |
+
"<mask_425>": 50775,
|
406 |
+
"<mask_426>": 50774,
|
407 |
+
"<mask_427>": 50773,
|
408 |
+
"<mask_428>": 50772,
|
409 |
+
"<mask_429>": 50771,
|
410 |
+
"<mask_42>": 51158,
|
411 |
+
"<mask_430>": 50770,
|
412 |
+
"<mask_431>": 50769,
|
413 |
+
"<mask_432>": 50768,
|
414 |
+
"<mask_433>": 50767,
|
415 |
+
"<mask_434>": 50766,
|
416 |
+
"<mask_435>": 50765,
|
417 |
+
"<mask_436>": 50764,
|
418 |
+
"<mask_437>": 50763,
|
419 |
+
"<mask_438>": 50762,
|
420 |
+
"<mask_439>": 50761,
|
421 |
+
"<mask_43>": 51157,
|
422 |
+
"<mask_440>": 50760,
|
423 |
+
"<mask_441>": 50759,
|
424 |
+
"<mask_442>": 50758,
|
425 |
+
"<mask_443>": 50757,
|
426 |
+
"<mask_444>": 50756,
|
427 |
+
"<mask_445>": 50755,
|
428 |
+
"<mask_446>": 50754,
|
429 |
+
"<mask_447>": 50753,
|
430 |
+
"<mask_448>": 50752,
|
431 |
+
"<mask_449>": 50751,
|
432 |
+
"<mask_44>": 51156,
|
433 |
+
"<mask_450>": 50750,
|
434 |
+
"<mask_451>": 50749,
|
435 |
+
"<mask_452>": 50748,
|
436 |
+
"<mask_453>": 50747,
|
437 |
+
"<mask_454>": 50746,
|
438 |
+
"<mask_455>": 50745,
|
439 |
+
"<mask_456>": 50744,
|
440 |
+
"<mask_457>": 50743,
|
441 |
+
"<mask_458>": 50742,
|
442 |
+
"<mask_459>": 50741,
|
443 |
+
"<mask_45>": 51155,
|
444 |
+
"<mask_460>": 50740,
|
445 |
+
"<mask_461>": 50739,
|
446 |
+
"<mask_462>": 50738,
|
447 |
+
"<mask_463>": 50737,
|
448 |
+
"<mask_464>": 50736,
|
449 |
+
"<mask_465>": 50735,
|
450 |
+
"<mask_466>": 50734,
|
451 |
+
"<mask_467>": 50733,
|
452 |
+
"<mask_468>": 50732,
|
453 |
+
"<mask_469>": 50731,
|
454 |
+
"<mask_46>": 51154,
|
455 |
+
"<mask_470>": 50730,
|
456 |
+
"<mask_471>": 50729,
|
457 |
+
"<mask_472>": 50728,
|
458 |
+
"<mask_473>": 50727,
|
459 |
+
"<mask_474>": 50726,
|
460 |
+
"<mask_475>": 50725,
|
461 |
+
"<mask_476>": 50724,
|
462 |
+
"<mask_477>": 50723,
|
463 |
+
"<mask_478>": 50722,
|
464 |
+
"<mask_479>": 50721,
|
465 |
+
"<mask_47>": 51153,
|
466 |
+
"<mask_480>": 50720,
|
467 |
+
"<mask_481>": 50719,
|
468 |
+
"<mask_482>": 50718,
|
469 |
+
"<mask_483>": 50717,
|
470 |
+
"<mask_484>": 50716,
|
471 |
+
"<mask_485>": 50715,
|
472 |
+
"<mask_486>": 50714,
|
473 |
+
"<mask_487>": 50713,
|
474 |
+
"<mask_488>": 50712,
|
475 |
+
"<mask_489>": 50711,
|
476 |
+
"<mask_48>": 51152,
|
477 |
+
"<mask_490>": 50710,
|
478 |
+
"<mask_491>": 50709,
|
479 |
+
"<mask_492>": 50708,
|
480 |
+
"<mask_493>": 50707,
|
481 |
+
"<mask_494>": 50706,
|
482 |
+
"<mask_495>": 50705,
|
483 |
+
"<mask_496>": 50704,
|
484 |
+
"<mask_497>": 50703,
|
485 |
+
"<mask_498>": 50702,
|
486 |
+
"<mask_499>": 50701,
|
487 |
+
"<mask_49>": 51151,
|
488 |
+
"<mask_4>": 51196,
|
489 |
+
"<mask_500>": 50700,
|
490 |
+
"<mask_501>": 50699,
|
491 |
+
"<mask_502>": 50698,
|
492 |
+
"<mask_503>": 50697,
|
493 |
+
"<mask_504>": 50696,
|
494 |
+
"<mask_505>": 50695,
|
495 |
+
"<mask_506>": 50694,
|
496 |
+
"<mask_507>": 50693,
|
497 |
+
"<mask_508>": 50692,
|
498 |
+
"<mask_509>": 50691,
|
499 |
+
"<mask_50>": 51150,
|
500 |
+
"<mask_510>": 50690,
|
501 |
+
"<mask_511>": 50689,
|
502 |
+
"<mask_512>": 50688,
|
503 |
+
"<mask_513>": 50687,
|
504 |
+
"<mask_514>": 50686,
|
505 |
+
"<mask_515>": 50685,
|
506 |
+
"<mask_516>": 50684,
|
507 |
+
"<mask_517>": 50683,
|
508 |
+
"<mask_518>": 50682,
|
509 |
+
"<mask_519>": 50681,
|
510 |
+
"<mask_51>": 51149,
|
511 |
+
"<mask_520>": 50680,
|
512 |
+
"<mask_521>": 50679,
|
513 |
+
"<mask_522>": 50678,
|
514 |
+
"<mask_523>": 50677,
|
515 |
+
"<mask_524>": 50676,
|
516 |
+
"<mask_525>": 50675,
|
517 |
+
"<mask_526>": 50674,
|
518 |
+
"<mask_527>": 50673,
|
519 |
+
"<mask_528>": 50672,
|
520 |
+
"<mask_529>": 50671,
|
521 |
+
"<mask_52>": 51148,
|
522 |
+
"<mask_530>": 50670,
|
523 |
+
"<mask_531>": 50669,
|
524 |
+
"<mask_532>": 50668,
|
525 |
+
"<mask_533>": 50667,
|
526 |
+
"<mask_534>": 50666,
|
527 |
+
"<mask_535>": 50665,
|
528 |
+
"<mask_536>": 50664,
|
529 |
+
"<mask_537>": 50663,
|
530 |
+
"<mask_538>": 50662,
|
531 |
+
"<mask_539>": 50661,
|
532 |
+
"<mask_53>": 51147,
|
533 |
+
"<mask_540>": 50660,
|
534 |
+
"<mask_541>": 50659,
|
535 |
+
"<mask_542>": 50658,
|
536 |
+
"<mask_543>": 50657,
|
537 |
+
"<mask_544>": 50656,
|
538 |
+
"<mask_545>": 50655,
|
539 |
+
"<mask_546>": 50654,
|
540 |
+
"<mask_547>": 50653,
|
541 |
+
"<mask_548>": 50652,
|
542 |
+
"<mask_549>": 50651,
|
543 |
+
"<mask_54>": 51146,
|
544 |
+
"<mask_550>": 50650,
|
545 |
+
"<mask_551>": 50649,
|
546 |
+
"<mask_552>": 50648,
|
547 |
+
"<mask_553>": 50647,
|
548 |
+
"<mask_554>": 50646,
|
549 |
+
"<mask_555>": 50645,
|
550 |
+
"<mask_556>": 50644,
|
551 |
+
"<mask_557>": 50643,
|
552 |
+
"<mask_558>": 50642,
|
553 |
+
"<mask_559>": 50641,
|
554 |
+
"<mask_55>": 51145,
|
555 |
+
"<mask_560>": 50640,
|
556 |
+
"<mask_561>": 50639,
|
557 |
+
"<mask_562>": 50638,
|
558 |
+
"<mask_563>": 50637,
|
559 |
+
"<mask_564>": 50636,
|
560 |
+
"<mask_565>": 50635,
|
561 |
+
"<mask_566>": 50634,
|
562 |
+
"<mask_567>": 50633,
|
563 |
+
"<mask_568>": 50632,
|
564 |
+
"<mask_569>": 50631,
|
565 |
+
"<mask_56>": 51144,
|
566 |
+
"<mask_570>": 50630,
|
567 |
+
"<mask_571>": 50629,
|
568 |
+
"<mask_572>": 50628,
|
569 |
+
"<mask_573>": 50627,
|
570 |
+
"<mask_574>": 50626,
|
571 |
+
"<mask_575>": 50625,
|
572 |
+
"<mask_576>": 50624,
|
573 |
+
"<mask_577>": 50623,
|
574 |
+
"<mask_578>": 50622,
|
575 |
+
"<mask_579>": 50621,
|
576 |
+
"<mask_57>": 51143,
|
577 |
+
"<mask_580>": 50620,
|
578 |
+
"<mask_581>": 50619,
|
579 |
+
"<mask_582>": 50618,
|
580 |
+
"<mask_583>": 50617,
|
581 |
+
"<mask_584>": 50616,
|
582 |
+
"<mask_585>": 50615,
|
583 |
+
"<mask_586>": 50614,
|
584 |
+
"<mask_587>": 50613,
|
585 |
+
"<mask_588>": 50612,
|
586 |
+
"<mask_589>": 50611,
|
587 |
+
"<mask_58>": 51142,
|
588 |
+
"<mask_590>": 50610,
|
589 |
+
"<mask_591>": 50609,
|
590 |
+
"<mask_592>": 50608,
|
591 |
+
"<mask_593>": 50607,
|
592 |
+
"<mask_594>": 50606,
|
593 |
+
"<mask_595>": 50605,
|
594 |
+
"<mask_596>": 50604,
|
595 |
+
"<mask_597>": 50603,
|
596 |
+
"<mask_598>": 50602,
|
597 |
+
"<mask_599>": 50601,
|
598 |
+
"<mask_59>": 51141,
|
599 |
+
"<mask_5>": 51195,
|
600 |
+
"<mask_600>": 50600,
|
601 |
+
"<mask_601>": 50599,
|
602 |
+
"<mask_602>": 50598,
|
603 |
+
"<mask_603>": 50597,
|
604 |
+
"<mask_604>": 50596,
|
605 |
+
"<mask_605>": 50595,
|
606 |
+
"<mask_606>": 50594,
|
607 |
+
"<mask_607>": 50593,
|
608 |
+
"<mask_608>": 50592,
|
609 |
+
"<mask_609>": 50591,
|
610 |
+
"<mask_60>": 51140,
|
611 |
+
"<mask_610>": 50590,
|
612 |
+
"<mask_611>": 50589,
|
613 |
+
"<mask_612>": 50588,
|
614 |
+
"<mask_613>": 50587,
|
615 |
+
"<mask_614>": 50586,
|
616 |
+
"<mask_615>": 50585,
|
617 |
+
"<mask_616>": 50584,
|
618 |
+
"<mask_617>": 50583,
|
619 |
+
"<mask_618>": 50582,
|
620 |
+
"<mask_619>": 50581,
|
621 |
+
"<mask_61>": 51139,
|
622 |
+
"<mask_620>": 50580,
|
623 |
+
"<mask_621>": 50579,
|
624 |
+
"<mask_622>": 50578,
|
625 |
+
"<mask_623>": 50577,
|
626 |
+
"<mask_624>": 50576,
|
627 |
+
"<mask_625>": 50575,
|
628 |
+
"<mask_626>": 50574,
|
629 |
+
"<mask_627>": 50573,
|
630 |
+
"<mask_628>": 50572,
|
631 |
+
"<mask_629>": 50571,
|
632 |
+
"<mask_62>": 51138,
|
633 |
+
"<mask_630>": 50570,
|
634 |
+
"<mask_631>": 50569,
|
635 |
+
"<mask_632>": 50568,
|
636 |
+
"<mask_633>": 50567,
|
637 |
+
"<mask_634>": 50566,
|
638 |
+
"<mask_635>": 50565,
|
639 |
+
"<mask_636>": 50564,
|
640 |
+
"<mask_637>": 50563,
|
641 |
+
"<mask_638>": 50562,
|
642 |
+
"<mask_639>": 50561,
|
643 |
+
"<mask_63>": 51137,
|
644 |
+
"<mask_640>": 50560,
|
645 |
+
"<mask_641>": 50559,
|
646 |
+
"<mask_642>": 50558,
|
647 |
+
"<mask_643>": 50557,
|
648 |
+
"<mask_644>": 50556,
|
649 |
+
"<mask_645>": 50555,
|
650 |
+
"<mask_646>": 50554,
|
651 |
+
"<mask_647>": 50553,
|
652 |
+
"<mask_648>": 50552,
|
653 |
+
"<mask_649>": 50551,
|
654 |
+
"<mask_64>": 51136,
|
655 |
+
"<mask_650>": 50550,
|
656 |
+
"<mask_651>": 50549,
|
657 |
+
"<mask_652>": 50548,
|
658 |
+
"<mask_653>": 50547,
|
659 |
+
"<mask_654>": 50546,
|
660 |
+
"<mask_655>": 50545,
|
661 |
+
"<mask_656>": 50544,
|
662 |
+
"<mask_657>": 50543,
|
663 |
+
"<mask_658>": 50542,
|
664 |
+
"<mask_659>": 50541,
|
665 |
+
"<mask_65>": 51135,
|
666 |
+
"<mask_660>": 50540,
|
667 |
+
"<mask_661>": 50539,
|
668 |
+
"<mask_662>": 50538,
|
669 |
+
"<mask_663>": 50537,
|
670 |
+
"<mask_664>": 50536,
|
671 |
+
"<mask_665>": 50535,
|
672 |
+
"<mask_666>": 50534,
|
673 |
+
"<mask_667>": 50533,
|
674 |
+
"<mask_668>": 50532,
|
675 |
+
"<mask_669>": 50531,
|
676 |
+
"<mask_66>": 51134,
|
677 |
+
"<mask_670>": 50530,
|
678 |
+
"<mask_671>": 50529,
|
679 |
+
"<mask_672>": 50528,
|
680 |
+
"<mask_673>": 50527,
|
681 |
+
"<mask_674>": 50526,
|
682 |
+
"<mask_675>": 50525,
|
683 |
+
"<mask_676>": 50524,
|
684 |
+
"<mask_677>": 50523,
|
685 |
+
"<mask_678>": 50522,
|
686 |
+
"<mask_679>": 50521,
|
687 |
+
"<mask_67>": 51133,
|
688 |
+
"<mask_680>": 50520,
|
689 |
+
"<mask_681>": 50519,
|
690 |
+
"<mask_682>": 50518,
|
691 |
+
"<mask_683>": 50517,
|
692 |
+
"<mask_684>": 50516,
|
693 |
+
"<mask_685>": 50515,
|
694 |
+
"<mask_686>": 50514,
|
695 |
+
"<mask_687>": 50513,
|
696 |
+
"<mask_688>": 50512,
|
697 |
+
"<mask_689>": 50511,
|
698 |
+
"<mask_68>": 51132,
|
699 |
+
"<mask_690>": 50510,
|
700 |
+
"<mask_691>": 50509,
|
701 |
+
"<mask_692>": 50508,
|
702 |
+
"<mask_693>": 50507,
|
703 |
+
"<mask_694>": 50506,
|
704 |
+
"<mask_695>": 50505,
|
705 |
+
"<mask_696>": 50504,
|
706 |
+
"<mask_697>": 50503,
|
707 |
+
"<mask_698>": 50502,
|
708 |
+
"<mask_699>": 50501,
|
709 |
+
"<mask_69>": 51131,
|
710 |
+
"<mask_6>": 51194,
|
711 |
+
"<mask_700>": 50500,
|
712 |
+
"<mask_701>": 50499,
|
713 |
+
"<mask_702>": 50498,
|
714 |
+
"<mask_703>": 50497,
|
715 |
+
"<mask_704>": 50496,
|
716 |
+
"<mask_705>": 50495,
|
717 |
+
"<mask_706>": 50494,
|
718 |
+
"<mask_707>": 50493,
|
719 |
+
"<mask_708>": 50492,
|
720 |
+
"<mask_709>": 50491,
|
721 |
+
"<mask_70>": 51130,
|
722 |
+
"<mask_710>": 50490,
|
723 |
+
"<mask_711>": 50489,
|
724 |
+
"<mask_712>": 50488,
|
725 |
+
"<mask_713>": 50487,
|
726 |
+
"<mask_714>": 50486,
|
727 |
+
"<mask_715>": 50485,
|
728 |
+
"<mask_716>": 50484,
|
729 |
+
"<mask_717>": 50483,
|
730 |
+
"<mask_718>": 50482,
|
731 |
+
"<mask_719>": 50481,
|
732 |
+
"<mask_71>": 51129,
|
733 |
+
"<mask_720>": 50480,
|
734 |
+
"<mask_721>": 50479,
|
735 |
+
"<mask_722>": 50478,
|
736 |
+
"<mask_723>": 50477,
|
737 |
+
"<mask_724>": 50476,
|
738 |
+
"<mask_725>": 50475,
|
739 |
+
"<mask_726>": 50474,
|
740 |
+
"<mask_727>": 50473,
|
741 |
+
"<mask_728>": 50472,
|
742 |
+
"<mask_729>": 50471,
|
743 |
+
"<mask_72>": 51128,
|
744 |
+
"<mask_730>": 50470,
|
745 |
+
"<mask_731>": 50469,
|
746 |
+
"<mask_732>": 50468,
|
747 |
+
"<mask_733>": 50467,
|
748 |
+
"<mask_734>": 50466,
|
749 |
+
"<mask_735>": 50465,
|
750 |
+
"<mask_736>": 50464,
|
751 |
+
"<mask_737>": 50463,
|
752 |
+
"<mask_738>": 50462,
|
753 |
+
"<mask_739>": 50461,
|
754 |
+
"<mask_73>": 51127,
|
755 |
+
"<mask_740>": 50460,
|
756 |
+
"<mask_741>": 50459,
|
757 |
+
"<mask_742>": 50458,
|
758 |
+
"<mask_743>": 50457,
|
759 |
+
"<mask_744>": 50456,
|
760 |
+
"<mask_745>": 50455,
|
761 |
+
"<mask_746>": 50454,
|
762 |
+
"<mask_747>": 50453,
|
763 |
+
"<mask_748>": 50452,
|
764 |
+
"<mask_749>": 50451,
|
765 |
+
"<mask_74>": 51126,
|
766 |
+
"<mask_750>": 50450,
|
767 |
+
"<mask_751>": 50449,
|
768 |
+
"<mask_752>": 50448,
|
769 |
+
"<mask_753>": 50447,
|
770 |
+
"<mask_754>": 50446,
|
771 |
+
"<mask_755>": 50445,
|
772 |
+
"<mask_756>": 50444,
|
773 |
+
"<mask_757>": 50443,
|
774 |
+
"<mask_758>": 50442,
|
775 |
+
"<mask_759>": 50441,
|
776 |
+
"<mask_75>": 51125,
|
777 |
+
"<mask_760>": 50440,
|
778 |
+
"<mask_761>": 50439,
|
779 |
+
"<mask_762>": 50438,
|
780 |
+
"<mask_763>": 50437,
|
781 |
+
"<mask_764>": 50436,
|
782 |
+
"<mask_765>": 50435,
|
783 |
+
"<mask_766>": 50434,
|
784 |
+
"<mask_767>": 50433,
|
785 |
+
"<mask_768>": 50432,
|
786 |
+
"<mask_769>": 50431,
|
787 |
+
"<mask_76>": 51124,
|
788 |
+
"<mask_770>": 50430,
|
789 |
+
"<mask_771>": 50429,
|
790 |
+
"<mask_772>": 50428,
|
791 |
+
"<mask_773>": 50427,
|
792 |
+
"<mask_774>": 50426,
|
793 |
+
"<mask_775>": 50425,
|
794 |
+
"<mask_776>": 50424,
|
795 |
+
"<mask_777>": 50423,
|
796 |
+
"<mask_778>": 50422,
|
797 |
+
"<mask_779>": 50421,
|
798 |
+
"<mask_77>": 51123,
|
799 |
+
"<mask_780>": 50420,
|
800 |
+
"<mask_781>": 50419,
|
801 |
+
"<mask_782>": 50418,
|
802 |
+
"<mask_783>": 50417,
|
803 |
+
"<mask_784>": 50416,
|
804 |
+
"<mask_785>": 50415,
|
805 |
+
"<mask_786>": 50414,
|
806 |
+
"<mask_787>": 50413,
|
807 |
+
"<mask_788>": 50412,
|
808 |
+
"<mask_789>": 50411,
|
809 |
+
"<mask_78>": 51122,
|
810 |
+
"<mask_790>": 50410,
|
811 |
+
"<mask_791>": 50409,
|
812 |
+
"<mask_792>": 50408,
|
813 |
+
"<mask_793>": 50407,
|
814 |
+
"<mask_794>": 50406,
|
815 |
+
"<mask_795>": 50405,
|
816 |
+
"<mask_796>": 50404,
|
817 |
+
"<mask_797>": 50403,
|
818 |
+
"<mask_798>": 50402,
|
819 |
+
"<mask_799>": 50401,
|
820 |
+
"<mask_79>": 51121,
|
821 |
+
"<mask_7>": 51193,
|
822 |
+
"<mask_800>": 50400,
|
823 |
+
"<mask_801>": 50399,
|
824 |
+
"<mask_802>": 50398,
|
825 |
+
"<mask_803>": 50397,
|
826 |
+
"<mask_804>": 50396,
|
827 |
+
"<mask_805>": 50395,
|
828 |
+
"<mask_806>": 50394,
|
829 |
+
"<mask_807>": 50393,
|
830 |
+
"<mask_808>": 50392,
|
831 |
+
"<mask_809>": 50391,
|
832 |
+
"<mask_80>": 51120,
|
833 |
+
"<mask_810>": 50390,
|
834 |
+
"<mask_811>": 50389,
|
835 |
+
"<mask_812>": 50388,
|
836 |
+
"<mask_813>": 50387,
|
837 |
+
"<mask_814>": 50386,
|
838 |
+
"<mask_815>": 50385,
|
839 |
+
"<mask_816>": 50384,
|
840 |
+
"<mask_817>": 50383,
|
841 |
+
"<mask_818>": 50382,
|
842 |
+
"<mask_819>": 50381,
|
843 |
+
"<mask_81>": 51119,
|
844 |
+
"<mask_820>": 50380,
|
845 |
+
"<mask_821>": 50379,
|
846 |
+
"<mask_822>": 50378,
|
847 |
+
"<mask_823>": 50377,
|
848 |
+
"<mask_824>": 50376,
|
849 |
+
"<mask_825>": 50375,
|
850 |
+
"<mask_826>": 50374,
|
851 |
+
"<mask_827>": 50373,
|
852 |
+
"<mask_828>": 50372,
|
853 |
+
"<mask_829>": 50371,
|
854 |
+
"<mask_82>": 51118,
|
855 |
+
"<mask_830>": 50370,
|
856 |
+
"<mask_831>": 50369,
|
857 |
+
"<mask_832>": 50368,
|
858 |
+
"<mask_833>": 50367,
|
859 |
+
"<mask_834>": 50366,
|
860 |
+
"<mask_835>": 50365,
|
861 |
+
"<mask_836>": 50364,
|
862 |
+
"<mask_837>": 50363,
|
863 |
+
"<mask_838>": 50362,
|
864 |
+
"<mask_839>": 50361,
|
865 |
+
"<mask_83>": 51117,
|
866 |
+
"<mask_840>": 50360,
|
867 |
+
"<mask_841>": 50359,
|
868 |
+
"<mask_842>": 50358,
|
869 |
+
"<mask_843>": 50357,
|
870 |
+
"<mask_844>": 50356,
|
871 |
+
"<mask_845>": 50355,
|
872 |
+
"<mask_846>": 50354,
|
873 |
+
"<mask_847>": 50353,
|
874 |
+
"<mask_848>": 50352,
|
875 |
+
"<mask_849>": 50351,
|
876 |
+
"<mask_84>": 51116,
|
877 |
+
"<mask_850>": 50350,
|
878 |
+
"<mask_851>": 50349,
|
879 |
+
"<mask_852>": 50348,
|
880 |
+
"<mask_853>": 50347,
|
881 |
+
"<mask_854>": 50346,
|
882 |
+
"<mask_855>": 50345,
|
883 |
+
"<mask_856>": 50344,
|
884 |
+
"<mask_857>": 50343,
|
885 |
+
"<mask_858>": 50342,
|
886 |
+
"<mask_859>": 50341,
|
887 |
+
"<mask_85>": 51115,
|
888 |
+
"<mask_860>": 50340,
|
889 |
+
"<mask_861>": 50339,
|
890 |
+
"<mask_862>": 50338,
|
891 |
+
"<mask_863>": 50337,
|
892 |
+
"<mask_864>": 50336,
|
893 |
+
"<mask_865>": 50335,
|
894 |
+
"<mask_866>": 50334,
|
895 |
+
"<mask_867>": 50333,
|
896 |
+
"<mask_868>": 50332,
|
897 |
+
"<mask_869>": 50331,
|
898 |
+
"<mask_86>": 51114,
|
899 |
+
"<mask_870>": 50330,
|
900 |
+
"<mask_871>": 50329,
|
901 |
+
"<mask_872>": 50328,
|
902 |
+
"<mask_873>": 50327,
|
903 |
+
"<mask_874>": 50326,
|
904 |
+
"<mask_875>": 50325,
|
905 |
+
"<mask_876>": 50324,
|
906 |
+
"<mask_877>": 50323,
|
907 |
+
"<mask_878>": 50322,
|
908 |
+
"<mask_879>": 50321,
|
909 |
+
"<mask_87>": 51113,
|
910 |
+
"<mask_880>": 50320,
|
911 |
+
"<mask_881>": 50319,
|
912 |
+
"<mask_882>": 50318,
|
913 |
+
"<mask_883>": 50317,
|
914 |
+
"<mask_884>": 50316,
|
915 |
+
"<mask_885>": 50315,
|
916 |
+
"<mask_886>": 50314,
|
917 |
+
"<mask_887>": 50313,
|
918 |
+
"<mask_888>": 50312,
|
919 |
+
"<mask_889>": 50311,
|
920 |
+
"<mask_88>": 51112,
|
921 |
+
"<mask_890>": 50310,
|
922 |
+
"<mask_891>": 50309,
|
923 |
+
"<mask_892>": 50308,
|
924 |
+
"<mask_893>": 50307,
|
925 |
+
"<mask_894>": 50306,
|
926 |
+
"<mask_895>": 50305,
|
927 |
+
"<mask_896>": 50304,
|
928 |
+
"<mask_897>": 50303,
|
929 |
+
"<mask_898>": 50302,
|
930 |
+
"<mask_899>": 50301,
|
931 |
+
"<mask_89>": 51111,
|
932 |
+
"<mask_8>": 51192,
|
933 |
+
"<mask_90>": 51110,
|
934 |
+
"<mask_91>": 51109,
|
935 |
+
"<mask_92>": 51108,
|
936 |
+
"<mask_93>": 51107,
|
937 |
+
"<mask_94>": 51106,
|
938 |
+
"<mask_95>": 51105,
|
939 |
+
"<mask_96>": 51104,
|
940 |
+
"<mask_97>": 51103,
|
941 |
+
"<mask_98>": 51102,
|
942 |
+
"<mask_99>": 51101,
|
943 |
+
"<mask_9>": 51191,
|
944 |
+
"<sep>": 50299
|
945 |
+
}
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/codegen2-3.7B",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"CodeGenForCausalLM"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_codegen.CodeGenConfig",
|
10 |
+
"AutoModel": "modeling_codegen.CodeGenModel",
|
11 |
+
"AutoModelForCausalLM": "modeling_codegen.CodeGenForCausalLM"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"embd_pdrop": 0.0,
|
15 |
+
"eos_token_id": 2,
|
16 |
+
"gradient_checkpointing": false,
|
17 |
+
"head_dim": 256,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"layer_norm_epsilon": 1e-05,
|
20 |
+
"model_type": "codegen",
|
21 |
+
"n_ctx": 2048,
|
22 |
+
"n_embd": 4096,
|
23 |
+
"n_head": 16,
|
24 |
+
"n_inner": null,
|
25 |
+
"n_layer": 16,
|
26 |
+
"n_positions": 2048,
|
27 |
+
"resid_pdrop": 0.0,
|
28 |
+
"rotary_dim": 64,
|
29 |
+
"scale_attn_weights": true,
|
30 |
+
"summary_activation": null,
|
31 |
+
"summary_first_dropout": 0.1,
|
32 |
+
"summary_proj_to_labels": true,
|
33 |
+
"summary_type": "cls_index",
|
34 |
+
"summary_use_proj": true,
|
35 |
+
"task_specific_params": {
|
36 |
+
"text-generation": {
|
37 |
+
"do_sample": true,
|
38 |
+
"max_length": 50,
|
39 |
+
"temperature": 1.0
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"tie_word_embeddings": false,
|
43 |
+
"tokenizer_class": "GPT2Tokenizer",
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.25.1",
|
46 |
+
"use_cache": true,
|
47 |
+
"vocab_size": 51200
|
48 |
+
}
|
configuration_codegen.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CodeGen model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
|
30 |
+
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
|
31 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
|
32 |
+
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
|
33 |
+
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
|
34 |
+
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
|
35 |
+
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
|
36 |
+
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
|
37 |
+
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
|
38 |
+
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
|
39 |
+
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
|
40 |
+
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
class CodeGenConfig(PretrainedConfig):
|
45 |
+
r"""
|
46 |
+
This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
|
47 |
+
CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
48 |
+
with the defaults will yield a similar configuration to that of the CodeGen
|
49 |
+
[Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
|
50 |
+
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
|
51 |
+
[`PretrainedConfig`] for more information.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
55 |
+
Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
|
56 |
+
`inputs_ids` passed when calling [`CodeGenModel`].
|
57 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
61 |
+
Dimensionality of the embeddings and hidden states.
|
62 |
+
n_layer (`int`, *optional*, defaults to 28):
|
63 |
+
Number of hidden layers in the Transformer encoder.
|
64 |
+
n_head (`int`, *optional*, defaults to 16):
|
65 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
66 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
67 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
68 |
+
n_inner (`int`, *optional*, defaults to None):
|
69 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
70 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
71 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
72 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
73 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
74 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
75 |
+
The dropout ratio for the embeddings.
|
76 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
77 |
+
The dropout ratio for the attention.
|
78 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
79 |
+
The epsilon to use in the layer normalization layers.
|
80 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
81 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
82 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
83 |
+
Scale attention weights by dividing by sqrt(hidden_size).
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
86 |
+
|
87 |
+
Example:
|
88 |
+
|
89 |
+
```python
|
90 |
+
>>> from transformers import CodeGenModel, CodeGenConfig
|
91 |
+
|
92 |
+
>>> # Initializing a CodeGen 6B configuration
|
93 |
+
>>> configuration = CodeGenConfig()
|
94 |
+
|
95 |
+
>>> # Initializing a model from the configuration
|
96 |
+
>>> model = CodeGenModel(configuration)
|
97 |
+
|
98 |
+
>>> # Accessing the model configuration
|
99 |
+
>>> configuration = model.config
|
100 |
+
```"""
|
101 |
+
model_type = "codegen"
|
102 |
+
attribute_map = {
|
103 |
+
"max_position_embeddings": "n_positions",
|
104 |
+
"hidden_size": "n_embd",
|
105 |
+
"num_attention_heads": "n_head",
|
106 |
+
"num_hidden_layers": "n_layer",
|
107 |
+
}
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_size=50400,
|
112 |
+
n_positions=2048,
|
113 |
+
n_ctx=2048,
|
114 |
+
n_embd=4096,
|
115 |
+
n_layer=28,
|
116 |
+
n_head=16,
|
117 |
+
rotary_dim=64,
|
118 |
+
n_inner=None,
|
119 |
+
activation_function="gelu_new",
|
120 |
+
resid_pdrop=0.0,
|
121 |
+
embd_pdrop=0.0,
|
122 |
+
attn_pdrop=0.0,
|
123 |
+
layer_norm_epsilon=1e-5,
|
124 |
+
initializer_range=0.02,
|
125 |
+
scale_attn_weights=True,
|
126 |
+
use_cache=True,
|
127 |
+
bos_token_id=50256,
|
128 |
+
eos_token_id=50256,
|
129 |
+
tie_word_embeddings=False,
|
130 |
+
**kwargs
|
131 |
+
):
|
132 |
+
self.vocab_size = vocab_size
|
133 |
+
self.n_ctx = n_ctx
|
134 |
+
self.n_positions = n_positions
|
135 |
+
self.n_embd = n_embd
|
136 |
+
self.n_layer = n_layer
|
137 |
+
self.n_head = n_head
|
138 |
+
self.n_inner = n_inner
|
139 |
+
self.rotary_dim = rotary_dim
|
140 |
+
self.activation_function = activation_function
|
141 |
+
self.resid_pdrop = resid_pdrop
|
142 |
+
self.embd_pdrop = embd_pdrop
|
143 |
+
self.attn_pdrop = attn_pdrop
|
144 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.scale_attn_weights = scale_attn_weights
|
147 |
+
self.use_cache = use_cache
|
148 |
+
|
149 |
+
self.bos_token_id = bos_token_id
|
150 |
+
self.eos_token_id = eos_token_id
|
151 |
+
|
152 |
+
super().__init__(
|
153 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
158 |
+
class CodeGenOnnxConfig(OnnxConfigWithPast):
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
config: PretrainedConfig,
|
162 |
+
task: str = "default",
|
163 |
+
patching_specs: List[PatchingSpec] = None,
|
164 |
+
use_past: bool = False,
|
165 |
+
):
|
166 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
167 |
+
if not getattr(self._config, "pad_token_id", None):
|
168 |
+
# TODO: how to do that better?
|
169 |
+
self._config.pad_token_id = 0
|
170 |
+
|
171 |
+
@property
|
172 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
173 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
174 |
+
if self.use_past:
|
175 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
176 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
177 |
+
else:
|
178 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
179 |
+
|
180 |
+
return common_inputs
|
181 |
+
|
182 |
+
@property
|
183 |
+
def num_layers(self) -> int:
|
184 |
+
return self._config.n_layer
|
185 |
+
|
186 |
+
@property
|
187 |
+
def num_attention_heads(self) -> int:
|
188 |
+
return self._config.n_head
|
189 |
+
|
190 |
+
def generate_dummy_inputs(
|
191 |
+
self,
|
192 |
+
tokenizer: PreTrainedTokenizer,
|
193 |
+
batch_size: int = -1,
|
194 |
+
seq_length: int = -1,
|
195 |
+
is_pair: bool = False,
|
196 |
+
framework: Optional[TensorType] = None,
|
197 |
+
) -> Mapping[str, Any]:
|
198 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
199 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
200 |
+
)
|
201 |
+
|
202 |
+
# We need to order the input in the way they appears in the forward()
|
203 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
204 |
+
|
205 |
+
# Need to add the past_keys
|
206 |
+
if self.use_past:
|
207 |
+
if not is_torch_available():
|
208 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
209 |
+
else:
|
210 |
+
import torch
|
211 |
+
|
212 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
213 |
+
# Not using the same length for past_key_values
|
214 |
+
past_key_values_length = seqlen + 2
|
215 |
+
past_shape = (
|
216 |
+
batch,
|
217 |
+
self.num_attention_heads,
|
218 |
+
past_key_values_length,
|
219 |
+
self._config.hidden_size // self.num_attention_heads,
|
220 |
+
)
|
221 |
+
ordered_inputs["past_key_values"] = [
|
222 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
223 |
+
]
|
224 |
+
|
225 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
226 |
+
if self.use_past:
|
227 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
228 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
229 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
230 |
+
)
|
231 |
+
|
232 |
+
return ordered_inputs
|
233 |
+
|
234 |
+
@property
|
235 |
+
def default_onnx_opset(self) -> int:
|
236 |
+
return 13
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_codegen.py
ADDED
@@ -0,0 +1,747 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CodeGen model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
26 |
+
from transformers.modeling_utils import PreTrainedModel
|
27 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
28 |
+
from .configuration_codegen import CodeGenConfig
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono"
|
34 |
+
_CONFIG_FOR_DOC = "CodeGenConfig"
|
35 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
36 |
+
|
37 |
+
|
38 |
+
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
39 |
+
"Salesforce/codegen-350M-nl",
|
40 |
+
"Salesforce/codegen-350M-multi",
|
41 |
+
"Salesforce/codegen-350M-mono",
|
42 |
+
"Salesforce/codegen-2B-nl",
|
43 |
+
"Salesforce/codegen-2B-multi",
|
44 |
+
"Salesforce/codegen-2B-mono",
|
45 |
+
"Salesforce/codegen-6B-nl",
|
46 |
+
"Salesforce/codegen-6B-multi",
|
47 |
+
"Salesforce/codegen-6B-mono",
|
48 |
+
"Salesforce/codegen-16B-nl",
|
49 |
+
"Salesforce/codegen-16B-multi",
|
50 |
+
"Salesforce/codegen-16B-mono",
|
51 |
+
# See all CodeGen models at https://huggingface.co/models?filter=codegen
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.gptj.modeling_gptj.fixed_pos_embedding
|
56 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
57 |
+
dim = x.shape[-1]
|
58 |
+
if seq_len is None:
|
59 |
+
seq_len = x.shape[seq_dim]
|
60 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
61 |
+
sinusoid_inp = (
|
62 |
+
torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
|
63 |
+
)
|
64 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
65 |
+
|
66 |
+
|
67 |
+
# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
|
68 |
+
def rotate_every_two(x):
|
69 |
+
x1 = x[:, :, :, ::2]
|
70 |
+
x2 = x[:, :, :, 1::2]
|
71 |
+
x = torch.stack((-x2, x1), dim=-1)
|
72 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
73 |
+
|
74 |
+
|
75 |
+
# Copied from transformers.models.gptj.modeling_gptj.duplicate_interleave
|
76 |
+
def duplicate_interleave(m):
|
77 |
+
"""
|
78 |
+
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
|
79 |
+
"""
|
80 |
+
dim0 = m.shape[0]
|
81 |
+
m = m.view(-1, 1) # flatten the matrix
|
82 |
+
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
|
83 |
+
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
|
84 |
+
return m
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
|
88 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
89 |
+
sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos)
|
90 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
91 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
92 |
+
|
93 |
+
|
94 |
+
class CodeGenAttention(nn.Module):
|
95 |
+
def __init__(self, config):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
max_positions = config.max_position_embeddings
|
99 |
+
self.register_buffer(
|
100 |
+
"causal_mask",
|
101 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
102 |
+
1, 1, max_positions, max_positions
|
103 |
+
),
|
104 |
+
)
|
105 |
+
|
106 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
107 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
108 |
+
|
109 |
+
self.embed_dim = config.hidden_size
|
110 |
+
self.num_attention_heads = config.num_attention_heads
|
111 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
112 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
113 |
+
raise ValueError(
|
114 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
115 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
116 |
+
)
|
117 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
118 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
119 |
+
|
120 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
121 |
+
self.rotary_dim = None
|
122 |
+
if config.rotary_dim is not None:
|
123 |
+
self.rotary_dim = config.rotary_dim
|
124 |
+
|
125 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
126 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
127 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
128 |
+
return reshaped
|
129 |
+
|
130 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
131 |
+
"""
|
132 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
133 |
+
"""
|
134 |
+
if len(tensor.shape) == 5:
|
135 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
136 |
+
elif len(tensor.shape) == 4:
|
137 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
140 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
141 |
+
return tensor.view(new_shape)
|
142 |
+
|
143 |
+
def _attn(
|
144 |
+
self,
|
145 |
+
query,
|
146 |
+
key,
|
147 |
+
value,
|
148 |
+
attention_mask=None,
|
149 |
+
head_mask=None,
|
150 |
+
):
|
151 |
+
|
152 |
+
# compute causal mask from causal mask buffer
|
153 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
154 |
+
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
|
155 |
+
|
156 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
157 |
+
query = query.to(torch.float32)
|
158 |
+
key = key.to(torch.float32)
|
159 |
+
|
160 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
161 |
+
|
162 |
+
attn_weights = attn_weights / self.scale_attn
|
163 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
164 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
165 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
166 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
167 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
168 |
+
|
169 |
+
if attention_mask is not None:
|
170 |
+
# Apply the attention mask
|
171 |
+
attn_weights = attn_weights + attention_mask
|
172 |
+
|
173 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
174 |
+
attn_weights = attn_weights.to(value.dtype)
|
175 |
+
attn_weights = self.attn_dropout(attn_weights)
|
176 |
+
|
177 |
+
# Mask heads if we want to
|
178 |
+
if head_mask is not None:
|
179 |
+
attn_weights = attn_weights * head_mask
|
180 |
+
|
181 |
+
attn_output = torch.matmul(attn_weights, value)
|
182 |
+
|
183 |
+
return attn_output, attn_weights
|
184 |
+
|
185 |
+
def forward(
|
186 |
+
self,
|
187 |
+
hidden_states: Optional[torch.FloatTensor],
|
188 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
189 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
190 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
191 |
+
use_cache: Optional[bool] = False,
|
192 |
+
output_attentions: Optional[bool] = False,
|
193 |
+
) -> Union[
|
194 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
195 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
196 |
+
]:
|
197 |
+
|
198 |
+
qkv = self.qkv_proj(hidden_states)
|
199 |
+
|
200 |
+
# TPU-v3
|
201 |
+
mp_num = 8
|
202 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
203 |
+
|
204 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
205 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
206 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
207 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
208 |
+
|
209 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
210 |
+
value = value.permute(0, 2, 1, 3)
|
211 |
+
|
212 |
+
seq_len = key.shape[1]
|
213 |
+
offset = 0
|
214 |
+
|
215 |
+
if layer_past is not None:
|
216 |
+
offset = layer_past[0].shape[-2]
|
217 |
+
seq_len += offset
|
218 |
+
|
219 |
+
if self.rotary_dim is not None:
|
220 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
221 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
222 |
+
|
223 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
224 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
225 |
+
|
226 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
227 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
228 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
|
229 |
+
|
230 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
231 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
232 |
+
else:
|
233 |
+
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
234 |
+
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
235 |
+
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
236 |
+
|
237 |
+
key = key.permute(0, 2, 1, 3)
|
238 |
+
query = query.permute(0, 2, 1, 3)
|
239 |
+
|
240 |
+
if layer_past is not None:
|
241 |
+
past_key = layer_past[0]
|
242 |
+
past_value = layer_past[1]
|
243 |
+
key = torch.cat((past_key, key), dim=-2)
|
244 |
+
value = torch.cat((past_value, value), dim=-2)
|
245 |
+
|
246 |
+
if use_cache is True:
|
247 |
+
present = (key, value)
|
248 |
+
else:
|
249 |
+
present = None
|
250 |
+
|
251 |
+
# compute self-attention: V x Softmax(QK^T)
|
252 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
253 |
+
|
254 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
255 |
+
attn_output = self.out_proj(attn_output)
|
256 |
+
attn_output = self.resid_dropout(attn_output)
|
257 |
+
|
258 |
+
outputs = (attn_output, present)
|
259 |
+
if output_attentions:
|
260 |
+
outputs += (attn_weights,)
|
261 |
+
|
262 |
+
return outputs # a, present, (attentions)
|
263 |
+
|
264 |
+
|
265 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen
|
266 |
+
class CodeGenMLP(nn.Module):
|
267 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
268 |
+
super().__init__()
|
269 |
+
embed_dim = config.n_embd
|
270 |
+
|
271 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
272 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
273 |
+
|
274 |
+
self.act = ACT2FN[config.activation_function]
|
275 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
276 |
+
|
277 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
278 |
+
hidden_states = self.fc_in(hidden_states)
|
279 |
+
hidden_states = self.act(hidden_states)
|
280 |
+
hidden_states = self.fc_out(hidden_states)
|
281 |
+
hidden_states = self.dropout(hidden_states)
|
282 |
+
return hidden_states
|
283 |
+
|
284 |
+
|
285 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen
|
286 |
+
class CodeGenBlock(nn.Module):
|
287 |
+
def __init__(self, config):
|
288 |
+
super().__init__()
|
289 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
290 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
291 |
+
self.attn = CodeGenAttention(config)
|
292 |
+
self.mlp = CodeGenMLP(inner_dim, config)
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
hidden_states: Optional[torch.FloatTensor],
|
297 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
298 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
299 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
300 |
+
use_cache: Optional[bool] = False,
|
301 |
+
output_attentions: Optional[bool] = False,
|
302 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
303 |
+
residual = hidden_states
|
304 |
+
hidden_states = self.ln_1(hidden_states)
|
305 |
+
attn_outputs = self.attn(
|
306 |
+
hidden_states,
|
307 |
+
layer_past=layer_past,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
head_mask=head_mask,
|
310 |
+
use_cache=use_cache,
|
311 |
+
output_attentions=output_attentions,
|
312 |
+
)
|
313 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
314 |
+
outputs = attn_outputs[1:]
|
315 |
+
|
316 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
317 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
318 |
+
|
319 |
+
if use_cache:
|
320 |
+
outputs = (hidden_states,) + outputs
|
321 |
+
else:
|
322 |
+
outputs = (hidden_states,) + outputs[1:]
|
323 |
+
|
324 |
+
return outputs # hidden_states, present, (attentions)
|
325 |
+
|
326 |
+
|
327 |
+
class CodeGenPreTrainedModel(PreTrainedModel):
|
328 |
+
"""
|
329 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
330 |
+
models.
|
331 |
+
"""
|
332 |
+
|
333 |
+
config_class = CodeGenConfig
|
334 |
+
base_model_prefix = "transformer"
|
335 |
+
supports_gradient_checkpointing = True
|
336 |
+
_no_split_modules = ["CodeGenBlock"]
|
337 |
+
|
338 |
+
def __init__(self, *inputs, **kwargs):
|
339 |
+
super().__init__(*inputs, **kwargs)
|
340 |
+
|
341 |
+
def _init_weights(self, module):
|
342 |
+
"""Initialize the weights."""
|
343 |
+
if isinstance(module, (nn.Linear,)):
|
344 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
345 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
346 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
347 |
+
if module.bias is not None:
|
348 |
+
module.bias.data.zero_()
|
349 |
+
elif isinstance(module, nn.Embedding):
|
350 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
351 |
+
if module.padding_idx is not None:
|
352 |
+
module.weight.data[module.padding_idx].zero_()
|
353 |
+
elif isinstance(module, nn.LayerNorm):
|
354 |
+
module.bias.data.zero_()
|
355 |
+
module.weight.data.fill_(1.0)
|
356 |
+
|
357 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
358 |
+
if isinstance(module, CodeGenModel):
|
359 |
+
module.gradient_checkpointing = value
|
360 |
+
|
361 |
+
|
362 |
+
CODEGEN_START_DOCSTRING = r"""
|
363 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
364 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
365 |
+
behavior.
|
366 |
+
|
367 |
+
Parameters:
|
368 |
+
config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model.
|
369 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
370 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
371 |
+
"""
|
372 |
+
|
373 |
+
CODEGEN_INPUTS_DOCSTRING = r"""
|
374 |
+
Args:
|
375 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
376 |
+
Indices of input sequence tokens in the vocabulary.
|
377 |
+
|
378 |
+
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
379 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
380 |
+
|
381 |
+
[What are input IDs?](../glossary#input-ids)
|
382 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
383 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
384 |
+
|
385 |
+
- 1 for tokens that are **not masked**,
|
386 |
+
- 0 for tokens that are **masked**.
|
387 |
+
|
388 |
+
[What are attention masks?](../glossary#attention-mask)
|
389 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
390 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
391 |
+
1]`:
|
392 |
+
|
393 |
+
- 0 corresponds to a *sentence A* token,
|
394 |
+
- 1 corresponds to a *sentence B* token.
|
395 |
+
|
396 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
397 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
398 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
399 |
+
config.n_positions - 1]`.
|
400 |
+
|
401 |
+
[What are position IDs?](../glossary#position-ids)
|
402 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
403 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
404 |
+
|
405 |
+
- 1 indicates the head is **not masked**,
|
406 |
+
- 0 indicates the head is **masked**.
|
407 |
+
|
408 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
409 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
410 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
411 |
+
model's internal embedding lookup matrix.
|
412 |
+
output_attentions (`bool`, *optional*):
|
413 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
414 |
+
tensors for more detail.
|
415 |
+
output_hidden_states (`bool`, *optional*):
|
416 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
417 |
+
more detail.
|
418 |
+
return_dict (`bool`, *optional*):
|
419 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
420 |
+
"""
|
421 |
+
|
422 |
+
|
423 |
+
@add_start_docstrings(
|
424 |
+
"The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.",
|
425 |
+
CODEGEN_START_DOCSTRING,
|
426 |
+
)
|
427 |
+
class CodeGenModel(CodeGenPreTrainedModel):
|
428 |
+
def __init__(self, config):
|
429 |
+
super().__init__(config)
|
430 |
+
|
431 |
+
self.embed_dim = config.n_embd
|
432 |
+
self.vocab_size = config.vocab_size
|
433 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
434 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
435 |
+
self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)])
|
436 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
437 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
438 |
+
|
439 |
+
self.gradient_checkpointing = False
|
440 |
+
|
441 |
+
# Initialize weights and apply final processing
|
442 |
+
self.post_init()
|
443 |
+
|
444 |
+
def get_input_embeddings(self):
|
445 |
+
return self.wte
|
446 |
+
|
447 |
+
def set_input_embeddings(self, new_embeddings):
|
448 |
+
self.wte = new_embeddings
|
449 |
+
|
450 |
+
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
451 |
+
@add_code_sample_docstrings(
|
452 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
453 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
454 |
+
output_type=BaseModelOutputWithPast,
|
455 |
+
config_class=_CONFIG_FOR_DOC,
|
456 |
+
)
|
457 |
+
def forward(
|
458 |
+
self,
|
459 |
+
input_ids: Optional[torch.LongTensor] = None,
|
460 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
461 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
462 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
463 |
+
position_ids: Optional[torch.LongTensor] = None,
|
464 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
465 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
466 |
+
use_cache: Optional[bool] = None,
|
467 |
+
output_attentions: Optional[bool] = None,
|
468 |
+
output_hidden_states: Optional[bool] = None,
|
469 |
+
return_dict: Optional[bool] = None,
|
470 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
471 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
472 |
+
output_hidden_states = (
|
473 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
474 |
+
)
|
475 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
476 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
477 |
+
|
478 |
+
if input_ids is not None and inputs_embeds is not None:
|
479 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
480 |
+
elif input_ids is not None:
|
481 |
+
input_shape = input_ids.size()
|
482 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
483 |
+
batch_size = input_ids.shape[0]
|
484 |
+
elif inputs_embeds is not None:
|
485 |
+
input_shape = inputs_embeds.size()[:-1]
|
486 |
+
batch_size = inputs_embeds.shape[0]
|
487 |
+
else:
|
488 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
489 |
+
|
490 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
491 |
+
|
492 |
+
if token_type_ids is not None:
|
493 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
494 |
+
|
495 |
+
if position_ids is not None:
|
496 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
497 |
+
|
498 |
+
if past_key_values is None:
|
499 |
+
past_length = 0
|
500 |
+
past_key_values = tuple([None] * len(self.h))
|
501 |
+
else:
|
502 |
+
past_length = past_key_values[0][0].size(-2)
|
503 |
+
|
504 |
+
if position_ids is None:
|
505 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
506 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
507 |
+
|
508 |
+
# Attention mask.
|
509 |
+
if attention_mask is not None:
|
510 |
+
if batch_size <= 0:
|
511 |
+
raise ValueError("batch_size has to be defined and > 0")
|
512 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
513 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
514 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
515 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
516 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
517 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
518 |
+
attention_mask = attention_mask[:, None, None, :]
|
519 |
+
|
520 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
521 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
522 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
523 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
524 |
+
# effectively the same as removing these entirely.
|
525 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
526 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
527 |
+
|
528 |
+
# Prepare head mask if needed
|
529 |
+
# 1.0 in head_mask indicate we keep the head
|
530 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
531 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
532 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
533 |
+
|
534 |
+
if inputs_embeds is None:
|
535 |
+
inputs_embeds = self.wte(input_ids)
|
536 |
+
|
537 |
+
hidden_states = inputs_embeds
|
538 |
+
|
539 |
+
if token_type_ids is not None:
|
540 |
+
token_type_embeds = self.wte(token_type_ids)
|
541 |
+
hidden_states = hidden_states + token_type_embeds
|
542 |
+
|
543 |
+
hidden_states = self.drop(hidden_states)
|
544 |
+
|
545 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
546 |
+
|
547 |
+
presents = () if use_cache else None
|
548 |
+
all_self_attentions = () if output_attentions else None
|
549 |
+
all_hidden_states = () if output_hidden_states else None
|
550 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
551 |
+
|
552 |
+
if output_hidden_states:
|
553 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
554 |
+
|
555 |
+
if self.gradient_checkpointing and self.training:
|
556 |
+
|
557 |
+
if use_cache:
|
558 |
+
logger.warning(
|
559 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
560 |
+
"`use_cache=False`..."
|
561 |
+
)
|
562 |
+
use_cache = False
|
563 |
+
|
564 |
+
def create_custom_forward(module):
|
565 |
+
def custom_forward(*inputs):
|
566 |
+
# None for past_key_value
|
567 |
+
return module(*inputs, use_cache, output_attentions)
|
568 |
+
|
569 |
+
return custom_forward
|
570 |
+
|
571 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
572 |
+
create_custom_forward(block),
|
573 |
+
hidden_states,
|
574 |
+
None,
|
575 |
+
attention_mask,
|
576 |
+
head_mask[i],
|
577 |
+
)
|
578 |
+
else:
|
579 |
+
outputs = block(
|
580 |
+
hidden_states,
|
581 |
+
layer_past=layer_past,
|
582 |
+
attention_mask=attention_mask,
|
583 |
+
head_mask=head_mask[i],
|
584 |
+
use_cache=use_cache,
|
585 |
+
output_attentions=output_attentions,
|
586 |
+
)
|
587 |
+
|
588 |
+
hidden_states = outputs[0]
|
589 |
+
if use_cache is True:
|
590 |
+
presents = presents + (outputs[1],)
|
591 |
+
|
592 |
+
if output_attentions:
|
593 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
594 |
+
|
595 |
+
hidden_states = self.ln_f(hidden_states)
|
596 |
+
|
597 |
+
hidden_states = hidden_states.view(output_shape)
|
598 |
+
# Add last hidden state
|
599 |
+
if output_hidden_states:
|
600 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
601 |
+
|
602 |
+
if not return_dict:
|
603 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
604 |
+
|
605 |
+
return BaseModelOutputWithPast(
|
606 |
+
last_hidden_state=hidden_states,
|
607 |
+
past_key_values=presents,
|
608 |
+
hidden_states=all_hidden_states,
|
609 |
+
attentions=all_self_attentions,
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
@add_start_docstrings(
|
614 |
+
"""
|
615 |
+
The CodeGen Model transformer with a language modeling head on top.
|
616 |
+
""",
|
617 |
+
CODEGEN_START_DOCSTRING,
|
618 |
+
)
|
619 |
+
class CodeGenForCausalLM(CodeGenPreTrainedModel):
|
620 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
621 |
+
|
622 |
+
def __init__(self, config):
|
623 |
+
super().__init__(config)
|
624 |
+
self.transformer = CodeGenModel(config)
|
625 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
626 |
+
|
627 |
+
# Initialize weights and apply final processing
|
628 |
+
self.post_init()
|
629 |
+
|
630 |
+
def get_output_embeddings(self):
|
631 |
+
return self.lm_head
|
632 |
+
|
633 |
+
def set_output_embeddings(self, new_embeddings):
|
634 |
+
self.lm_head = new_embeddings
|
635 |
+
|
636 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
637 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
638 |
+
# only last token for inputs_ids if past is defined in kwargs
|
639 |
+
if past:
|
640 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
641 |
+
if token_type_ids is not None:
|
642 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
643 |
+
|
644 |
+
attention_mask = kwargs.get("attention_mask", None)
|
645 |
+
position_ids = kwargs.get("position_ids", None)
|
646 |
+
|
647 |
+
if attention_mask is not None and position_ids is None:
|
648 |
+
# create position_ids on the fly for batch generation
|
649 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
650 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
651 |
+
if past:
|
652 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
653 |
+
else:
|
654 |
+
position_ids = None
|
655 |
+
return {
|
656 |
+
"input_ids": input_ids,
|
657 |
+
"past_key_values": past,
|
658 |
+
"use_cache": kwargs.get("use_cache"),
|
659 |
+
"position_ids": position_ids,
|
660 |
+
"attention_mask": attention_mask,
|
661 |
+
"token_type_ids": token_type_ids,
|
662 |
+
}
|
663 |
+
|
664 |
+
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
665 |
+
@add_code_sample_docstrings(
|
666 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
667 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
668 |
+
output_type=CausalLMOutputWithPast,
|
669 |
+
config_class=_CONFIG_FOR_DOC,
|
670 |
+
)
|
671 |
+
def forward(
|
672 |
+
self,
|
673 |
+
input_ids: Optional[torch.LongTensor] = None,
|
674 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
675 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
676 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
677 |
+
position_ids: Optional[torch.LongTensor] = None,
|
678 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
679 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
680 |
+
labels: Optional[torch.LongTensor] = None,
|
681 |
+
use_cache: Optional[bool] = None,
|
682 |
+
output_attentions: Optional[bool] = None,
|
683 |
+
output_hidden_states: Optional[bool] = None,
|
684 |
+
return_dict: Optional[bool] = None,
|
685 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
686 |
+
r"""
|
687 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
688 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
689 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
690 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
691 |
+
"""
|
692 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
693 |
+
|
694 |
+
transformer_outputs = self.transformer(
|
695 |
+
input_ids,
|
696 |
+
past_key_values=past_key_values,
|
697 |
+
attention_mask=attention_mask,
|
698 |
+
token_type_ids=token_type_ids,
|
699 |
+
position_ids=position_ids,
|
700 |
+
head_mask=head_mask,
|
701 |
+
inputs_embeds=inputs_embeds,
|
702 |
+
use_cache=use_cache,
|
703 |
+
output_attentions=output_attentions,
|
704 |
+
output_hidden_states=output_hidden_states,
|
705 |
+
return_dict=return_dict,
|
706 |
+
)
|
707 |
+
hidden_states = transformer_outputs[0]
|
708 |
+
|
709 |
+
# make sure sampling in fp16 works correctly and
|
710 |
+
# compute loss in fp32 to match with mesh-tf version
|
711 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
712 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
713 |
+
|
714 |
+
loss = None
|
715 |
+
if labels is not None:
|
716 |
+
# Shift so that tokens < n predict n
|
717 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
718 |
+
shift_labels = labels[..., 1:].contiguous()
|
719 |
+
# Flatten the tokens
|
720 |
+
loss_fct = CrossEntropyLoss()
|
721 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
722 |
+
|
723 |
+
loss = loss.to(hidden_states.dtype)
|
724 |
+
|
725 |
+
if not return_dict:
|
726 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
727 |
+
return ((loss,) + output) if loss is not None else output
|
728 |
+
|
729 |
+
return CausalLMOutputWithPast(
|
730 |
+
loss=loss,
|
731 |
+
logits=lm_logits,
|
732 |
+
past_key_values=transformer_outputs.past_key_values,
|
733 |
+
hidden_states=transformer_outputs.hidden_states,
|
734 |
+
attentions=transformer_outputs.attentions,
|
735 |
+
)
|
736 |
+
|
737 |
+
@staticmethod
|
738 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
739 |
+
"""
|
740 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
741 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
742 |
+
beam_idx at every generation step.
|
743 |
+
"""
|
744 |
+
return tuple(
|
745 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
746 |
+
for layer_past in past
|
747 |
+
)
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd4f2b29cffa9b2326b5cb48140ff7eba3edcc0be7641c74805315497c9b86ef
|
3 |
+
size 9950218439
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ba4bad1e66793c01eff0391e39d0558904e5f5de282632af880e74b342061c
|
3 |
+
size 4681636309
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14631804928
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.bias": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
8 |
+
"transformer.h.0.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"transformer.h.0.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"transformer.h.0.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"transformer.h.0.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"transformer.h.0.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"transformer.h.0.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"transformer.h.0.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"transformer.h.1.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"transformer.h.1.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"transformer.h.1.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"transformer.h.1.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"transformer.h.1.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"transformer.h.1.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"transformer.h.1.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"transformer.h.10.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"transformer.h.10.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"transformer.h.10.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"transformer.h.10.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"transformer.h.10.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"transformer.h.10.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"transformer.h.10.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"transformer.h.10.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"transformer.h.11.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"transformer.h.11.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
37 |
+
"transformer.h.11.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"transformer.h.11.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"transformer.h.11.mlp.fc_in.bias": "pytorch_model-00002-of-00002.bin",
|
41 |
+
"transformer.h.11.mlp.fc_in.weight": "pytorch_model-00002-of-00002.bin",
|
42 |
+
"transformer.h.11.mlp.fc_out.bias": "pytorch_model-00002-of-00002.bin",
|
43 |
+
"transformer.h.11.mlp.fc_out.weight": "pytorch_model-00002-of-00002.bin",
|
44 |
+
"transformer.h.12.attn.causal_mask": "pytorch_model-00002-of-00002.bin",
|
45 |
+
"transformer.h.12.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
46 |
+
"transformer.h.12.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
|
47 |
+
"transformer.h.12.ln_1.bias": "pytorch_model-00002-of-00002.bin",
|
48 |
+
"transformer.h.12.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
49 |
+
"transformer.h.12.mlp.fc_in.bias": "pytorch_model-00002-of-00002.bin",
|
50 |
+
"transformer.h.12.mlp.fc_in.weight": "pytorch_model-00002-of-00002.bin",
|
51 |
+
"transformer.h.12.mlp.fc_out.bias": "pytorch_model-00002-of-00002.bin",
|
52 |
+
"transformer.h.12.mlp.fc_out.weight": "pytorch_model-00002-of-00002.bin",
|
53 |
+
"transformer.h.13.attn.causal_mask": "pytorch_model-00002-of-00002.bin",
|
54 |
+
"transformer.h.13.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
55 |
+
"transformer.h.13.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
|
56 |
+
"transformer.h.13.ln_1.bias": "pytorch_model-00002-of-00002.bin",
|
57 |
+
"transformer.h.13.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
58 |
+
"transformer.h.13.mlp.fc_in.bias": "pytorch_model-00002-of-00002.bin",
|
59 |
+
"transformer.h.13.mlp.fc_in.weight": "pytorch_model-00002-of-00002.bin",
|
60 |
+
"transformer.h.13.mlp.fc_out.bias": "pytorch_model-00002-of-00002.bin",
|
61 |
+
"transformer.h.13.mlp.fc_out.weight": "pytorch_model-00002-of-00002.bin",
|
62 |
+
"transformer.h.14.attn.causal_mask": "pytorch_model-00002-of-00002.bin",
|
63 |
+
"transformer.h.14.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
64 |
+
"transformer.h.14.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
|
65 |
+
"transformer.h.14.ln_1.bias": "pytorch_model-00002-of-00002.bin",
|
66 |
+
"transformer.h.14.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
67 |
+
"transformer.h.14.mlp.fc_in.bias": "pytorch_model-00002-of-00002.bin",
|
68 |
+
"transformer.h.14.mlp.fc_in.weight": "pytorch_model-00002-of-00002.bin",
|
69 |
+
"transformer.h.14.mlp.fc_out.bias": "pytorch_model-00002-of-00002.bin",
|
70 |
+
"transformer.h.14.mlp.fc_out.weight": "pytorch_model-00002-of-00002.bin",
|
71 |
+
"transformer.h.15.attn.causal_mask": "pytorch_model-00002-of-00002.bin",
|
72 |
+
"transformer.h.15.attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
73 |
+
"transformer.h.15.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
|
74 |
+
"transformer.h.15.ln_1.bias": "pytorch_model-00002-of-00002.bin",
|
75 |
+
"transformer.h.15.ln_1.weight": "pytorch_model-00002-of-00002.bin",
|
76 |
+
"transformer.h.15.mlp.fc_in.bias": "pytorch_model-00002-of-00002.bin",
|
77 |
+
"transformer.h.15.mlp.fc_in.weight": "pytorch_model-00002-of-00002.bin",
|
78 |
+
"transformer.h.15.mlp.fc_out.bias": "pytorch_model-00002-of-00002.bin",
|
79 |
+
"transformer.h.15.mlp.fc_out.weight": "pytorch_model-00002-of-00002.bin",
|
80 |
+
"transformer.h.2.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"transformer.h.2.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"transformer.h.2.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"transformer.h.2.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"transformer.h.2.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"transformer.h.2.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"transformer.h.2.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"transformer.h.3.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"transformer.h.3.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"transformer.h.3.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"transformer.h.3.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"transformer.h.3.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"transformer.h.3.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"transformer.h.3.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"transformer.h.4.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"transformer.h.4.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"transformer.h.4.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"transformer.h.4.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"transformer.h.4.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"transformer.h.4.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"transformer.h.4.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"transformer.h.5.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"transformer.h.5.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"transformer.h.5.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"transformer.h.5.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"transformer.h.5.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"transformer.h.5.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"transformer.h.5.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"transformer.h.6.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"transformer.h.6.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"transformer.h.6.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"transformer.h.6.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"transformer.h.6.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"transformer.h.6.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"transformer.h.6.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"transformer.h.7.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"transformer.h.7.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"transformer.h.7.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"transformer.h.7.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"transformer.h.7.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"transformer.h.7.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"transformer.h.7.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"transformer.h.8.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"transformer.h.8.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"transformer.h.8.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"transformer.h.8.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"transformer.h.8.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"transformer.h.8.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"transformer.h.8.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"transformer.h.9.attn.causal_mask": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"transformer.h.9.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"transformer.h.9.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"transformer.h.9.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"transformer.h.9.mlp.fc_in.bias": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"transformer.h.9.mlp.fc_in.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"transformer.h.9.mlp.fc_out.bias": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"transformer.h.9.mlp.fc_out.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"transformer.ln_f.bias": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
|
155 |
+
}
|
156 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"model_max_length": 1024,
|
6 |
+
"name_or_path": "gpt2",
|
7 |
+
"special_tokens_map_file": null,
|
8 |
+
"tokenizer_class": "GPT2Tokenizer",
|
9 |
+
"unk_token": "<|endoftext|>"
|
10 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|