Manli commited on
Commit
2cffd60
Β·
1 Parent(s): 5d0405b

update readme w/ examples

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/example-1.png filter=lfs diff=lfs merge=lfs -text
37
+ examples/example-2.png filter=lfs diff=lfs merge=lfs -text
38
+ examples/sft-examples.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -9,31 +9,73 @@ pipeline_tag: image-text-to-text
9
  # Model description
10
  We are excited to announce the continuation and rebranding of our **BLIP series** into **XGen-MM**, to be better aligned with Salesforce's unified XGen initiative for large foundation models! This rebranding marks a significant step in our ongoing development of cutting-edge multimodal technologies.
11
 
12
- `XGen-MM` is a series of the latest foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. These models have been trained at scale on high-quality image caption datasets and interleaved image-text data.
13
 
14
- In the v1.1 (08/2024) release, we present a series of XGen-MM models including:
15
- - Base model `xgen-mm-phi3-mini-base-r-v1.5`
16
- - Single-image instruct model `xgen-mm-phi3-mini-instruct-r-v1.5`
17
- - Multi-image instruct model `xgen-mm-phi3-mini-instruct-multi-r-v1.5`
18
- - DPO instruct model `xgen-mm-phi3-mini-instruct-dpo-r-v1.5`
19
 
20
  In addition to the models, we are also releasing a series of datasets for multi-modal pre-training, including:
21
- - [MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens](https://arxiv.org/abs/2406.11271)
22
- - BLIP3-OCR-200M: a dataset with dense OCR annotations.
23
- - BLIP3-GROUNDING-50M: a dataset for enhancing the ability to ground semantic concepts in images.
24
  - BLIP3-KALE-300M (stay tuned): a large-scale curated high-quality caption dataset.
25
 
26
- # Data
27
-
28
-
29
- # Results
30
 
31
- ### Base model (without instruction tuning)
32
 
33
- ### Instruct model
 
34
 
35
- ### DPO model
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  # How to use
39
 
@@ -53,23 +95,23 @@ We strongly recommend users assess safety and fairness before applying to downst
53
 
54
  # License
55
 
56
- Our code and weights are released under the Creative Commons Attribution Non Commercial 4.0 [LICENSE](LICENSE.txt). Please fill out a form at [here](https://forms.gle/ffPc9oZC2ZGeJ1N68) to consult the commercial use of model weights.
57
 
58
  # Code acknowledgement
59
  Our training code is based on [OpenFlamingo: An open-source framework for training large multimodal models.](https://github.com/mlfoundations/open_flamingo), and part of our data preprocessing code is adapted from [LLaVA](https://github.com/haotian-liu/LLaVA).
60
- Our evaluation code is based on [VLMEvalKit: Open-source evaluation toolkit of large vision-language models (LVLMs)](https://github.com/open-compass/VLMEvalKit).
61
 
62
  We thank the authors for their open-source implementations.
63
 
64
 
65
  # Citation
66
  ```
67
- @misc{xgen_mm_phi3_mini,
68
- title={xgen-mm-phi3-mini-instruct Model Card},
69
- url={https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-r-v1},
70
- author={Salesforce AI Research},
71
- month={May},
72
- year={2024}
73
  }
74
  ```
75
 
 
9
  # Model description
10
  We are excited to announce the continuation and rebranding of our **BLIP series** into **XGen-MM**, to be better aligned with Salesforce's unified XGen initiative for large foundation models! This rebranding marks a significant step in our ongoing development of cutting-edge multimodal technologies.
11
 
12
+ `xGen-MM` is a series of the latest foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. These models have been trained at scale on high-quality image caption datasets and interleaved image-text data.
13
 
14
+ In the v1.5 (08/2024) release, we present a series of XGen-MM models including:
15
+ - [πŸ€— xGen-MM-base](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-base-r-v1.5): `xgen-mm-phi3-mini-base-r-v1.5`
16
+ - [πŸ€— xGen-MM-instruct](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-r-v1.5): `xgen-mm-phi3-mini-instruct-r-v1.5`
17
+ - [πŸ€— xGen-MM-instruct-interleave](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-multi-r-v1.5): `xgen-mm-phi3-mini-instruct-multi-r-v1.5`
18
+ - [πŸ€— xGen-MM-instruct-dpo](https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5): `xgen-mm-phi3-mini-instruct-dpo-r-v1.5`
19
 
20
  In addition to the models, we are also releasing a series of datasets for multi-modal pre-training, including:
21
+ - [πŸƒ MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens](https://arxiv.org/abs/2406.11271)
22
+ - [πŸ€— BLIP3-OCR-200M](https://huggingface.co/datasets/Salesforce/blip3-ocr-200m): a dataset with dense OCR annotations.
23
+ - [πŸ€— BLIP3-GROUNDING-50M](https://huggingface.co/datasets/Salesforce/blip3-grounding-50m): a dataset for enhancing the ability to ground semantic concepts in images.
24
  - BLIP3-KALE-300M (stay tuned): a large-scale curated high-quality caption dataset.
25
 
26
+ For more details, check out our [tech report]() and project page (coming soon).
 
 
 
27
 
 
28
 
29
+ # Data
30
+ The instruct model is fine-tuned on a mixture of around 1 million samples from multiple domains. All the fine-tuning data are from public sources, most of which are covered in [The Cauldron](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron).
31
 
32
+ # Results
33
 
34
+ ### Single-image benchmarks
35
+
36
+ | Model (Size) | SEED -IMG | SEED v2 | MMB (dev) | MM Star | MME (norm) | CVB -2D | CVB -3D | RealW QA | MMMU (val) | Math Vista | Sci QA | POPE | Text VQA | Avg. all | Avg. perc. |
37
+ |--------------------------------|:---------:|:-------:|:----------:|:-------:|:-----------:|:-------:|:-----------------:|-------------------|:-----------------:|:-----------------:|:-----------------:|:-----------------:|----------------|:--------------:|----------------|
38
+ | Closed-source models | | | | | | | | | | | | | | | |
39
+ | GPT-4V<sup>&ast;</sup> | 72.0 | - | 80.8 | 49.7 | 63.3 | 64.3 | 73.8 | 56.5 | 53.8 | 48.2 | 82.1 | 75.4 | - | - | - |
40
+ | MM1-3B-Chat (3B) | 68.8 | - | 67.8 | - | 62.9 | - | - | - | 33.9 | - | - | 87.4 | - | - | - |
41
+ | Open-source models | | | | | | | | | | | | | | | |
42
+ | HPT-1.5-edge (4B) | **72.3** | - | 74.6 | 45.8 | - | - | - | - | 42.6 | **45.1** | 85.4 | **91.0** | - | - | - |
43
+ | VILA-1.5-3B (3B) | 67.9 | - | 63.4 | - | - | - | - | - | 33.3 | - | 69.0 | 85.9 | - | - | - |
44
+ | VILA-1.5-3B<sup>&ast;&ast;</sup> (3B) | 67.9 | 51.9 | 62.4 | 40.3 | 58.5 | 50.1 | 60.3 | 53.3 | 34.1 | 30.6 | 68.9 | 86.9 | 58.1 | 55.6 | 59.1 |
45
+ | phi-3-vision (4B) | - | - | 80.5 | - | - | - | - | - | - | 44.5 | 90.8 | 85.8 | 70.9 | - | - |
46
+ | phi-3-vision<sup>&ast;&ast;</sup> (4B) | 71.0 | 52.7 | 74.2 | <u>47.9</u> | 55.3 | 60.7 | 68.2 | 59.1 | **46.1** | **45.1** | **90.2** | 83.5 | **73.3** | 63.6 | 63.6 |
47
+ | xGen-MM-inst. (4B) | 71.8 | <u>53.9</u> | <u>76</u> | 46.7 | <u>63.8</u> | <u>66.2</u> | **75.4** | **61.6** | <u>42.8</u> | 39.2 | 85.6 | 87.0 | <u>72.0</u> | <u>64.8</u> | <u>66.9</u> |
48
+ | **<u>xGen-MM-inst.-interleave (4B)</u>** | <u>72.2</u> | **55.5** | **76.8** | **48.1** | **64.4** | **69.3** | <u>72.3</u> | <u>60.5</u> | 41.1 | <u>39.6</u> | <u>88.3</u> | 87.0 | 71.0 | **65.1** | **67.3** |
49
+
50
+ &ast; GPT-4V(gpt-4-1106-preview) results are taken from this third-party [leaderborad](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard).
51
+ &ast;&ast; Model results are tested with our evaluation code for a fair comparison.
52
+
53
+ ### Multi-image benchmarks
54
+
55
+ | Model | BLINK | QBench-2 | Mantis-eval |
56
+ |-------------------------------|:-----------------:|:-----------------:|:-----------------:|
57
+ | GPT-4V <sup>&dagger;</sup> | 51.1 | 73.4 | 62.7 |
58
+ | VILA-1.5-3B<sup>&dagger;&dagger;</sup> (3B) | 39.8 | 51.7 | 41.9 |
59
+ | xGen-MM-inst. (4B) | 46.6 | 52.4 | 42.4 |
60
+ | **<u>xGen-MM-inst.-interleave (4B)</u>** | 49.7 | 75.1 | 56.7 |
61
+ &dagger; GPT-4V results are the numbers reported in each benchmark's original paper.
62
+ &dagger;&dagger; Model results are tested with our evaluation code for a fair comparison.
63
+
64
+
65
+ ### Examples
66
+
67
+ <p>
68
+ <figure class="half">
69
+ <a href="examples/example-1.png"><img src="./examples/example-1.png"></a>
70
+ <a href="examples/example-2.png"><img src="./examples/example-2.png"></a>
71
+ </figure>
72
+ </p>
73
+
74
+ <p>
75
+ <figure>
76
+ <a href="examples/sft-examples.png"><img src="./examples/sft-examples.png"></a>
77
+ </figure>
78
+ </p>
79
 
80
  # How to use
81
 
 
95
 
96
  # License
97
 
98
+ Our code and weights are released under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) license.
99
 
100
  # Code acknowledgement
101
  Our training code is based on [OpenFlamingo: An open-source framework for training large multimodal models.](https://github.com/mlfoundations/open_flamingo), and part of our data preprocessing code is adapted from [LLaVA](https://github.com/haotian-liu/LLaVA).
102
+ The evaluation code for the instruct models is based on [VLMEvalKit: Open-source evaluation toolkit of large vision-language models (LVLMs)](https://github.com/open-compass/VLMEvalKit).
103
 
104
  We thank the authors for their open-source implementations.
105
 
106
 
107
  # Citation
108
  ```
109
+ @article{blip3-xgenmm,
110
+ author = {Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang, Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caiming Xiong, Ran Xu},
111
+ title = {xGen-MM(BLIP-3): A Family of Open Large Multimodal Models},
112
+ journal = {arXiv preprint},
113
+ month = {August},
114
+ year = {2024},
115
  }
116
  ```
117
 
examples/example-1.png ADDED

Git LFS Details

  • SHA256: 78373da19f77ccd7174148f988a18f8698be43f9f4b0a2bb5aa8810b51e16539
  • Pointer size: 132 Bytes
  • Size of remote file: 2.05 MB
examples/example-2.png ADDED

Git LFS Details

  • SHA256: 39420b5e4bd2d59eacd2be21fb64987906f5cf6122332c09de55fa2a7cd1ea58
  • Pointer size: 132 Bytes
  • Size of remote file: 2.87 MB
examples/sft-examples.png ADDED

Git LFS Details

  • SHA256: edaff18706e1ff10aabc3f9c0cb71c3213615ef8d0a186c0bdf2b069c2e477a4
  • Pointer size: 132 Bytes
  • Size of remote file: 1.07 MB