initial commit
Browse files- README.md +86 -3
- added_tokens.json +14 -0
- batch_inference.ipynb +0 -0
- config.json +26 -0
- configuration_xgenmm.py +159 -0
- demo.ipynb +0 -0
- generation_config.json +7 -0
- image_processing_blip_3.py +406 -0
- modeling_xgenmm.py +104 -0
- preprocessor_config.json +45 -0
- setup.sh +7 -0
- special_tokens_map.json +30 -0
- test_samples/images/1148.jpg +0 -0
- test_samples/images/152.jpg +0 -0
- test_samples/images/45711.jpg +0 -0
- test_samples/images/image-1.jpeg +0 -0
- test_samples/images/image-2.jpeg +0 -0
- test_samples/test.json +27 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +138 -0
- utils.py +383 -0
- vlm.py +1506 -0
README.md
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
# Model description
|
10 |
+
We are excited to announce the continuation and rebranding of our **BLIP series** into **XGen-MM**, to be better aligned with Salesforce's unified XGen initiative for large foundation models! This rebranding marks a significant step in our ongoing development of cutting-edge multimodal technologies.
|
11 |
+
|
12 |
+
`XGen-MM` is a series of the latest foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. These models have been trained at scale on high-quality image caption datasets and interleaved image-text data.
|
13 |
+
|
14 |
+
In the v1.1 (08/2024) release, we present a series of XGen-MM models including:
|
15 |
+
- Base model `xgen-mm-phi3-mini-base-r-v1.1`
|
16 |
+
- Single-image instruct model `xgen-mm-phi3-mini-instruct-r-v1.1`
|
17 |
+
- Multi-image instruct model `xgen-mm-phi3-mini-instruct-multi-r-v1.1`
|
18 |
+
- DPO instruct model `xgen-mm-phi3-mini-instruct-dpo-r-v1.1`
|
19 |
+
|
20 |
+
In addition to the models, we are also releasing a series of datasets for multi-modal pre-training, including:
|
21 |
+
- [MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens](https://arxiv.org/abs/2406.11271)
|
22 |
+
- BLIP3-OCR-200M: a dataset with dense OCR annotations.
|
23 |
+
- BLIP3-GROUNDING-50M: a dataset for enhancing the ability to ground semantic concepts in images.
|
24 |
+
- BLIP3-KALE-300M (stay tuned): a large-scale curated high-quality caption dataset.
|
25 |
+
|
26 |
+
# Data
|
27 |
+
|
28 |
+
|
29 |
+
# Results
|
30 |
+
|
31 |
+
### Base model (without instruction tuning)
|
32 |
+
|
33 |
+
### Instruct model
|
34 |
+
|
35 |
+
### DPO model
|
36 |
+
|
37 |
+
|
38 |
+
# How to use
|
39 |
+
|
40 |
+
Please check out our [inference notebook](demo.ipynb) for example code to use our model. We also provide example script for [batch inference](batch_inference.ipynb).
|
41 |
+
|
42 |
+
# Reproducibility:
|
43 |
+
|
44 |
+
Our evaluation is implemented based on [open-compass/VLMEvalKit](https://github.com/open-compass/VLMEvalKit). We will create a PR to that repo to support XGen-MM evaluation.
|
45 |
+
|
46 |
+
|
47 |
+
# Bias, Risks, Limitations, and Ethical Considerations
|
48 |
+
The main data sources are from the internet, including webpages,
|
49 |
+
image stock sites, and curated datasets released by the research community. We have excluded certain data, such as LAION, due to known CSAM concerns.
|
50 |
+
The model may be subject to bias from the original data source, as well as bias from LLMs and commercial APIs.
|
51 |
+
We strongly recommend users assess safety and fairness before applying to downstream applications.
|
52 |
+
|
53 |
+
|
54 |
+
# License
|
55 |
+
|
56 |
+
Our code and weights are released under the Creative Commons Attribution Non Commercial 4.0 [LICENSE](LICENSE.txt). Please fill out a form at [here](https://forms.gle/ffPc9oZC2ZGeJ1N68) to consult the commercial use of model weights.
|
57 |
+
|
58 |
+
# Code acknowledgement
|
59 |
+
Our training code is based on [OpenFlamingo: An open-source framework for training large multimodal models.](https://github.com/mlfoundations/open_flamingo), and part of our data preprocessing code is adapted from [LLaVA](https://github.com/haotian-liu/LLaVA).
|
60 |
+
Our evaluation code is based on [VLMEvalKit: Open-source evaluation toolkit of large vision-language models (LVLMs)](https://github.com/open-compass/VLMEvalKit).
|
61 |
+
|
62 |
+
We thank the authors for their open-source implementations.
|
63 |
+
|
64 |
+
|
65 |
+
# Citation
|
66 |
+
```
|
67 |
+
@misc{xgen_mm_phi3_mini,
|
68 |
+
title={xgen-mm-phi3-mini-instruct Model Card},
|
69 |
+
url={https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-r-v1},
|
70 |
+
author={Salesforce AI Research},
|
71 |
+
month={May},
|
72 |
+
year={2024}
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|
76 |
+
# Troubleshoot
|
77 |
+
|
78 |
+
1. If you missed any packages, please consider the following
|
79 |
+
|
80 |
+
```
|
81 |
+
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
|
82 |
+
pip install open_clip_torch==2.24.0
|
83 |
+
pip install einops
|
84 |
+
pip install einops-exts
|
85 |
+
pip install transformers==4.41.1
|
86 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 32011,
|
3 |
+
"<|assistant|>": 32001,
|
4 |
+
"<|endoftext|>": 32000,
|
5 |
+
"<|end|>": 32007,
|
6 |
+
"<|placeholder1|>": 32002,
|
7 |
+
"<|placeholder2|>": 32003,
|
8 |
+
"<|placeholder3|>": 32004,
|
9 |
+
"<|placeholder4|>": 32005,
|
10 |
+
"<|placeholder5|>": 32008,
|
11 |
+
"<|placeholder6|>": 32009,
|
12 |
+
"<|system|>": 32006,
|
13 |
+
"<|user|>": 32010
|
14 |
+
}
|
batch_inference.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XGenMMModelForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_xgenmm.XGenMMConfig",
|
7 |
+
"AutoModelForVision2Seq": "modeling_xgenmm.XGenMMModelForConditionalGeneration"
|
8 |
+
},
|
9 |
+
"model_type": "xgenmm",
|
10 |
+
"text_config": {
|
11 |
+
"initial_tokenizer_len": 32012,
|
12 |
+
"model_type": "phi3",
|
13 |
+
"sliding_window": 2047,
|
14 |
+
"torch_dtype": "bfloat16"
|
15 |
+
},
|
16 |
+
"torch_dtype": "float32",
|
17 |
+
"transformers_version": "4.41.1",
|
18 |
+
"vision_encoder_config": {
|
19 |
+
"anyres_patch_sampling": true,
|
20 |
+
"image_aspect_ratio": "anyres",
|
21 |
+
"model_type": "xgenmm_vision_encoder"
|
22 |
+
},
|
23 |
+
"vision_tokenizer_config": {
|
24 |
+
"model_type": "xgenmm_vision_tokenizer"
|
25 |
+
}
|
26 |
+
}
|
configuration_xgenmm.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from transformers import logging
|
3 |
+
from transformers import CONFIG_MAPPING
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
class XGenMMVisionEncoderConfig(PretrainedConfig):
|
8 |
+
model_type = "xgenmm_vision_encoder"
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
model_name: str = 'google/siglip-so400m-patch14-384',
|
12 |
+
anyres_grids: list[int] = [[384, 768],[768, 384],[768, 768],[1152, 384],[384,1152]],
|
13 |
+
**kwargs):
|
14 |
+
self.model_name = model_name
|
15 |
+
self.anyres_grids = anyres_grids
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
|
18 |
+
|
19 |
+
class XGenMMVisionTokenizerConfig(PretrainedConfig):
|
20 |
+
model_type = "xgenmm_vision_tokenizer"
|
21 |
+
|
22 |
+
def __init__(self,
|
23 |
+
vis_feature_dim: int = 1152,
|
24 |
+
lang_embedding_dim: int = 3072,
|
25 |
+
num_vis_tokens: int = 128,
|
26 |
+
image_aspect_ratio: str = 'anyres',
|
27 |
+
**kwargs):
|
28 |
+
self.vis_feature_dim = vis_feature_dim
|
29 |
+
self.lang_embedding_dim = lang_embedding_dim
|
30 |
+
self.num_vis_tokens = num_vis_tokens
|
31 |
+
self.image_aspect_ratio = image_aspect_ratio
|
32 |
+
super().__init__(**kwargs)
|
33 |
+
|
34 |
+
|
35 |
+
class XGenMMConfig(PretrainedConfig):
|
36 |
+
model_type = "xgenmm"
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
vision_encoder_config: dict = None,
|
40 |
+
vision_tokenizer_config: dict = None,
|
41 |
+
text_config: dict = None,
|
42 |
+
**kwargs):
|
43 |
+
|
44 |
+
if vision_encoder_config is None:
|
45 |
+
vision_encoder_config = {'image_aspect_ratio': 'anyres', 'anyres_patch_sampling': True}
|
46 |
+
logger.info("vision_encoder_config is None. initializing the XGenMMVisionEncoderConfig with default values.")
|
47 |
+
|
48 |
+
if vision_tokenizer_config is None:
|
49 |
+
vision_tokenizer_config = {}
|
50 |
+
logger.info("vision_tokenizer_config is None. Initializing the XGenMMVisionTokenizerConfig with default values.")
|
51 |
+
|
52 |
+
if text_config is None:
|
53 |
+
text_config = {
|
54 |
+
'initial_tokenizer_len':32012,
|
55 |
+
'pad_token_id':32011,
|
56 |
+
'bos_token_id':1,
|
57 |
+
'eos_token_id':32000,
|
58 |
+
'vocab_size': 32064,
|
59 |
+
'hidden_size': 3072,
|
60 |
+
'intermediate_size': 8192,
|
61 |
+
'num_hidden_layers': 32,
|
62 |
+
'num_attention_heads': 32,
|
63 |
+
'num_key_value_heads': 32,
|
64 |
+
'resid_pdrop': 0.0,
|
65 |
+
'embd_pdrop': 0.0,
|
66 |
+
'attention_dropout': 0.0,
|
67 |
+
'hidden_act': 'silu',
|
68 |
+
'max_position_embeddings': 4096,
|
69 |
+
'original_max_position_embeddings': 4096,
|
70 |
+
'initializer_range': 0.02,
|
71 |
+
'rms_norm_eps': 1e-05,
|
72 |
+
'use_cache': True,
|
73 |
+
'rope_theta': 10000.0,
|
74 |
+
'rope_scaling': None,
|
75 |
+
'sliding_window': 2047,
|
76 |
+
'return_dict': True,
|
77 |
+
'output_hidden_states': False,
|
78 |
+
'output_attentions': False,
|
79 |
+
'torchscript': False,
|
80 |
+
'torch_dtype': 'bfloat16',
|
81 |
+
'use_bfloat16': False,
|
82 |
+
'tf_legacy_loss': False,
|
83 |
+
'pruned_heads': {},
|
84 |
+
'tie_word_embeddings': False,
|
85 |
+
'chunk_size_feed_forward': 0,
|
86 |
+
'is_encoder_decoder': False,
|
87 |
+
'is_decoder': False,
|
88 |
+
'cross_attention_hidden_size': None,
|
89 |
+
'add_cross_attention': False,
|
90 |
+
'tie_encoder_decoder': False,
|
91 |
+
'max_length': 20,
|
92 |
+
'min_length': 0,
|
93 |
+
'do_sample': False,
|
94 |
+
'early_stopping': False,
|
95 |
+
'num_beams': 1,
|
96 |
+
'num_beam_groups': 1,
|
97 |
+
'diversity_penalty': 0.0,
|
98 |
+
'temperature': 1.0,
|
99 |
+
'top_k': 50,
|
100 |
+
'top_p': 1.0,
|
101 |
+
'typical_p': 1.0,
|
102 |
+
'repetition_penalty': 1.0,
|
103 |
+
'length_penalty': 1.0,
|
104 |
+
'no_repeat_ngram_size': 0,
|
105 |
+
'encoder_no_repeat_ngram_size': 0,
|
106 |
+
'bad_words_ids': None,
|
107 |
+
'num_return_sequences': 1,
|
108 |
+
'output_scores': False,
|
109 |
+
'return_dict_in_generate': False,
|
110 |
+
'forced_bos_token_id': None,
|
111 |
+
'forced_eos_token_id': None,
|
112 |
+
'remove_invalid_values': False,
|
113 |
+
'exponential_decay_length_penalty': None,
|
114 |
+
'suppress_tokens': None,
|
115 |
+
'begin_suppress_tokens': None,
|
116 |
+
'finetuning_task': None,
|
117 |
+
'id2label': {0: 'LABEL_0', 1: 'LABEL_1'},
|
118 |
+
'label2id': {'LABEL_0': 0, 'LABEL_1': 1},
|
119 |
+
'tokenizer_class': None,
|
120 |
+
'prefix': None,
|
121 |
+
'bos_token_id': 1,
|
122 |
+
'pad_token_id': 32000,
|
123 |
+
'eos_token_id': 32000,
|
124 |
+
'sep_token_id': None,
|
125 |
+
'decoder_start_token_id': None,
|
126 |
+
'task_specific_params': None,
|
127 |
+
'problem_type': None,
|
128 |
+
'model_type': 'phi3'
|
129 |
+
}
|
130 |
+
logger.info("text_config is None. Initializing the text config with default values (`Phi3Config`).")
|
131 |
+
|
132 |
+
self.vision_encoder_config = XGenMMVisionEncoderConfig(**vision_encoder_config)
|
133 |
+
|
134 |
+
self.vision_tokenizer_config = XGenMMVisionTokenizerConfig(**vision_tokenizer_config)
|
135 |
+
|
136 |
+
text_model_type = text_config["model_type"] if "model_type" in text_config else "phi3"
|
137 |
+
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
|
138 |
+
|
139 |
+
for key in ['initial_tokenizer_len', 'pad_token_id']:
|
140 |
+
if key not in self.text_config.to_dict():
|
141 |
+
raise ValueError(f"The key `{key}` is missing in the text_config.")
|
142 |
+
|
143 |
+
super().__init__(**kwargs)
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_vision_encoder_vision_tokenizer_text_configs(
|
147 |
+
cls,
|
148 |
+
vision_encoder_config: XGenMMVisionEncoderConfig,
|
149 |
+
vision_tokenizer_config: XGenMMVisionTokenizerConfig,
|
150 |
+
text_config: PretrainedConfig,
|
151 |
+
**kwargs):
|
152 |
+
|
153 |
+
return cls(
|
154 |
+
vision_encoder_config=vision_encoder_config.to_dict(),
|
155 |
+
vision_tokenizer_config=vision_tokenizer_config.to_dict(),
|
156 |
+
text_config=text_config.to_dict(),
|
157 |
+
**kwargs,
|
158 |
+
)
|
159 |
+
|
demo.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 32000,
|
5 |
+
"pad_token_id": 32000,
|
6 |
+
"transformers_version": "4.41.1"
|
7 |
+
}
|
image_processing_blip_3.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
3 |
+
import torchvision.transforms.functional as F
|
4 |
+
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
5 |
+
CenterCrop, ColorJitter, Grayscale
|
6 |
+
import numbers
|
7 |
+
import torch
|
8 |
+
import ast
|
9 |
+
import math
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
13 |
+
from transformers.image_utils import ImageInput
|
14 |
+
from transformers.utils import TensorType
|
15 |
+
|
16 |
+
from utils import expand2square
|
17 |
+
|
18 |
+
|
19 |
+
class Blip3ImageProcessor(BaseImageProcessor):
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
do_resize: bool = True,
|
24 |
+
resize_mode: str = "squash",
|
25 |
+
interpolation_mode: str = "bicubic",
|
26 |
+
size: Union[Tuple[int, int], List[int]] = None,
|
27 |
+
grids: Optional[List[int]] = None,
|
28 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
29 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
30 |
+
**kwargs,
|
31 |
+
) -> None:
|
32 |
+
super().__init__(**kwargs)
|
33 |
+
self.do_resize = do_resize
|
34 |
+
self.resize_mode = resize_mode
|
35 |
+
self.interpolation_mode = interpolation_mode
|
36 |
+
self.size = size if size is not None else (384, 384)
|
37 |
+
self.grids = grids if grids is not None else [[384, 768],[768, 384],[768, 768],[1152, 384],[384,1152]]
|
38 |
+
|
39 |
+
self.image_mean = image_mean if image_mean is not None else [0.5, 0.5, 0.5]
|
40 |
+
self.image_std = image_std if image_std is not None else [0.5, 0.5, 0.5]
|
41 |
+
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def resize(cls, image_size, resize_mode, interpolation='bicubic', fill_color=0):
|
45 |
+
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
|
46 |
+
if resize_mode == 'longest':
|
47 |
+
transforms = [
|
48 |
+
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
|
49 |
+
CenterCropOrPad(image_size, fill=fill_color)
|
50 |
+
]
|
51 |
+
elif resize_mode == 'squash':
|
52 |
+
if isinstance(image_size, int):
|
53 |
+
image_size = (image_size, image_size)
|
54 |
+
transforms = [
|
55 |
+
Resize(image_size, interpolation=interpolation_mode),
|
56 |
+
]
|
57 |
+
else:
|
58 |
+
assert resize_mode == 'shortest'
|
59 |
+
if not isinstance(image_size, (tuple, list)):
|
60 |
+
image_size = (image_size, image_size)
|
61 |
+
if image_size[0] == image_size[1]:
|
62 |
+
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
|
63 |
+
transforms = [
|
64 |
+
Resize(image_size[0], interpolation=interpolation_mode)
|
65 |
+
]
|
66 |
+
else:
|
67 |
+
# resize shortest edge to matching target dim for non-square target
|
68 |
+
transforms = [ResizeKeepRatio(image_size)]
|
69 |
+
transforms += [CenterCrop(image_size)]
|
70 |
+
return transforms
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def convert_rgb(cls, image):
|
74 |
+
return image.convert("RGB")
|
75 |
+
|
76 |
+
|
77 |
+
def _preprocess(self,
|
78 |
+
images: ImageInput
|
79 |
+
) -> torch.Tensor:
|
80 |
+
transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
|
81 |
+
transforms.extend([
|
82 |
+
self.convert_rgb,
|
83 |
+
ToTensor(),
|
84 |
+
Normalize(mean=self.image_mean, std=self.image_std)
|
85 |
+
])
|
86 |
+
composed_transforms = Compose(transforms)
|
87 |
+
images_tensor = composed_transforms(images)
|
88 |
+
return images_tensor
|
89 |
+
|
90 |
+
def preprocess(self,
|
91 |
+
images: ImageInput,
|
92 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
93 |
+
**kwargs) -> BatchFeature:
|
94 |
+
if 'image_aspect_ratio' in kwargs:
|
95 |
+
image_aspect_ratio = kwargs['image_aspect_ratio']
|
96 |
+
else:
|
97 |
+
image_aspect_ratio = 'pad'
|
98 |
+
new_images = []
|
99 |
+
if image_aspect_ratio == 'pad':
|
100 |
+
for image in images:
|
101 |
+
image = expand2square(image, tuple(int(x*255) for x in self.image_mean))
|
102 |
+
image = self._preprocess(image)
|
103 |
+
new_images.append(image)
|
104 |
+
else:
|
105 |
+
for image in images:
|
106 |
+
image = process_anyres_image(image, self._preprocess, self.size,
|
107 |
+
self.grids)
|
108 |
+
new_images.append(image)
|
109 |
+
|
110 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
111 |
+
new_images = torch.stack(new_images, dim=0)
|
112 |
+
if image_aspect_ratio == 'pad':
|
113 |
+
new_images = BatchFeature(data={"pixel_values": new_images.unsqueeze(0).unsqueeze(0)}, tensor_type=return_tensors)
|
114 |
+
else:
|
115 |
+
new_images = BatchFeature(data={"pixel_values": new_images}, tensor_type=return_tensors)
|
116 |
+
return new_images
|
117 |
+
# def preprocess(self,
|
118 |
+
# images: ImageInput,
|
119 |
+
# return_tensors: Optional[Union[str, TensorType]] = None,
|
120 |
+
# **kwargs) -> BatchFeature:
|
121 |
+
# transforms = self.resize(self.size, self.resize_mode, self.interpolation_mode)
|
122 |
+
# transforms.extend([
|
123 |
+
# self.convert_rgb,
|
124 |
+
# ToTensor(),
|
125 |
+
# Normalize(mean=self.image_mean, std=self.image_std)
|
126 |
+
# ])
|
127 |
+
# composed_transforms = Compose(transforms)
|
128 |
+
# images_tensor = composed_transforms(images).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
129 |
+
# encoded_outputs = BatchFeature(data={"pixel_values": images_tensor}, tensor_type=return_tensors)
|
130 |
+
# return encoded_outputs
|
131 |
+
|
132 |
+
|
133 |
+
class ResizeKeepRatio:
|
134 |
+
""" Resize and Keep Ratio
|
135 |
+
|
136 |
+
Copy & paste from `timm`
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
size,
|
142 |
+
longest=0.,
|
143 |
+
interpolation=InterpolationMode.BICUBIC,
|
144 |
+
random_scale_prob=0.,
|
145 |
+
random_scale_range=(0.85, 1.05),
|
146 |
+
random_aspect_prob=0.,
|
147 |
+
random_aspect_range=(0.9, 1.11)
|
148 |
+
):
|
149 |
+
if isinstance(size, (list, tuple)):
|
150 |
+
self.size = tuple(size)
|
151 |
+
else:
|
152 |
+
self.size = (size, size)
|
153 |
+
self.interpolation = interpolation
|
154 |
+
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
|
155 |
+
self.random_scale_prob = random_scale_prob
|
156 |
+
self.random_scale_range = random_scale_range
|
157 |
+
self.random_aspect_prob = random_aspect_prob
|
158 |
+
self.random_aspect_range = random_aspect_range
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
def get_params(
|
162 |
+
img,
|
163 |
+
target_size,
|
164 |
+
longest,
|
165 |
+
random_scale_prob=0.,
|
166 |
+
random_scale_range=(0.85, 1.05),
|
167 |
+
random_aspect_prob=0.,
|
168 |
+
random_aspect_range=(0.9, 1.11)
|
169 |
+
):
|
170 |
+
"""Get parameters
|
171 |
+
"""
|
172 |
+
source_size = img.size[::-1] # h, w
|
173 |
+
h, w = source_size
|
174 |
+
target_h, target_w = target_size
|
175 |
+
ratio_h = h / target_h
|
176 |
+
ratio_w = w / target_w
|
177 |
+
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
|
178 |
+
if random_scale_prob > 0 and random.random() < random_scale_prob:
|
179 |
+
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
|
180 |
+
ratio_factor = (ratio_factor, ratio_factor)
|
181 |
+
else:
|
182 |
+
ratio_factor = (1., 1.)
|
183 |
+
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
|
184 |
+
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
|
185 |
+
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
|
186 |
+
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
|
187 |
+
return size
|
188 |
+
|
189 |
+
def __call__(self, img):
|
190 |
+
"""
|
191 |
+
Args:
|
192 |
+
img (PIL Image): Image to be cropped and resized.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
|
196 |
+
"""
|
197 |
+
size = self.get_params(
|
198 |
+
img, self.size, self.longest,
|
199 |
+
self.random_scale_prob, self.random_scale_range,
|
200 |
+
self.random_aspect_prob, self.random_aspect_range
|
201 |
+
)
|
202 |
+
img = F.resize(img, size, self.interpolation)
|
203 |
+
return img
|
204 |
+
|
205 |
+
def __repr__(self):
|
206 |
+
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
|
207 |
+
format_string += f', interpolation={self.interpolation})'
|
208 |
+
format_string += f', longest={self.longest:.3f})'
|
209 |
+
return format_string
|
210 |
+
|
211 |
+
def _setup_size(size, error_msg):
|
212 |
+
if isinstance(size, numbers.Number):
|
213 |
+
return int(size), int(size)
|
214 |
+
|
215 |
+
if isinstance(size, Sequence) and len(size) == 1:
|
216 |
+
return size[0], size[0]
|
217 |
+
|
218 |
+
if len(size) != 2:
|
219 |
+
raise ValueError(error_msg)
|
220 |
+
|
221 |
+
return size
|
222 |
+
|
223 |
+
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
|
224 |
+
"""Center crops and/or pads the given image.
|
225 |
+
If the image is torch Tensor, it is expected
|
226 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
|
227 |
+
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
img (PIL Image or Tensor): Image to be cropped.
|
231 |
+
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
|
232 |
+
it is used for both directions.
|
233 |
+
fill (int, Tuple[int]): Padding color
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
PIL Image or Tensor: Cropped image.
|
237 |
+
"""
|
238 |
+
if isinstance(output_size, numbers.Number):
|
239 |
+
output_size = (int(output_size), int(output_size))
|
240 |
+
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
|
241 |
+
output_size = (output_size[0], output_size[0])
|
242 |
+
|
243 |
+
_, image_height, image_width = F.get_dimensions(img)
|
244 |
+
crop_height, crop_width = output_size
|
245 |
+
|
246 |
+
if crop_width > image_width or crop_height > image_height:
|
247 |
+
padding_ltrb = [
|
248 |
+
(crop_width - image_width) // 2 if crop_width > image_width else 0,
|
249 |
+
(crop_height - image_height) // 2 if crop_height > image_height else 0,
|
250 |
+
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
|
251 |
+
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
|
252 |
+
]
|
253 |
+
img = F.pad(img, padding_ltrb, fill=fill)
|
254 |
+
_, image_height, image_width = F.get_dimensions(img)
|
255 |
+
if crop_width == image_width and crop_height == image_height:
|
256 |
+
return img
|
257 |
+
|
258 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
259 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
260 |
+
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
|
261 |
+
|
262 |
+
class CenterCropOrPad(torch.nn.Module):
|
263 |
+
"""Crops the given image at the center.
|
264 |
+
If the image is torch Tensor, it is expected
|
265 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
|
266 |
+
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
270 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
271 |
+
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, size, fill=0):
|
275 |
+
super().__init__()
|
276 |
+
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
|
277 |
+
self.fill = fill
|
278 |
+
|
279 |
+
def forward(self, img):
|
280 |
+
"""
|
281 |
+
Args:
|
282 |
+
img (PIL Image or Tensor): Image to be cropped.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
PIL Image or Tensor: Cropped image.
|
286 |
+
"""
|
287 |
+
return center_crop_or_pad(img, self.size, fill=self.fill)
|
288 |
+
|
289 |
+
def __repr__(self) -> str:
|
290 |
+
return f"{self.__class__.__name__}(size={self.size})"
|
291 |
+
|
292 |
+
def process_anyres_image(image, processor, processor_size, grid_pinpoints):
|
293 |
+
"""
|
294 |
+
Process an image with variable resolutions.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
image (PIL.Image.Image): The input image to be processed.
|
298 |
+
processor: The image processor object.
|
299 |
+
processor_size (tuple, list): The size of the image processor.
|
300 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
torch.Tensor: A tensor containing the processed image patches.
|
304 |
+
"""
|
305 |
+
# FIXME: determine grid_pinpoints from image sizes.
|
306 |
+
if type(grid_pinpoints) is list:
|
307 |
+
possible_resolutions = grid_pinpoints
|
308 |
+
else:
|
309 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
310 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
311 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
312 |
+
|
313 |
+
# processor_size = processor.transforms[0].size
|
314 |
+
patches = divide_to_patches(image_padded, processor_size[0])
|
315 |
+
|
316 |
+
image_original_resize = image.resize((processor_size[0], processor_size[0]))
|
317 |
+
|
318 |
+
image_patches = [image_original_resize] + patches
|
319 |
+
image_patches = [processor(image_patch)
|
320 |
+
for image_patch in image_patches]
|
321 |
+
return torch.stack(image_patches, dim=0)
|
322 |
+
|
323 |
+
|
324 |
+
def select_best_resolution(original_size, possible_resolutions):
|
325 |
+
"""
|
326 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
330 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
tuple: The best fit resolution in the format (width, height).
|
334 |
+
"""
|
335 |
+
original_width, original_height = original_size
|
336 |
+
best_fit = None
|
337 |
+
max_effective_resolution = 0
|
338 |
+
min_wasted_resolution = float('inf')
|
339 |
+
|
340 |
+
for width, height in possible_resolutions:
|
341 |
+
scale = min(width / original_width, height / original_height)
|
342 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
343 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
344 |
+
wasted_resolution = (width * height) - effective_resolution
|
345 |
+
|
346 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
347 |
+
max_effective_resolution = effective_resolution
|
348 |
+
min_wasted_resolution = wasted_resolution
|
349 |
+
best_fit = (width, height)
|
350 |
+
|
351 |
+
return best_fit
|
352 |
+
|
353 |
+
def resize_and_pad_image(image, target_resolution):
|
354 |
+
"""
|
355 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
image (PIL.Image.Image): The input image.
|
359 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
PIL.Image.Image: The resized and padded image.
|
363 |
+
"""
|
364 |
+
original_width, original_height = image.size
|
365 |
+
target_width, target_height = target_resolution
|
366 |
+
|
367 |
+
scale_w = target_width / original_width
|
368 |
+
scale_h = target_height / original_height
|
369 |
+
|
370 |
+
if scale_w < scale_h:
|
371 |
+
new_width = target_width
|
372 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
373 |
+
else:
|
374 |
+
new_height = target_height
|
375 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
376 |
+
|
377 |
+
# Resize the image
|
378 |
+
resized_image = image.resize((new_width, new_height))
|
379 |
+
|
380 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
381 |
+
paste_x = (target_width - new_width) // 2
|
382 |
+
paste_y = (target_height - new_height) // 2
|
383 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
384 |
+
|
385 |
+
return new_image
|
386 |
+
|
387 |
+
def divide_to_patches(image, patch_size):
|
388 |
+
"""
|
389 |
+
Divides an image into patches of a specified size.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
image (PIL.Image.Image): The input image.
|
393 |
+
patch_size (int): The size of each patch.
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
397 |
+
"""
|
398 |
+
patches = []
|
399 |
+
width, height = image.size
|
400 |
+
for i in range(0, height, patch_size):
|
401 |
+
for j in range(0, width, patch_size):
|
402 |
+
box = (j, i, j + patch_size, i + patch_size)
|
403 |
+
patch = image.crop(box)
|
404 |
+
patches.append(patch)
|
405 |
+
|
406 |
+
return patches
|
modeling_xgenmm.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoModel
|
2 |
+
import torch
|
3 |
+
import open_clip
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
from utils import check_embedding_fns
|
6 |
+
from vlm import PerceiverResampler, XGenMMPerceiver
|
7 |
+
from configuration_xgenmm import XGenMMVisionEncoderConfig, XGenMMVisionTokenizerConfig, XGenMMConfig
|
8 |
+
|
9 |
+
class XGenMMVisionEncoder(PreTrainedModel):
|
10 |
+
main_input_name = "pixel_values"
|
11 |
+
config_class = XGenMMVisionEncoderConfig
|
12 |
+
|
13 |
+
def __init__(self, config: XGenMMVisionEncoderConfig):
|
14 |
+
super().__init__(config)
|
15 |
+
if config.model_name != 'google/siglip-so400m-patch14-384':
|
16 |
+
raise ValueError(f"Unsupported model {config.model_name}. New vision models will be added soon.")
|
17 |
+
self.model = AutoModel.from_pretrained(config.model_name)
|
18 |
+
|
19 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
20 |
+
# assert pixel_values.ndim == 4, f"Expected 4D tensor (bs, c, h, w), got {pixel_values.ndim}"
|
21 |
+
return self.model.encode_image(pixel_values)
|
22 |
+
|
23 |
+
|
24 |
+
# vision tokenizer
|
25 |
+
class XGenMMVisionTokenizer(PreTrainedModel):
|
26 |
+
config_class = XGenMMVisionTokenizerConfig
|
27 |
+
def __init__(self, config: XGenMMVisionTokenizerConfig):
|
28 |
+
super().__init__(config)
|
29 |
+
self.model = PerceiverResampler(
|
30 |
+
dim=config.vis_feature_dim,
|
31 |
+
dim_inner=config.lang_embedding_dim,
|
32 |
+
num_latents=config.num_vis_tokens,
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self,
|
36 |
+
vision_features: torch.Tensor,
|
37 |
+
vision_attn_masks: torch.Tensor):
|
38 |
+
return self.model(vision_features, vision_attn_masks)
|
39 |
+
|
40 |
+
# XGenMM model
|
41 |
+
class XGenMMModelForConditionalGeneration(PreTrainedModel):
|
42 |
+
config_class = XGenMMConfig
|
43 |
+
|
44 |
+
def __init__(self, config: XGenMMConfig):
|
45 |
+
super().__init__(config)
|
46 |
+
|
47 |
+
# vision encoder initialization
|
48 |
+
vision_encoder = AutoModel.from_pretrained(config.vision_encoder_config.model_name).vision_model
|
49 |
+
|
50 |
+
# language model initialization
|
51 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
52 |
+
check_embedding_fns(language_model)
|
53 |
+
# Update _tied_weights_keys using the base model used.
|
54 |
+
if language_model._tied_weights_keys is not None:
|
55 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
56 |
+
|
57 |
+
# vision tokenizer initialization
|
58 |
+
if config.vision_tokenizer_config.lang_embedding_dim != language_model.get_input_embeddings().weight.shape[1]:
|
59 |
+
overwrite = language_model.get_input_embeddings().weight.shape[1]
|
60 |
+
config.vision_tokenizer_config.lang_embedding_dim = overwrite
|
61 |
+
print(f"Warning: The language embedding dimension in the vision tokenizer config is different from the language model's embedding dimension. Overwriting the language embedding dimension in the vision tokenizer config to {overwrite}.")
|
62 |
+
|
63 |
+
vision_tokenizer = XGenMMVisionTokenizer(config.vision_tokenizer_config).model
|
64 |
+
|
65 |
+
self.vlm = XGenMMPerceiver(
|
66 |
+
vision_encoder=vision_encoder,
|
67 |
+
vision_tokenizer=vision_tokenizer,
|
68 |
+
lang_model=language_model,
|
69 |
+
initial_tokenizer_len = config.text_config.initial_tokenizer_len,
|
70 |
+
pad_token_id = config.text_config.pad_token_id,
|
71 |
+
image_aspect_ratio = config.vision_encoder_config.image_aspect_ratio,
|
72 |
+
anyres_patch_sampling = config.vision_encoder_config.anyres_patch_sampling,
|
73 |
+
anyres_grids = config.vision_encoder_config.anyres_grids
|
74 |
+
)
|
75 |
+
# Initialize weights and apply final processing
|
76 |
+
self.post_init()
|
77 |
+
|
78 |
+
@torch.no_grad()
|
79 |
+
def generate(
|
80 |
+
self,
|
81 |
+
pixel_values: torch.FloatTensor,
|
82 |
+
input_ids: Optional[torch.LongTensor] = None,
|
83 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
84 |
+
**generate_kwargs,
|
85 |
+
) -> torch.LongTensor:
|
86 |
+
self.vlm = self.vlm.eval()
|
87 |
+
return self.vlm.generate(
|
88 |
+
vision_x = pixel_values,
|
89 |
+
lang_x = input_ids,
|
90 |
+
attention_mask = attention_mask,
|
91 |
+
**generate_kwargs)
|
92 |
+
|
93 |
+
def update_special_tokens(self, tokenizer):
|
94 |
+
tokenizer.add_special_tokens(
|
95 |
+
{"additional_special_tokens": list(self.vlm.special_tokens.values())}
|
96 |
+
)
|
97 |
+
self.vlm.lang_model.config.vocab_size = len(tokenizer)
|
98 |
+
self.vlm.set_special_token_ids(
|
99 |
+
{
|
100 |
+
v: tokenizer.convert_tokens_to_ids(v) for v in self.vlm.special_tokens.values()
|
101 |
+
}
|
102 |
+
)
|
103 |
+
return tokenizer
|
104 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_blip_3.Blip3ImageProcessor"
|
4 |
+
},
|
5 |
+
"do_resize": true,
|
6 |
+
"grids": [
|
7 |
+
[
|
8 |
+
384,
|
9 |
+
768
|
10 |
+
],
|
11 |
+
[
|
12 |
+
768,
|
13 |
+
384
|
14 |
+
],
|
15 |
+
[
|
16 |
+
768,
|
17 |
+
768
|
18 |
+
],
|
19 |
+
[
|
20 |
+
1152,
|
21 |
+
384
|
22 |
+
],
|
23 |
+
[
|
24 |
+
384,
|
25 |
+
1152
|
26 |
+
]
|
27 |
+
],
|
28 |
+
"image_mean": [
|
29 |
+
0.5,
|
30 |
+
0.5,
|
31 |
+
0.5
|
32 |
+
],
|
33 |
+
"image_processor_type": "Blip3ImageProcessor",
|
34 |
+
"image_std": [
|
35 |
+
0.5,
|
36 |
+
0.5,
|
37 |
+
0.5
|
38 |
+
],
|
39 |
+
"interpolation_mode": "bicubic",
|
40 |
+
"resize_mode": "squash",
|
41 |
+
"size": [
|
42 |
+
384,
|
43 |
+
384
|
44 |
+
]
|
45 |
+
}
|
setup.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
|
2 |
+
pip install open_clip_torch==2.24.0
|
3 |
+
pip install einops
|
4 |
+
pip install einops-exts
|
5 |
+
pip install transformers==4.41.1
|
6 |
+
# optional
|
7 |
+
pip install ipywidgets
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
test_samples/images/1148.jpg
ADDED
test_samples/images/152.jpg
ADDED
test_samples/images/45711.jpg
ADDED
test_samples/images/image-1.jpeg
ADDED
test_samples/images/image-2.jpeg
ADDED
test_samples/test.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"image_path": ["./test_samples/images/image-1.jpeg",
|
4 |
+
"./test_samples/images/image-2.jpeg"],
|
5 |
+
"question": [
|
6 |
+
"What is in common between this image 1 <image> and image 2 <image>?"
|
7 |
+
]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"image_path": ["./test_samples/images/152.jpg"],
|
11 |
+
"question": ["<image>\nCan you explain this meme?"]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"image_path": ["./test_samples/images/1148.jpg"],
|
15 |
+
"question": ["<image>\nWhat can be the relationship between the two persons in this image?"]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
|
19 |
+
"image_path": ["./test_samples/images/45711.jpg"],
|
20 |
+
"question": [
|
21 |
+
"<image>\nWhat is this meeting about?",
|
22 |
+
"<image>\nHow many things are discussed in the meeting?",
|
23 |
+
"<image>\nWhat is the second agenda?",
|
24 |
+
"<image>\nWhen is the next meeting held?"
|
25 |
+
]
|
26 |
+
}
|
27 |
+
]
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": true,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": true,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": true,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"32011": {
|
118 |
+
"content": "<pad>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"bos_token": "<s>",
|
127 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
128 |
+
"clean_up_tokenization_spaces": false,
|
129 |
+
"eos_token": "<|endoftext|>",
|
130 |
+
"legacy": false,
|
131 |
+
"model_max_length": 4096,
|
132 |
+
"pad_token": "<pad>",
|
133 |
+
"padding_side": "left",
|
134 |
+
"sp_model_kwargs": {},
|
135 |
+
"tokenizer_class": "LlamaTokenizer",
|
136 |
+
"unk_token": "<unk>",
|
137 |
+
"use_default_system_prompt": false
|
138 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import ast
|
3 |
+
import math
|
4 |
+
from PIL import Image
|
5 |
+
from packaging.version import Version
|
6 |
+
|
7 |
+
def has_fn(model, fn_name):
|
8 |
+
"""Check if model has a function fn_name"""
|
9 |
+
return callable(getattr(model, fn_name, None))
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
def num_params(module, filter_to_trainable=False):
|
15 |
+
"""Returns the number of parameters in the module, or optionally only the trainable parameters"""
|
16 |
+
if filter_to_trainable:
|
17 |
+
return sum(p.numel() for p in module.parameters() if p.requires_grad)
|
18 |
+
else:
|
19 |
+
return sum(p.numel() for p in module.parameters())
|
20 |
+
|
21 |
+
def hasattr_recursive(obj, att):
|
22 |
+
"""
|
23 |
+
Check if obj has nested attribute
|
24 |
+
Example: hasattr_recursive(obj, 'a.b.c') is equivalent to hasattr(obj, 'a') and hasattr(obj.a, 'b') and hasattr(obj.a.b, 'c')
|
25 |
+
"""
|
26 |
+
if att == "":
|
27 |
+
return True
|
28 |
+
i = att.find(".")
|
29 |
+
if i < 0:
|
30 |
+
return hasattr(obj, att)
|
31 |
+
else:
|
32 |
+
try:
|
33 |
+
return hasattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
|
34 |
+
except:
|
35 |
+
return False
|
36 |
+
|
37 |
+
def getattr_recursive(obj, att):
|
38 |
+
"""
|
39 |
+
Return nested attribute of obj
|
40 |
+
Example: getattr_recursive(obj, 'a.b.c') is equivalent to obj.a.b.c
|
41 |
+
"""
|
42 |
+
if att == "":
|
43 |
+
return obj
|
44 |
+
i = att.find(".")
|
45 |
+
if i < 0:
|
46 |
+
return getattr(obj, att)
|
47 |
+
else:
|
48 |
+
return getattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
|
49 |
+
|
50 |
+
|
51 |
+
def setattr_recursive(obj, att, val):
|
52 |
+
"""
|
53 |
+
Set nested attribute of obj
|
54 |
+
Example: setattr_recursive(obj, 'a.b.c', val) is equivalent to obj.a.b.c = val
|
55 |
+
"""
|
56 |
+
if "." in att:
|
57 |
+
obj = getattr_recursive(obj, ".".join(att.split(".")[:-1]))
|
58 |
+
setattr(obj, att.split(".")[-1], val)
|
59 |
+
|
60 |
+
|
61 |
+
def stack_with_padding(list_of_tensors, padding_value=0, padding_side="right"):
|
62 |
+
"""
|
63 |
+
Stack a list of tensors with padding on one side
|
64 |
+
Args:
|
65 |
+
list_of_tensors (list[torch.Tensor]): List of tensors to stack
|
66 |
+
padding_value (int, optional): Value to pad with. Defaults to 0.
|
67 |
+
padding_side (str, optional): Side to pad on. Defaults to "right".
|
68 |
+
Returns:
|
69 |
+
torch.Tensor: Stacked tensors
|
70 |
+
"""
|
71 |
+
max_tokens = max(tensor.size(0) for tensor in list_of_tensors)
|
72 |
+
padded_tensors = []
|
73 |
+
for tensor in list_of_tensors:
|
74 |
+
num_tokens = tensor.size(0)
|
75 |
+
if len(tensor.size()) == 1:
|
76 |
+
padding = torch.full(
|
77 |
+
(max_tokens - num_tokens,),
|
78 |
+
padding_value,
|
79 |
+
dtype=tensor.dtype,
|
80 |
+
device=tensor.device,
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
padding = torch.full(
|
84 |
+
(max_tokens - num_tokens, tensor.size(1)),
|
85 |
+
padding_value,
|
86 |
+
dtype=tensor.dtype,
|
87 |
+
device=tensor.device,
|
88 |
+
)
|
89 |
+
padded_tensor = (
|
90 |
+
torch.cat((tensor, padding), dim=0)
|
91 |
+
if padding_side == "right"
|
92 |
+
else torch.cat((padding, tensor), dim=0)
|
93 |
+
)
|
94 |
+
padded_tensors.append(padded_tensor)
|
95 |
+
return torch.stack(padded_tensors)
|
96 |
+
|
97 |
+
|
98 |
+
def check_embedding_fns(lang_model):
|
99 |
+
"""Checks for and attempts to set {get/set}_{input/output}_embeddings functions to the model"""
|
100 |
+
if not has_fn(lang_model, "get_input_embeddings"):
|
101 |
+
if hasattr_recursive(lang_model, "transformer.wte"): # MPT
|
102 |
+
lang_model.get_input_embeddings = lambda: lang_model.transformer.wte
|
103 |
+
elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"): # OPT
|
104 |
+
lang_model.get_input_embeddings = lambda: lang_model.decoder.embed_tokens
|
105 |
+
else:
|
106 |
+
raise ValueError(
|
107 |
+
"We require the language encoder to have a get_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
|
108 |
+
)
|
109 |
+
|
110 |
+
if not has_fn(lang_model, "set_input_embeddings"):
|
111 |
+
if hasattr_recursive(lang_model, "transformer.wte"): # MPT
|
112 |
+
lang_model.set_input_embeddings = lambda x: setattr_recursive(
|
113 |
+
lang_model, "transformer.wte", x
|
114 |
+
)
|
115 |
+
elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"): # OPT
|
116 |
+
lang_model.set_input_embeddings = lambda x: setattr_recursive(
|
117 |
+
lang_model, "model.decoder.embed_tokens", x
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
raise ValueError(
|
121 |
+
"We require the language encoder to have a set_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
|
122 |
+
)
|
123 |
+
|
124 |
+
if not has_fn(lang_model, "get_output_embeddings"):
|
125 |
+
if hasattr_recursive(lang_model, "lm_head"):
|
126 |
+
lang_model.get_output_embeddings = lambda: lang_model.lm_head
|
127 |
+
else:
|
128 |
+
raise ValueError(
|
129 |
+
"We require the language encoder to have a get_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
|
130 |
+
)
|
131 |
+
|
132 |
+
if not has_fn(lang_model, "set_output_embeddings"):
|
133 |
+
if hasattr_recursive(lang_model, "lm_head"):
|
134 |
+
lang_model.set_output_embeddings = lambda x: setattr_recursive(
|
135 |
+
lang_model, "lm_head", x
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
raise ValueError(
|
139 |
+
"We require the language encoder to have a set_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
def has_fn(model, fn_name):
|
144 |
+
"""Check if model has a function fn_name"""
|
145 |
+
return callable(getattr(model, fn_name, None))
|
146 |
+
|
147 |
+
|
148 |
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
149 |
+
#
|
150 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
151 |
+
# you may not use this file except in compliance with the License.
|
152 |
+
# You may obtain a copy of the License at
|
153 |
+
#
|
154 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
155 |
+
#
|
156 |
+
# Unless required by applicable law or agreed to in writing, software
|
157 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
158 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
159 |
+
# See the License for the specific language governing permissions and
|
160 |
+
# limitations under the License.
|
161 |
+
|
162 |
+
def unpad_image(tensor, original_size, keep_original_shape=False):
|
163 |
+
"""
|
164 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
168 |
+
original_size (tuple): The original size of the image (height, width).
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
torch.Tensor: The unpadded image tensor.
|
172 |
+
"""
|
173 |
+
original_width, original_height = original_size
|
174 |
+
current_height, current_width = tensor.shape[1:]
|
175 |
+
|
176 |
+
original_aspect_ratio = original_width / original_height
|
177 |
+
current_aspect_ratio = current_width / current_height
|
178 |
+
|
179 |
+
if original_aspect_ratio > current_aspect_ratio:
|
180 |
+
scale_factor = current_width / original_width
|
181 |
+
new_height = int(original_height * scale_factor)
|
182 |
+
padding = (current_height - new_height) // 2
|
183 |
+
if keep_original_shape:
|
184 |
+
attention_mask = torch.ones((current_height, current_width), device=tensor.device)
|
185 |
+
attention_mask[:padding, :] = 0
|
186 |
+
attention_mask[current_height - padding:, :] = 0
|
187 |
+
return tensor, attention_mask
|
188 |
+
else:
|
189 |
+
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
190 |
+
return unpadded_tensor, None
|
191 |
+
else:
|
192 |
+
scale_factor = current_height / original_height
|
193 |
+
new_width = int(original_width * scale_factor)
|
194 |
+
padding = (current_width - new_width) // 2
|
195 |
+
if keep_original_shape:
|
196 |
+
attention_mask = torch.ones((current_height, current_width), device=tensor.device)
|
197 |
+
attention_mask[:, :padding] = 0
|
198 |
+
attention_mask[:, current_width - padding:] = 0
|
199 |
+
return tensor, attention_mask
|
200 |
+
else:
|
201 |
+
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
202 |
+
return unpadded_tensor, None
|
203 |
+
|
204 |
+
|
205 |
+
def select_best_resolution(original_size, possible_resolutions):
|
206 |
+
"""
|
207 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
211 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
tuple: The best fit resolution in the format (width, height).
|
215 |
+
"""
|
216 |
+
original_width, original_height = original_size
|
217 |
+
best_fit = None
|
218 |
+
max_effective_resolution = 0
|
219 |
+
min_wasted_resolution = float('inf')
|
220 |
+
|
221 |
+
for width, height in possible_resolutions:
|
222 |
+
scale = min(width / original_width, height / original_height)
|
223 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
224 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
225 |
+
wasted_resolution = (width * height) - effective_resolution
|
226 |
+
|
227 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
228 |
+
max_effective_resolution = effective_resolution
|
229 |
+
min_wasted_resolution = wasted_resolution
|
230 |
+
best_fit = (width, height)
|
231 |
+
|
232 |
+
return best_fit
|
233 |
+
|
234 |
+
|
235 |
+
def resize_and_pad_image(image, target_resolution):
|
236 |
+
"""
|
237 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
image (PIL.Image.Image): The input image.
|
241 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
PIL.Image.Image: The resized and padded image.
|
245 |
+
"""
|
246 |
+
original_width, original_height = image.size
|
247 |
+
target_width, target_height = target_resolution
|
248 |
+
|
249 |
+
scale_w = target_width / original_width
|
250 |
+
scale_h = target_height / original_height
|
251 |
+
|
252 |
+
if scale_w < scale_h:
|
253 |
+
new_width = target_width
|
254 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
255 |
+
else:
|
256 |
+
new_height = target_height
|
257 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
258 |
+
|
259 |
+
# Resize the image
|
260 |
+
resized_image = image.resize((new_width, new_height))
|
261 |
+
|
262 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
263 |
+
paste_x = (target_width - new_width) // 2
|
264 |
+
paste_y = (target_height - new_height) // 2
|
265 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
266 |
+
|
267 |
+
return new_image
|
268 |
+
|
269 |
+
|
270 |
+
def divide_to_patches(image, patch_size):
|
271 |
+
"""
|
272 |
+
Divides an image into patches of a specified size.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
image (PIL.Image.Image): The input image.
|
276 |
+
patch_size (int): The size of each patch.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
280 |
+
"""
|
281 |
+
patches = []
|
282 |
+
width, height = image.size
|
283 |
+
for i in range(0, height, patch_size):
|
284 |
+
for j in range(0, width, patch_size):
|
285 |
+
box = (j, i, j + patch_size, i + patch_size)
|
286 |
+
patch = image.crop(box)
|
287 |
+
patches.append(patch)
|
288 |
+
|
289 |
+
return patches
|
290 |
+
|
291 |
+
|
292 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
293 |
+
"""
|
294 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
298 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
299 |
+
patch_size (int): The size of each image patch.
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
303 |
+
"""
|
304 |
+
if type(grid_pinpoints) is list:
|
305 |
+
possible_resolutions = grid_pinpoints
|
306 |
+
else:
|
307 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
308 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
309 |
+
return width // patch_size, height // patch_size
|
310 |
+
|
311 |
+
|
312 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
313 |
+
"""
|
314 |
+
Process an image with variable resolutions.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
image (PIL.Image.Image): The input image to be processed.
|
318 |
+
processor: The image processor object.
|
319 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
torch.Tensor: A tensor containing the processed image patches.
|
323 |
+
"""
|
324 |
+
# FIXME: determine grid_pinpoints from image sizes.
|
325 |
+
if type(grid_pinpoints) is list:
|
326 |
+
possible_resolutions = grid_pinpoints
|
327 |
+
else:
|
328 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
329 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
330 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
331 |
+
|
332 |
+
processor_size = processor.transforms[0].size
|
333 |
+
patches = divide_to_patches(image_padded, processor_size[0])
|
334 |
+
|
335 |
+
image_original_resize = image.resize((processor_size[0], processor_size[0]))
|
336 |
+
|
337 |
+
image_patches = [image_original_resize] + patches
|
338 |
+
image_patches = [processor(image_patch)
|
339 |
+
for image_patch in image_patches]
|
340 |
+
return torch.stack(image_patches, dim=0)
|
341 |
+
|
342 |
+
|
343 |
+
def expand2square(pil_img, background_color):
|
344 |
+
width, height = pil_img.size
|
345 |
+
if width == height:
|
346 |
+
return pil_img
|
347 |
+
elif width > height:
|
348 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
349 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
350 |
+
return result
|
351 |
+
else:
|
352 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
353 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
354 |
+
return result
|
355 |
+
|
356 |
+
|
357 |
+
def process_images(images, image_processor, model_cfg):
|
358 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
359 |
+
new_images = []
|
360 |
+
if image_aspect_ratio == 'pad':
|
361 |
+
for image in images:
|
362 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.transforms[-1].mean))
|
363 |
+
image = image_processor(image)
|
364 |
+
new_images.append(image)
|
365 |
+
elif image_aspect_ratio in ["anyres", "anyres-legacy"]:
|
366 |
+
base_img_size = image_processor.transforms[0].size[0]
|
367 |
+
for image in images:
|
368 |
+
image = process_anyres_image(image, image_processor, [[base_img_size,base_img_size*2],
|
369 |
+
[base_img_size*2,base_img_size],
|
370 |
+
[base_img_size*2,base_img_size*2],
|
371 |
+
[base_img_size*3,base_img_size],
|
372 |
+
[base_img_size,base_img_size*3]])
|
373 |
+
|
374 |
+
# Debug any res inference by only using 672x672.
|
375 |
+
# image = process_anyres_image(image, image_processor, [[base_img_size*2,base_img_size*2]])
|
376 |
+
new_images.append(image)
|
377 |
+
else:
|
378 |
+
return image_processor(images)
|
379 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
380 |
+
new_images = torch.stack(new_images, dim=0)
|
381 |
+
return new_images
|
382 |
+
|
383 |
+
|
vlm.py
ADDED
@@ -0,0 +1,1506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import einsum, nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
from einops_exts import rearrange_many
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from transformers import CLIPVisionModel
|
12 |
+
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer
|
13 |
+
|
14 |
+
import transformers
|
15 |
+
from packaging.version import Version
|
16 |
+
|
17 |
+
from utils import num_params, getattr_recursive, stack_with_padding, get_anyres_image_grid_shape, unpad_image
|
18 |
+
|
19 |
+
|
20 |
+
class VisionTokenizer(nn.Module):
|
21 |
+
def __init__(self, dim_media, num_tokens_per_media):
|
22 |
+
super().__init__()
|
23 |
+
self.dim_media = dim_media
|
24 |
+
self.num_tokens_per_media = num_tokens_per_media
|
25 |
+
|
26 |
+
class PerceiverAttention(nn.Module):
|
27 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
28 |
+
super().__init__()
|
29 |
+
self.scale = dim_head**-0.5
|
30 |
+
self.heads = heads
|
31 |
+
inner_dim = dim_head * heads
|
32 |
+
|
33 |
+
self.norm_media = nn.LayerNorm(dim)
|
34 |
+
self.norm_latents = nn.LayerNorm(dim)
|
35 |
+
|
36 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
37 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
38 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
39 |
+
|
40 |
+
def forward(self, x, latents, vision_attn_masks=None):
|
41 |
+
"""
|
42 |
+
Args:
|
43 |
+
x (torch.Tensor): image features
|
44 |
+
shape (b, T, n1, D)
|
45 |
+
latent (torch.Tensor): latent features
|
46 |
+
shape (b, T, n2, D)
|
47 |
+
"""
|
48 |
+
x = self.norm_media(x)
|
49 |
+
latents = self.norm_latents(latents)
|
50 |
+
|
51 |
+
h = self.heads
|
52 |
+
|
53 |
+
q = self.to_q(latents)
|
54 |
+
kv_input = torch.cat((x, latents), dim=-2) # TODO: Change the shape of vision attention mask according to this.
|
55 |
+
if vision_attn_masks is not None:
|
56 |
+
vision_attn_masks = torch.cat((vision_attn_masks,
|
57 |
+
torch.ones((latents.shape[0], latents.shape[-2]), dtype=latents.dtype, device=latents.device)),
|
58 |
+
dim=-1)
|
59 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
60 |
+
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
|
61 |
+
q = q * self.scale
|
62 |
+
|
63 |
+
# attention
|
64 |
+
sim = einsum("... i d, ... j d -> ... i j", q, k)
|
65 |
+
# Apply vision attention mask here.
|
66 |
+
# Reference: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html#torch.nn.functional.scaled_dot_product_attention
|
67 |
+
if vision_attn_masks is not None:
|
68 |
+
attn_bias = torch.zeros((q.size(0), 1, 1, q.size(-2), k.size(-2)), dtype=q.dtype, device=q.device)
|
69 |
+
vision_attn_masks = repeat(vision_attn_masks, 'b n -> b 1 1 l n', l=q.size(-2))
|
70 |
+
attn_bias.masked_fill_(vision_attn_masks.logical_not(), float("-inf"))
|
71 |
+
sim += attn_bias
|
72 |
+
|
73 |
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
74 |
+
attn = sim.softmax(dim=-1)
|
75 |
+
|
76 |
+
|
77 |
+
out = einsum("... i j, ... j d -> ... i d", attn, v)
|
78 |
+
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
|
79 |
+
return self.to_out(out)
|
80 |
+
|
81 |
+
|
82 |
+
def FeedForward(dim, mult=4):
|
83 |
+
inner_dim = int(dim * mult)
|
84 |
+
return nn.Sequential(
|
85 |
+
nn.LayerNorm(dim),
|
86 |
+
nn.Linear(dim, inner_dim, bias=False),
|
87 |
+
nn.GELU(),
|
88 |
+
nn.Linear(inner_dim, dim, bias=False),
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
class PerceiverResampler(VisionTokenizer):
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
*,
|
96 |
+
dim,
|
97 |
+
dim_inner=None,
|
98 |
+
depth=6,
|
99 |
+
dim_head=96,
|
100 |
+
heads=16,
|
101 |
+
num_latents=128,
|
102 |
+
max_num_media=None,
|
103 |
+
max_num_frames=None,
|
104 |
+
ff_mult=4,
|
105 |
+
):
|
106 |
+
"""
|
107 |
+
Perceiver module which takes in image features and outputs image tokens.
|
108 |
+
Args:
|
109 |
+
dim (int): dimension of the incoming image features
|
110 |
+
dim_inner (int, optional): final dimension to project the incoming image features to;
|
111 |
+
also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
|
112 |
+
depth (int, optional): number of layers. Defaults to 6.
|
113 |
+
dim_head (int, optional): dimension of each head. Defaults to 64.
|
114 |
+
heads (int, optional): number of heads. Defaults to 8.
|
115 |
+
num_latents (int, optional): number of latent tokens to use in the Perceiver;
|
116 |
+
also corresponds to number of tokens per sequence to output. Defaults to 64.
|
117 |
+
max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
|
118 |
+
and keep positional embeddings for. If None, no positional embeddings are used.
|
119 |
+
max_num_frames (int, optional): maximum number of frames to input into the Perceiver
|
120 |
+
and keep positional embeddings for. If None, no positional embeddings are used.
|
121 |
+
ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
|
122 |
+
"""
|
123 |
+
if dim_inner is not None:
|
124 |
+
projection = nn.Linear(dim, dim_inner)
|
125 |
+
else:
|
126 |
+
projection = None
|
127 |
+
dim_inner = dim
|
128 |
+
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
|
129 |
+
self.projection = projection
|
130 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
131 |
+
|
132 |
+
# positional embeddings
|
133 |
+
self.frame_embs = (
|
134 |
+
nn.Parameter(torch.randn(max_num_frames, dim))
|
135 |
+
if exists(max_num_frames)
|
136 |
+
else None
|
137 |
+
)
|
138 |
+
self.media_time_embs = (
|
139 |
+
nn.Parameter(torch.randn(max_num_media, 1, dim))
|
140 |
+
if exists(max_num_media)
|
141 |
+
else None
|
142 |
+
)
|
143 |
+
|
144 |
+
self.layers = nn.ModuleList([])
|
145 |
+
for _ in range(depth):
|
146 |
+
self.layers.append(
|
147 |
+
nn.ModuleList(
|
148 |
+
[
|
149 |
+
PerceiverAttention(
|
150 |
+
dim=dim, dim_head=dim_head, heads=heads
|
151 |
+
),
|
152 |
+
FeedForward(dim=dim, mult=ff_mult),
|
153 |
+
]
|
154 |
+
)
|
155 |
+
)
|
156 |
+
|
157 |
+
self.norm = nn.LayerNorm(dim)
|
158 |
+
|
159 |
+
def forward(self, x, vision_attn_masks):
|
160 |
+
"""
|
161 |
+
Args:
|
162 |
+
x (torch.Tensor): image features
|
163 |
+
shape (b, T, F, v, D)
|
164 |
+
vision_attn_masks (torch.Tensor): attention masks for padded visiont tokens (i.e., x)
|
165 |
+
shape (b, v)
|
166 |
+
Returns:
|
167 |
+
shape (b, T, n, D) where n is self.num_latents
|
168 |
+
"""
|
169 |
+
b, T, F, v = x.shape[:4]
|
170 |
+
|
171 |
+
# frame and media time embeddings
|
172 |
+
if exists(self.frame_embs):
|
173 |
+
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
|
174 |
+
x = x + frame_embs
|
175 |
+
x = rearrange(
|
176 |
+
x, "b T F v d -> b T (F v) d"
|
177 |
+
) # flatten the frame and spatial dimensions
|
178 |
+
if exists(self.media_time_embs):
|
179 |
+
x = x + self.media_time_embs[:T]
|
180 |
+
|
181 |
+
# blocks
|
182 |
+
latents = self.latents
|
183 |
+
latents = repeat(latents, "n d -> b T n d", b=b, T=T)
|
184 |
+
for attn, ff in self.layers:
|
185 |
+
latents = attn(x, latents, vision_attn_masks) + latents
|
186 |
+
latents = ff(latents) + latents
|
187 |
+
|
188 |
+
if exists(self.projection):
|
189 |
+
return self.projection(self.norm(latents))
|
190 |
+
else:
|
191 |
+
return self.norm(latents)
|
192 |
+
|
193 |
+
|
194 |
+
class DecoupledEmbedding(nn.Embedding):
|
195 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
196 |
+
"""
|
197 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
|
198 |
+
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
|
199 |
+
then it will create `num_additional_embeddings` additional parameters that are always trained. If
|
200 |
+
`num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
max_original_id: int,
|
206 |
+
num_additional_embeddings: int = 0,
|
207 |
+
_weight: torch.Tensor = None,
|
208 |
+
num_original_embeddings: int = None,
|
209 |
+
embedding_dim: int = None,
|
210 |
+
partially_freeze=True,
|
211 |
+
device=None,
|
212 |
+
dtype=None,
|
213 |
+
pad_token_id=None,
|
214 |
+
) -> None:
|
215 |
+
"""
|
216 |
+
Args:
|
217 |
+
max_original_id (`int`):
|
218 |
+
The largest token id that should be embedded using the regular embedding (regular `weight`).
|
219 |
+
This is usually len(tokenizer) - 1 before additional tokens are added.
|
220 |
+
Note that this may not equal self.weight.shape[0]
|
221 |
+
num_additional_embeddings (`int`):
|
222 |
+
Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
|
223 |
+
_weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
|
224 |
+
If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
|
225 |
+
num_original_embeddings (`int`):
|
226 |
+
self.weight.shape[0]
|
227 |
+
embedding_dim (`int`):
|
228 |
+
The size of each embedding vector
|
229 |
+
partially_freeze: (`bool`, *optional*, defaults to `True`):
|
230 |
+
If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
|
231 |
+
padding_idx (`int`, *optional*):
|
232 |
+
The padding index (needs to be less than num_embeddings)
|
233 |
+
|
234 |
+
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
|
235 |
+
`max_norm` or `norm_type`. We are not supporting these.
|
236 |
+
"""
|
237 |
+
# validate args
|
238 |
+
if pad_token_id is not None and pad_token_id > max_original_id:
|
239 |
+
raise ValueError(
|
240 |
+
f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
|
241 |
+
+ "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
|
242 |
+
)
|
243 |
+
if _weight is not None:
|
244 |
+
assert (num_original_embeddings is None) or (
|
245 |
+
_weight.shape[0] == num_original_embeddings
|
246 |
+
), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
|
247 |
+
assert (embedding_dim is None) or (
|
248 |
+
_weight.shape[1] == embedding_dim
|
249 |
+
), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
|
250 |
+
num_original_embeddings = _weight.shape[0]
|
251 |
+
embedding_dim = _weight.shape[1]
|
252 |
+
else:
|
253 |
+
assert (
|
254 |
+
num_original_embeddings is not None
|
255 |
+
), "num_original_embeddings must be provided if _weight is not provided"
|
256 |
+
assert (
|
257 |
+
embedding_dim is not None
|
258 |
+
), "embedding_dim must be provided if _weight is not provided"
|
259 |
+
|
260 |
+
super().__init__(
|
261 |
+
num_embeddings=num_original_embeddings,
|
262 |
+
embedding_dim=embedding_dim,
|
263 |
+
device=device,
|
264 |
+
dtype=dtype,
|
265 |
+
padding_idx=pad_token_id,
|
266 |
+
_weight=_weight,
|
267 |
+
)
|
268 |
+
self.max_original_id = max_original_id
|
269 |
+
self.padding_idx = pad_token_id
|
270 |
+
self.num_additional_embeddings = num_additional_embeddings
|
271 |
+
if self.num_additional_embeddings > 0:
|
272 |
+
self.additional_embedding = nn.Embedding(
|
273 |
+
num_embeddings=self.num_additional_embeddings,
|
274 |
+
embedding_dim=embedding_dim,
|
275 |
+
device=device,
|
276 |
+
dtype=dtype,
|
277 |
+
)
|
278 |
+
self.set_requires_grad(
|
279 |
+
require_regular_grad=not partially_freeze, require_additional_grad=True
|
280 |
+
)
|
281 |
+
|
282 |
+
def set_requires_grad(self, require_regular_grad, require_additional_grad):
|
283 |
+
"""
|
284 |
+
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
|
285 |
+
"""
|
286 |
+
self.weight.requires_grad_(require_regular_grad)
|
287 |
+
self.additional_embedding.requires_grad_(require_additional_grad)
|
288 |
+
|
289 |
+
def forward(self, input_ids):
|
290 |
+
"""
|
291 |
+
we have 2 embeddings, with different indices - one pretrained self.weight and another
|
292 |
+
self.additional_embedding.weight that is being trained.
|
293 |
+
|
294 |
+
in order to make a lookup of the input ids, we:
|
295 |
+
1. find out the indices of the entries belonging to the 2nd embedding
|
296 |
+
2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
|
297 |
+
embedding starts from 0 and not num_embeddings
|
298 |
+
3. perform the 2nd embedding lookup
|
299 |
+
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
|
300 |
+
5. perform the 1st embedding lookup
|
301 |
+
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
|
302 |
+
|
303 |
+
note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
|
304 |
+
then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
|
305 |
+
i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
|
306 |
+
usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
|
307 |
+
measure.
|
308 |
+
|
309 |
+
"""
|
310 |
+
if self.num_additional_embeddings == 0:
|
311 |
+
return F.embedding(input_ids, self.weight)
|
312 |
+
|
313 |
+
# Clone so that we don't modify the original input_ids later on
|
314 |
+
input_ids = input_ids.clone()
|
315 |
+
additional_vocab_indices = torch.where(input_ids > self.max_original_id)
|
316 |
+
input_ids_additional_vocab = input_ids[additional_vocab_indices]
|
317 |
+
additional_embeddings = self.additional_embedding(
|
318 |
+
input_ids_additional_vocab - self.max_original_id - 1
|
319 |
+
)
|
320 |
+
|
321 |
+
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
322 |
+
input_ids[additional_vocab_indices] = 0
|
323 |
+
full_vector = F.embedding(input_ids, self.weight)
|
324 |
+
|
325 |
+
# overwrite the records with high indices
|
326 |
+
full_vector[additional_vocab_indices] = additional_embeddings
|
327 |
+
|
328 |
+
return full_vector
|
329 |
+
|
330 |
+
def extra_repr(self) -> str:
|
331 |
+
return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
|
332 |
+
self.max_original_id + 1,
|
333 |
+
self.num_additional_embeddings,
|
334 |
+
self.embedding_dim,
|
335 |
+
(not self.weight.requires_grad),
|
336 |
+
)
|
337 |
+
|
338 |
+
|
339 |
+
class DecoupledLinear(nn.Linear):
|
340 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
|
341 |
+
"""
|
342 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
|
343 |
+
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
|
344 |
+
then it will create `additional_out_features * in_features` additional parameters that are always trained. If
|
345 |
+
`additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(
|
349 |
+
self,
|
350 |
+
max_original_id: int,
|
351 |
+
additional_out_features: int = 0,
|
352 |
+
_weight: torch.Tensor = None,
|
353 |
+
_bias: torch.Tensor = None,
|
354 |
+
in_features: int = None,
|
355 |
+
original_out_features: int = None,
|
356 |
+
bias: bool = True,
|
357 |
+
partially_freeze: bool = True,
|
358 |
+
device=None,
|
359 |
+
dtype=None,
|
360 |
+
) -> None:
|
361 |
+
"""
|
362 |
+
Args:
|
363 |
+
max_original_id (`int`): The largest token id that should be extracted from the regular weight.
|
364 |
+
This is usually len(tokenizer) - 1 before additional tokens are added.
|
365 |
+
Note that this may not equal original_out_features - 1
|
366 |
+
_weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
|
367 |
+
If provided, this sets the `in_features` and `original_out_features` parameters.
|
368 |
+
_bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
|
369 |
+
in_features: int. Input hidden size.
|
370 |
+
original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
|
371 |
+
additional_out_features: int. Number of additional trainable dimensions.
|
372 |
+
bias: bool. Whether to include a bias term.
|
373 |
+
partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
|
374 |
+
"""
|
375 |
+
# argument validation
|
376 |
+
if _weight is not None:
|
377 |
+
assert (_weight.shape[0] == original_out_features) or (
|
378 |
+
original_out_features is None
|
379 |
+
), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
|
380 |
+
assert (_weight.shape[1] == in_features) or (
|
381 |
+
in_features is None
|
382 |
+
), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
|
383 |
+
in_features = _weight.shape[1]
|
384 |
+
original_out_features = _weight.shape[0]
|
385 |
+
else:
|
386 |
+
assert (
|
387 |
+
in_features is not None
|
388 |
+
), "in_features must be provided if _weight is not provided"
|
389 |
+
assert (
|
390 |
+
original_out_features is not None
|
391 |
+
), "original_out_features must be provided if _weight is not provided"
|
392 |
+
|
393 |
+
if _bias is not None:
|
394 |
+
assert bias is True, "bias must be True if _bias is provided"
|
395 |
+
|
396 |
+
# initialize original linear
|
397 |
+
super().__init__(
|
398 |
+
in_features,
|
399 |
+
original_out_features,
|
400 |
+
bias,
|
401 |
+
device,
|
402 |
+
dtype)
|
403 |
+
|
404 |
+
# set weight and bias manually
|
405 |
+
if _weight is not None:
|
406 |
+
self.weight = nn.Parameter(_weight)
|
407 |
+
if _bias is not None:
|
408 |
+
self.bias = nn.Parameter(_bias)
|
409 |
+
|
410 |
+
self.in_features = in_features
|
411 |
+
self.original_out_features = original_out_features
|
412 |
+
self.max_original_id = max_original_id
|
413 |
+
|
414 |
+
# initialize additional linear
|
415 |
+
self.additional_out_features = additional_out_features
|
416 |
+
self.has_bias = bias
|
417 |
+
if additional_out_features > 0:
|
418 |
+
self.additional_fc = nn.Linear(
|
419 |
+
in_features=in_features,
|
420 |
+
out_features=additional_out_features,
|
421 |
+
bias=self.has_bias,
|
422 |
+
device=device,
|
423 |
+
dtype=dtype,
|
424 |
+
)
|
425 |
+
self.set_requires_grad(
|
426 |
+
require_regular_grad=not partially_freeze, require_additional_grad=True
|
427 |
+
)
|
428 |
+
|
429 |
+
def set_requires_grad(self, require_regular_grad, require_additional_grad):
|
430 |
+
"""
|
431 |
+
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
|
432 |
+
"""
|
433 |
+
self.weight.requires_grad_(require_regular_grad)
|
434 |
+
if self.has_bias:
|
435 |
+
self.bias.requires_grad_(require_regular_grad)
|
436 |
+
self.additional_fc.requires_grad_(require_additional_grad)
|
437 |
+
|
438 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
439 |
+
output = F.linear(input, self.weight, self.bias)
|
440 |
+
output = output[..., : self.max_original_id + 1]
|
441 |
+
|
442 |
+
if self.additional_out_features > 0:
|
443 |
+
additional_features = F.linear(
|
444 |
+
input, self.additional_fc.weight, self.additional_fc.bias
|
445 |
+
)
|
446 |
+
output = torch.cat((output, additional_features), -1)
|
447 |
+
return output
|
448 |
+
|
449 |
+
def extra_repr(self) -> str:
|
450 |
+
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
|
451 |
+
return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
|
452 |
+
self.in_features,
|
453 |
+
self.max_original_id + 1,
|
454 |
+
self.additional_out_features,
|
455 |
+
self.bias is not None,
|
456 |
+
(not self.weight.requires_grad or not self.bias.requires_grad),
|
457 |
+
)
|
458 |
+
|
459 |
+
class VLM(nn.Module):
|
460 |
+
"""
|
461 |
+
Generic vision-language model (VLM) class.
|
462 |
+
A VLM consists of four components:
|
463 |
+
1. A vision encoder that extracts features from pixels, e.g. CLIP
|
464 |
+
input: (B, T_img, F, C, H, W)
|
465 |
+
output: (B, T_img, F, v, d)
|
466 |
+
2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
|
467 |
+
input: (B, T_img, F, v, d)
|
468 |
+
output: (B, T_img, n, d)
|
469 |
+
3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
|
470 |
+
4. A language model
|
471 |
+
"""
|
472 |
+
|
473 |
+
def __init__(
|
474 |
+
self,
|
475 |
+
vision_encoder: nn.Module,
|
476 |
+
vision_tokenizer: nn.Module,
|
477 |
+
lang_model: nn.Module,
|
478 |
+
initial_tokenizer_len: int,
|
479 |
+
pad_token_id: int,
|
480 |
+
gradient_checkpointing: bool = False,
|
481 |
+
):
|
482 |
+
"""
|
483 |
+
Args:
|
484 |
+
vision_encoder (nn.Module): e.g. CLIP
|
485 |
+
vision_tokenizer (nn.Module): e.g. PerceiverResampler
|
486 |
+
lang_model (nn.Module): e.g. MPT
|
487 |
+
initial_tokenizer_len (int): size of the original tokenizer vocab
|
488 |
+
pad_token_id (int): id of the pad token
|
489 |
+
gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
|
490 |
+
"""
|
491 |
+
super().__init__()
|
492 |
+
|
493 |
+
# save dimension information
|
494 |
+
self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
|
495 |
+
if hasattr(lang_model.config, "d_model"):
|
496 |
+
self.lang_hidden_dim = lang_model.config.d_model # mpt uses d_model
|
497 |
+
else:
|
498 |
+
self.lang_hidden_dim = lang_model.config.hidden_size
|
499 |
+
self.vis_embedding_dim = vision_tokenizer.dim_media
|
500 |
+
self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media
|
501 |
+
|
502 |
+
# core components
|
503 |
+
self.vision_encoder = vision_encoder
|
504 |
+
self.vision_tokenizer = vision_tokenizer
|
505 |
+
self.lang_model = lang_model
|
506 |
+
|
507 |
+
# lm embeddings
|
508 |
+
self.pad_token_id = pad_token_id
|
509 |
+
self.initial_tokenizer_len = initial_tokenizer_len
|
510 |
+
input_embeds = DecoupledEmbedding(
|
511 |
+
max_original_id=initial_tokenizer_len - 1,
|
512 |
+
num_additional_embeddings=len(self.special_tokens),
|
513 |
+
_weight=self.lang_model.get_input_embeddings().weight,
|
514 |
+
pad_token_id=self.pad_token_id,
|
515 |
+
)
|
516 |
+
if hasattr(input_embeds, "additional_embedding"):
|
517 |
+
input_embeds.additional_embedding.weight.data.normal_(
|
518 |
+
mean=0.0,
|
519 |
+
std=self.lang_model.config.initializer_range
|
520 |
+
if hasattr(self.lang_model.config, "initializer_range")
|
521 |
+
else 0.02,
|
522 |
+
)
|
523 |
+
self.lang_model.set_input_embeddings(input_embeds)
|
524 |
+
|
525 |
+
out_embeds = DecoupledLinear(
|
526 |
+
max_original_id=initial_tokenizer_len - 1,
|
527 |
+
additional_out_features=len(self.special_tokens),
|
528 |
+
_weight=self.lang_model.get_output_embeddings().weight,
|
529 |
+
_bias=self.lang_model.get_output_embeddings().bias if hasattr(self.lang_model.get_output_embeddings(), "bias") else None,
|
530 |
+
)
|
531 |
+
if hasattr(out_embeds, "additional_fc"):
|
532 |
+
out_embeds.additional_fc.weight.data.normal_(
|
533 |
+
mean=0.0,
|
534 |
+
std=self.lang_model.config.initializer_range
|
535 |
+
if hasattr(self.lang_model.config, "initializer_range")
|
536 |
+
else 0.02,
|
537 |
+
)
|
538 |
+
self.lang_model.set_output_embeddings(out_embeds)
|
539 |
+
|
540 |
+
# gradient checkpointing
|
541 |
+
self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing
|
542 |
+
|
543 |
+
def forward(
|
544 |
+
self,
|
545 |
+
vision_x: Optional[torch.Tensor],
|
546 |
+
lang_x: torch.Tensor,
|
547 |
+
attention_mask: Optional[torch.Tensor] = None,
|
548 |
+
labels: Optional[torch.Tensor] = None,
|
549 |
+
past_key_values: Optional[
|
550 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
551 |
+
] = None,
|
552 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
553 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
554 |
+
use_cache: Optional[bool] = False,
|
555 |
+
**kwargs,
|
556 |
+
):
|
557 |
+
"""
|
558 |
+
Args:
|
559 |
+
vision_x: Vision input
|
560 |
+
shape (B, T_img, F, C, H, W) with F=1
|
561 |
+
only F = 1 is supported (single-frame videos)
|
562 |
+
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
|
563 |
+
only the first number of media tokens in lang_x are used
|
564 |
+
lang_x: Language input ids, with media tokens denoting where
|
565 |
+
visual media should be inserted.
|
566 |
+
shape (B, T_txt)
|
567 |
+
attention_mask: Attention mask. Defaults to None.
|
568 |
+
labels: Labels. Defaults to None.
|
569 |
+
shape (B, T_txt)
|
570 |
+
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
|
571 |
+
list of length = number of decoder layers in the LM
|
572 |
+
exact implementation depends on LM, see Hugging Face docs
|
573 |
+
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
|
574 |
+
shape (B, T_txt)
|
575 |
+
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
|
576 |
+
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
|
577 |
+
If True, includes key_values, media_locations, and vision_tokens in the output.
|
578 |
+
"""
|
579 |
+
assert not (past_vision_tokens is None) ^ (
|
580 |
+
past_media_locations is None
|
581 |
+
), "past_vision_tokens and past_media_locations must both be None or both be not None"
|
582 |
+
|
583 |
+
# convert pixels to vision tokens
|
584 |
+
if vision_x is not None:
|
585 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
586 |
+
vision_tokens = self.vision_tokenizer(vision_features)
|
587 |
+
else:
|
588 |
+
vision_tokens = None
|
589 |
+
|
590 |
+
# fuse the vision and language tokens
|
591 |
+
new_inputs = self._prepare_inputs_for_forward(
|
592 |
+
vision_tokens=vision_tokens,
|
593 |
+
lang_x=lang_x,
|
594 |
+
attention_mask=attention_mask,
|
595 |
+
labels=labels,
|
596 |
+
past_key_values=past_key_values,
|
597 |
+
past_media_locations=past_media_locations,
|
598 |
+
padding_side="right",
|
599 |
+
past_vision_tokens=past_vision_tokens,
|
600 |
+
)
|
601 |
+
output = self.lang_model(
|
602 |
+
**new_inputs,
|
603 |
+
use_cache=use_cache,
|
604 |
+
past_key_values=past_key_values,
|
605 |
+
**kwargs,
|
606 |
+
)
|
607 |
+
|
608 |
+
# postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
|
609 |
+
# or to add the past_vision_tokens and past_media_locations to the output
|
610 |
+
output = self._postprocess_outputs_from_forward(
|
611 |
+
output=output,
|
612 |
+
lang_x=lang_x,
|
613 |
+
vision_tokens=vision_tokens,
|
614 |
+
use_cache=use_cache,
|
615 |
+
past_vision_tokens=past_vision_tokens,
|
616 |
+
past_media_locations=past_media_locations,
|
617 |
+
)
|
618 |
+
|
619 |
+
# postforward hooks
|
620 |
+
self._post_forward_hook()
|
621 |
+
return output
|
622 |
+
|
623 |
+
def _encode_vision_x_anyres(self, samples, device):
|
624 |
+
assert self.anyres_grids is not None
|
625 |
+
image_raw = samples["image"] # list of patch list in of shape [1, N_patch, C, H, W]
|
626 |
+
image_sizes = samples["image_size"]
|
627 |
+
|
628 |
+
# Image_raw can be a list of list of patches, when a `samples` has multiple images.
|
629 |
+
if isinstance(image_raw[0], list):
|
630 |
+
images = [x.squeeze(0) for sample_img in image_raw for x in sample_img]
|
631 |
+
image_sizes = [s for sample_sizes in image_sizes for s in sample_sizes]
|
632 |
+
else:
|
633 |
+
# assert isinstance(image_raw[0], torch.Tensor), f"Unkown image type: {image_raw[0]}"
|
634 |
+
# concate list of patches into one big patch for any res encoding.
|
635 |
+
images = [x.squeeze(0) for x in image_raw] # [N_patch, C, H, W]
|
636 |
+
image = torch.cat(images, dim=0) # [\sum{B}{N_patch_i}, C, H, W]
|
637 |
+
image = image.to(device)
|
638 |
+
|
639 |
+
with torch.no_grad():
|
640 |
+
if self.vision_encoder.__class__.__name__ == "TimmModel":
|
641 |
+
image_embeds = self.vision_encoder.trunk.forward_features(image)
|
642 |
+
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
|
643 |
+
image_embeds = self.vision_encoder(image).last_hidden_state
|
644 |
+
else:
|
645 |
+
image_embeds = self.vision_encoder(image)[1] # OpenCLIP returns tuples
|
646 |
+
|
647 |
+
if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(self.vision_encoder, SiglipVisionTransformer):
|
648 |
+
base_img_size = self.vision_encoder.config.image_size
|
649 |
+
else:
|
650 |
+
base_img_size = self.vision_encoder.image_size[0]
|
651 |
+
|
652 |
+
if self.vision_encoder.__class__.__name__ == "TimmModel":
|
653 |
+
grid_size = self.vision_encoder.trunk.patch_embed.grid_size
|
654 |
+
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
|
655 |
+
grid_size_base = self.vision_encoder.config.image_size // self.vision_encoder.config.patch_size
|
656 |
+
grid_size = (grid_size_base, grid_size_base)
|
657 |
+
else:
|
658 |
+
grid_size = self.vision_encoder.grid_size
|
659 |
+
height, width = grid_size
|
660 |
+
|
661 |
+
if not image_embeds.shape[1] == height * width:
|
662 |
+
assert image_embeds.shape[1] == height * width + 1 # For vision encoders that has [CLS] token.
|
663 |
+
image_embeds = image_embeds[:, 1:, :] # Drop the cls token for each patch.
|
664 |
+
n_vis_token_per_patch = image_embeds.shape[1]
|
665 |
+
|
666 |
+
# Split encoded patches and merge patch features
|
667 |
+
# 1. Get the raw sizes from samples, and split the image embeds [\sum_{B}(N_patch_i), N_tok(16*16), C]
|
668 |
+
split_sizes = [image.shape[0] for image in images]
|
669 |
+
image_embeds = torch.split(image_embeds, split_sizes, dim=0)
|
670 |
+
# 2. For each image (consist of a list of patches), merge the patches spatially (of shape [C, n_patch_height, n_patch_width])
|
671 |
+
new_image_embeds = []
|
672 |
+
patch_attn_masks = []
|
673 |
+
max_n_img_token = -1
|
674 |
+
for idx, patch_embeds in enumerate(image_embeds):
|
675 |
+
if patch_embeds.shape[0] > 1:
|
676 |
+
# 3. Flatten the patch features and get [C, n_patch_height * (n_patch_width+1)]
|
677 |
+
base_patch_embeds = patch_embeds[0] # TODO: prepend the CLS token for th base patch embeds (of the resized entire image).
|
678 |
+
patch_embeds = patch_embeds[1:]
|
679 |
+
|
680 |
+
assert height * width == base_patch_embeds.shape[0]
|
681 |
+
|
682 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[idx],
|
683 |
+
self.anyres_grids,
|
684 |
+
base_img_size) # Hardcoded grid_pinpoints.
|
685 |
+
patch_embeds = patch_embeds.view(num_patch_height, num_patch_width, height, width, -1)
|
686 |
+
|
687 |
+
patch_embeds = patch_embeds.permute(4, 0, 2, 1, 3).contiguous()
|
688 |
+
patch_embeds = patch_embeds.flatten(1, 2).flatten(2, 3)
|
689 |
+
patch_embeds, patch_attn_mask = unpad_image(patch_embeds, image_sizes[idx], self.anyres_patch_sampling)
|
690 |
+
if hasattr(self, 'image_newline'):
|
691 |
+
patch_embeds = torch.cat((
|
692 |
+
patch_embeds,
|
693 |
+
self.image_newline[:, None, None].expand(*patch_embeds.shape[:-1], 1)
|
694 |
+
), dim=-1)
|
695 |
+
if self.anyres_patch_sampling:
|
696 |
+
patch_embeds = patch_embeds.view(-1, num_patch_height, num_patch_width, height*width)
|
697 |
+
patch_embeds = patch_embeds.flatten(1, 2).permute(1, 2, 0)
|
698 |
+
assert patch_attn_mask is not None
|
699 |
+
patch_attn_mask = patch_attn_mask.view(num_patch_height, num_patch_width, height*width)
|
700 |
+
patch_attn_mask = patch_attn_mask.flatten(0, 1)
|
701 |
+
patch_embeds = torch.cat((base_patch_embeds.unsqueeze(0), patch_embeds), dim=0)
|
702 |
+
patch_attn_mask = torch.cat((torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0), patch_attn_mask), dim=0)
|
703 |
+
else:
|
704 |
+
patch_embeds = patch_embeds.flatten(1, 2).transpose(0, 1)
|
705 |
+
patch_embeds = torch.cat((base_patch_embeds, patch_embeds), dim=0)
|
706 |
+
else:
|
707 |
+
patch_embeds = patch_embeds[0].unsqueeze(0) if self.anyres_patch_sampling else patch_embeds[0]
|
708 |
+
patch_attn_mask = torch.ones(n_vis_token_per_patch, device=patch_embeds.device).unsqueeze(0) if self.anyres_patch_sampling else None
|
709 |
+
if hasattr(self, 'image_newline'):
|
710 |
+
patch_embeds = torch.cat((
|
711 |
+
patch_embeds,
|
712 |
+
self.image_newline[None]
|
713 |
+
), dim=0)
|
714 |
+
if not self.anyres_patch_sampling:
|
715 |
+
max_n_img_token = max(patch_embeds.shape[0], max_n_img_token)
|
716 |
+
|
717 |
+
new_image_embeds.append(patch_embeds)
|
718 |
+
patch_attn_masks.append(patch_attn_mask)
|
719 |
+
|
720 |
+
if self.anyres_patch_sampling:
|
721 |
+
# Return individual patches for independent token downsampling.
|
722 |
+
return new_image_embeds, patch_attn_masks
|
723 |
+
|
724 |
+
# 4. Pad and concat the list of image_embeds [N_tok_i, C] together into a batch. Also modify the query attention mask.
|
725 |
+
image_embeds = []
|
726 |
+
image_atts = []
|
727 |
+
for image_embed in new_image_embeds:
|
728 |
+
n_img_token = image_embed.shape[0]
|
729 |
+
img_attn = torch.ones((max_n_img_token), dtype=torch.long, device=image_embed.device)
|
730 |
+
if n_img_token < max_n_img_token:
|
731 |
+
padded_embed = torch.zeros((max_n_img_token, image_embed.shape[-1]), dtype=image_embed.dtype, device=image_embed.device)
|
732 |
+
padded_embed[:n_img_token, :] = image_embed
|
733 |
+
img_attn[n_img_token:] = 0 # Mask out the padded entries.
|
734 |
+
else:
|
735 |
+
padded_embed = image_embed
|
736 |
+
image_embeds.append(padded_embed)
|
737 |
+
image_atts.append(img_attn)
|
738 |
+
image_embeds = torch.stack(image_embeds, dim=0) # Shape [B, N_tok_longest, C_dim]
|
739 |
+
image_atts = torch.stack(image_atts, dim=0) # Shape [B, N_tok_longest, C_dim]
|
740 |
+
# TODO: reshape image_embeds and image_atts to "b T F v d"
|
741 |
+
image_embeds = image_embeds[:, None, None, :, :]
|
742 |
+
# image_atts = image_atts[:, None, None, :, :]
|
743 |
+
|
744 |
+
return image_embeds, image_atts
|
745 |
+
|
746 |
+
def _encode_vision_x(self, vision_x: torch.Tensor):
|
747 |
+
"""
|
748 |
+
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
|
749 |
+
Args:
|
750 |
+
vision_x: Vision input
|
751 |
+
shape (B, T_img, F, C, H, W)
|
752 |
+
Images in the same chunk are collated along T_img, and frames are collated along F
|
753 |
+
Currently only F=1 is supported (single-frame videos)
|
754 |
+
|
755 |
+
rearrange code based on https://github.com/dhansmair/flamingo-mini
|
756 |
+
"""
|
757 |
+
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
|
758 |
+
b, T, F = vision_x.shape[:3]
|
759 |
+
|
760 |
+
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
|
761 |
+
with torch.no_grad():
|
762 |
+
if self.vision_encoder.__class__.__name__ == "TimmModel":
|
763 |
+
vision_x = self.vision_encoder.trunk.forward_features(vision_x)
|
764 |
+
elif self.vision_encoder.__class__.__name__ in ['CLIPVisionModel', 'SiglipVisionTransformer']:
|
765 |
+
vision_x = self.vision_encoder(vision_x).last_hidden_state
|
766 |
+
else:
|
767 |
+
vision_x = self.vision_encoder(vision_x)[1] # OpenCLIP returns tuples
|
768 |
+
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
|
769 |
+
return vision_x
|
770 |
+
|
771 |
+
def _concat_vision_cache(
|
772 |
+
self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
|
773 |
+
):
|
774 |
+
"""
|
775 |
+
Helper function to include the past vision tokens and past media locations in the output.
|
776 |
+
"""
|
777 |
+
if use_cache:
|
778 |
+
if past_media_locations is not None and past_vision_tokens is not None:
|
779 |
+
if vision_tokens is not None:
|
780 |
+
updated_vision_tokens = torch.cat(
|
781 |
+
[
|
782 |
+
past_vision_tokens,
|
783 |
+
vision_tokens,
|
784 |
+
],
|
785 |
+
dim=1,
|
786 |
+
)
|
787 |
+
else:
|
788 |
+
updated_vision_tokens = past_vision_tokens
|
789 |
+
updated_media_locations = torch.cat(
|
790 |
+
[
|
791 |
+
past_media_locations,
|
792 |
+
lang_x == self.media_token_id,
|
793 |
+
],
|
794 |
+
dim=1,
|
795 |
+
)
|
796 |
+
else:
|
797 |
+
updated_vision_tokens = vision_tokens
|
798 |
+
updated_media_locations = lang_x == self.media_token_id
|
799 |
+
|
800 |
+
else:
|
801 |
+
updated_vision_tokens = None
|
802 |
+
updated_media_locations = None
|
803 |
+
|
804 |
+
return updated_vision_tokens, updated_media_locations
|
805 |
+
|
806 |
+
def generate(
|
807 |
+
self,
|
808 |
+
vision_x: torch.Tensor,
|
809 |
+
lang_x: torch.Tensor,
|
810 |
+
attention_mask: torch.Tensor = None,
|
811 |
+
past_key_values: Optional[
|
812 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
813 |
+
] = None,
|
814 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
815 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
816 |
+
**kwargs,
|
817 |
+
):
|
818 |
+
"""
|
819 |
+
Generate text conditioned on vision and language inputs.
|
820 |
+
Args:
|
821 |
+
vision_x (torch.Tensor): Vision input
|
822 |
+
shape (B, T_img, F, C, H, W)
|
823 |
+
see documentation for forward
|
824 |
+
lang_x (torch.Tensor): Language input
|
825 |
+
shape (B, T_txt)
|
826 |
+
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
|
827 |
+
**kwargs: see generate documentation in Hugging Face CausalLM models.
|
828 |
+
Returns:
|
829 |
+
torch.Tensor: lang_x with generated tokens appended to it
|
830 |
+
"""
|
831 |
+
num_beams = kwargs.pop("num_beams", 1)
|
832 |
+
|
833 |
+
# convert pixels to vision tokens
|
834 |
+
if vision_x is not None:
|
835 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
836 |
+
vision_tokens = self.vision_tokenizer(vision_features)
|
837 |
+
else:
|
838 |
+
vision_tokens = None
|
839 |
+
|
840 |
+
# fuse the vision and language tokens
|
841 |
+
# for xattn, vision_x and media_location are repeat_interleaved s.t.
|
842 |
+
# the total batch size is B * num_beams
|
843 |
+
new_inputs = self._prepare_inputs_for_forward(
|
844 |
+
vision_tokens=vision_tokens,
|
845 |
+
lang_x=lang_x,
|
846 |
+
attention_mask=attention_mask,
|
847 |
+
past_key_values=past_key_values,
|
848 |
+
past_media_locations=past_media_locations,
|
849 |
+
past_vision_tokens=past_vision_tokens,
|
850 |
+
padding_side="left",
|
851 |
+
num_beams=num_beams,
|
852 |
+
)
|
853 |
+
output = self.lang_model.generate(
|
854 |
+
**new_inputs,
|
855 |
+
past_key_values=past_key_values,
|
856 |
+
num_beams=num_beams,
|
857 |
+
use_cache=True,
|
858 |
+
**kwargs,
|
859 |
+
)
|
860 |
+
self._post_forward_hook()
|
861 |
+
return output
|
862 |
+
|
863 |
+
@property
|
864 |
+
def num_trainable_params(self):
|
865 |
+
"""Print the number of trainable parameters"""
|
866 |
+
return num_params(self, filter_to_trainable=True)
|
867 |
+
|
868 |
+
def set_trainable(self):
|
869 |
+
"""
|
870 |
+
Freeze appropriate parameters in the model.
|
871 |
+
"""
|
872 |
+
raise NotImplementedError
|
873 |
+
|
874 |
+
def group_params_by_weight_decay(self):
|
875 |
+
"""
|
876 |
+
Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
|
877 |
+
"""
|
878 |
+
params_with_wd, params_without_wd = [], []
|
879 |
+
for n, p in self.named_parameters():
|
880 |
+
if p.requires_grad:
|
881 |
+
if self._should_apply_weight_decay(n):
|
882 |
+
params_with_wd.append(p)
|
883 |
+
else:
|
884 |
+
params_without_wd.append(p)
|
885 |
+
return params_with_wd, params_without_wd
|
886 |
+
|
887 |
+
def _should_apply_weight_decay(self, parameter_name):
|
888 |
+
"""
|
889 |
+
Return whether weight decay should be applied to a parameter.
|
890 |
+
"""
|
891 |
+
raise NotImplementedError
|
892 |
+
|
893 |
+
@property
|
894 |
+
def special_tokens(self):
|
895 |
+
"""
|
896 |
+
Returns a dict mapping from the attribute name of a special token to its string format,
|
897 |
+
e.g. "media_token": "<image>"
|
898 |
+
"""
|
899 |
+
assert (
|
900 |
+
"media_token" in self._special_tokens
|
901 |
+
), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
|
902 |
+
return self._special_tokens
|
903 |
+
|
904 |
+
@property
|
905 |
+
def special_token_ids(self):
|
906 |
+
"""
|
907 |
+
Returns a list of the special token ids
|
908 |
+
"""
|
909 |
+
return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]
|
910 |
+
|
911 |
+
def set_special_token_ids(self, string_to_ids):
|
912 |
+
"""
|
913 |
+
Args:
|
914 |
+
string_to_ids (dict): mapping from token string to id
|
915 |
+
"""
|
916 |
+
assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
|
917 |
+
for att_name, token_str in self.special_tokens.items():
|
918 |
+
token_id = string_to_ids[token_str]
|
919 |
+
setattr(self, f"{att_name}_id", token_id)
|
920 |
+
setattr(self.lang_model, f"{att_name}_id", token_id)
|
921 |
+
|
922 |
+
def init_gradient_checkpointing(self):
|
923 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
924 |
+
checkpoint_wrapper,
|
925 |
+
CheckpointWrapper,
|
926 |
+
CheckpointImpl,
|
927 |
+
apply_activation_checkpointing,
|
928 |
+
)
|
929 |
+
from functools import partial
|
930 |
+
|
931 |
+
non_reentrant_wrapper = partial(
|
932 |
+
checkpoint_wrapper,
|
933 |
+
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
|
934 |
+
)
|
935 |
+
apply_activation_checkpointing(
|
936 |
+
self,
|
937 |
+
checkpoint_wrapper_fn=non_reentrant_wrapper,
|
938 |
+
check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
|
939 |
+
and not isinstance(m, CheckpointWrapper),
|
940 |
+
)
|
941 |
+
|
942 |
+
@dataclass
|
943 |
+
class VLMOutputWithPast(CausalLMOutputWithPast):
|
944 |
+
"""
|
945 |
+
VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
|
946 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
947 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
948 |
+
"""
|
949 |
+
|
950 |
+
past_media_locations: Optional[torch.Tensor] = None
|
951 |
+
past_vision_tokens: Optional[torch.Tensor] = None
|
952 |
+
|
953 |
+
|
954 |
+
def exists(val):
|
955 |
+
return val is not None
|
956 |
+
|
957 |
+
|
958 |
+
def FeedForward(dim, mult=4):
|
959 |
+
inner_dim = int(dim * mult)
|
960 |
+
return nn.Sequential(
|
961 |
+
nn.LayerNorm(dim),
|
962 |
+
nn.Linear(dim, inner_dim, bias=False),
|
963 |
+
nn.GELU(),
|
964 |
+
nn.Linear(inner_dim, dim, bias=False),
|
965 |
+
)
|
966 |
+
|
967 |
+
class VLMWithLanguageStream(VLM):
|
968 |
+
"""
|
969 |
+
VLM that fuses modalities by inserting vision tokens directly into the language stream.
|
970 |
+
"""
|
971 |
+
|
972 |
+
def __init__(
|
973 |
+
self,
|
974 |
+
vision_encoder: nn.Module,
|
975 |
+
vision_tokenizer: nn.Module,
|
976 |
+
lang_model: nn.Module,
|
977 |
+
initial_tokenizer_len: int,
|
978 |
+
pad_token_id: int,
|
979 |
+
decoder_layers_attr_name: str = None,
|
980 |
+
gradient_checkpointing: bool = False,
|
981 |
+
):
|
982 |
+
super().__init__(
|
983 |
+
vision_encoder=vision_encoder,
|
984 |
+
vision_tokenizer=vision_tokenizer,
|
985 |
+
lang_model=lang_model,
|
986 |
+
initial_tokenizer_len=initial_tokenizer_len,
|
987 |
+
pad_token_id=pad_token_id,
|
988 |
+
gradient_checkpointing=gradient_checkpointing,
|
989 |
+
)
|
990 |
+
self.decoder_layers_attr_name = decoder_layers_attr_name
|
991 |
+
if decoder_layers_attr_name is not None:
|
992 |
+
for block in getattr_recursive(self.lang_model, self.decoder_layers_attr_name):
|
993 |
+
block._use_gradient_checkpointing = gradient_checkpointing
|
994 |
+
|
995 |
+
def _prepare_inputs_for_forward(
|
996 |
+
self,
|
997 |
+
vision_tokens: torch.Tensor,
|
998 |
+
lang_x: torch.Tensor,
|
999 |
+
attention_mask: torch.Tensor,
|
1000 |
+
labels: torch.Tensor = None,
|
1001 |
+
past_key_values=None,
|
1002 |
+
vision_attention_mask: Optional[torch.Tensor] = None,
|
1003 |
+
past_media_locations: torch.Tensor = None,
|
1004 |
+
past_vision_tokens: torch.Tensor = None,
|
1005 |
+
padding_side: str = "left",
|
1006 |
+
num_beams: int = 1,
|
1007 |
+
):
|
1008 |
+
"""
|
1009 |
+
Insert the vision tokens directly into the language stream/
|
1010 |
+
This requires us to modify the input_ids, attention_mask, and labels.
|
1011 |
+
"""
|
1012 |
+
if past_key_values is not None:
|
1013 |
+
past_len = past_key_values[0][0].shape[2]
|
1014 |
+
assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
|
1015 |
+
"Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
|
1016 |
+
+ "Check that you've expanded the attention mask to account for past image tokens."
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
if vision_tokens is None:
|
1020 |
+
return {
|
1021 |
+
"input_ids": lang_x,
|
1022 |
+
"attention_mask": attention_mask,
|
1023 |
+
"labels": labels,
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
# get the language embeddings
|
1027 |
+
lang_embeds = self.lang_model.get_input_embeddings()(lang_x)
|
1028 |
+
|
1029 |
+
# build up the multimodal embeddings
|
1030 |
+
B = lang_x.shape[0]
|
1031 |
+
has_labels = labels is not None
|
1032 |
+
multimodal_embeds = []
|
1033 |
+
multimodal_attention_mask = []
|
1034 |
+
multimodal_labels = [] if has_labels else None
|
1035 |
+
for i in range(B):
|
1036 |
+
# get index of <image> tokens in lang_x[i]
|
1037 |
+
image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]
|
1038 |
+
|
1039 |
+
if len(image_token_idxs) == 0:
|
1040 |
+
multimodal_embeds.append(lang_embeds[i].clone())
|
1041 |
+
multimodal_attention_mask.append(attention_mask[i].clone())
|
1042 |
+
if has_labels:
|
1043 |
+
multimodal_labels.append(labels[i].clone())
|
1044 |
+
continue
|
1045 |
+
|
1046 |
+
# since an image is represented by self.num_tokens_per_vis tokens, we need to offset the image_token_idxs
|
1047 |
+
for j, img_idx in enumerate(image_token_idxs):
|
1048 |
+
image_token_idxs[j] += (self.num_tokens_per_vis - 1) * j # FIXME: different offset for any resolution encoding when has multiple images.
|
1049 |
+
|
1050 |
+
# loop through the image_token_idxs and insert the vision tokens
|
1051 |
+
new_embed = lang_embeds[i].clone()
|
1052 |
+
new_attention_mask = (
|
1053 |
+
attention_mask[i].clone() if attention_mask is not None else None
|
1054 |
+
)
|
1055 |
+
if has_labels:
|
1056 |
+
new_label = labels[i].clone()
|
1057 |
+
|
1058 |
+
for img_num, img_idx in enumerate(image_token_idxs):
|
1059 |
+
if img_num > 0:
|
1060 |
+
# FIXME: hardcoded as such to avoid assertion error, but this only works for single image samples.
|
1061 |
+
break
|
1062 |
+
# Get vision token attention mask for padded llava-style any resolution image tokens.
|
1063 |
+
if self.image_aspect_ratio =='anyres':
|
1064 |
+
num_vis_tokens = vision_tokens[i][img_num].shape[0]
|
1065 |
+
if vision_attention_mask is not None:
|
1066 |
+
vis_attention_mask = vision_attention_mask[i]
|
1067 |
+
else:
|
1068 |
+
vis_attention_mask = torch.ones(
|
1069 |
+
num_vis_tokens, dtype=torch.long
|
1070 |
+
).to(attention_mask.device)
|
1071 |
+
else:
|
1072 |
+
assert (
|
1073 |
+
vision_tokens[i][img_num].shape[0] == self.num_tokens_per_vis
|
1074 |
+
), f"vision token number mismatch: image embedding ({vision_tokens[i][img_num].shape[0]}) \
|
1075 |
+
vs. model.num_tokens_per_vis ({self.num_tokens_per_vis})"
|
1076 |
+
# By default, vision tokens are not padded.
|
1077 |
+
num_vis_tokens = self.num_tokens_per_vis
|
1078 |
+
vis_attention_mask = torch.ones(
|
1079 |
+
num_vis_tokens, dtype=torch.long
|
1080 |
+
).to(attention_mask.device)
|
1081 |
+
|
1082 |
+
|
1083 |
+
new_embed = torch.cat(
|
1084 |
+
(
|
1085 |
+
new_embed[:img_idx],
|
1086 |
+
vision_tokens[i][img_num],
|
1087 |
+
new_embed[img_idx + 1 :],
|
1088 |
+
),
|
1089 |
+
dim=0,
|
1090 |
+
)
|
1091 |
+
new_attention_mask = torch.cat(
|
1092 |
+
(
|
1093 |
+
new_attention_mask[:img_idx],
|
1094 |
+
vis_attention_mask,
|
1095 |
+
new_attention_mask[img_idx + 1 :],
|
1096 |
+
),
|
1097 |
+
dim=0,
|
1098 |
+
)
|
1099 |
+
if has_labels:
|
1100 |
+
new_label = torch.cat(
|
1101 |
+
(
|
1102 |
+
new_label[:img_idx],
|
1103 |
+
torch.ones(num_vis_tokens, dtype=torch.long).to(
|
1104 |
+
labels.device
|
1105 |
+
)
|
1106 |
+
* -100,
|
1107 |
+
new_label[img_idx + 1 :],
|
1108 |
+
),
|
1109 |
+
dim=0,
|
1110 |
+
)
|
1111 |
+
multimodal_embeds.append(new_embed)
|
1112 |
+
multimodal_attention_mask.append(new_attention_mask)
|
1113 |
+
if has_labels:
|
1114 |
+
multimodal_labels.append(new_label)
|
1115 |
+
|
1116 |
+
# stack
|
1117 |
+
multimodal_embeds = stack_with_padding(
|
1118 |
+
multimodal_embeds,
|
1119 |
+
padding_value=self.pad_token_id,
|
1120 |
+
padding_side=padding_side,
|
1121 |
+
)
|
1122 |
+
multimodal_attention_mask = stack_with_padding(
|
1123 |
+
multimodal_attention_mask,
|
1124 |
+
padding_value=0,
|
1125 |
+
padding_side=padding_side,
|
1126 |
+
)
|
1127 |
+
if has_labels:
|
1128 |
+
multimodal_labels = stack_with_padding(
|
1129 |
+
multimodal_labels,
|
1130 |
+
padding_value=-100,
|
1131 |
+
padding_side=padding_side,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
return {
|
1135 |
+
"inputs_embeds": multimodal_embeds,
|
1136 |
+
"attention_mask": multimodal_attention_mask,
|
1137 |
+
"labels": multimodal_labels,
|
1138 |
+
}
|
1139 |
+
|
1140 |
+
def _postprocess_outputs_from_forward(
|
1141 |
+
self,
|
1142 |
+
output: CausalLMOutputWithPast,
|
1143 |
+
lang_x: torch.Tensor,
|
1144 |
+
vision_tokens: torch.Tensor,
|
1145 |
+
past_vision_tokens: torch.Tensor,
|
1146 |
+
past_media_locations: torch.Tensor,
|
1147 |
+
use_cache: bool = False,
|
1148 |
+
):
|
1149 |
+
# Include the past vision tokens and past media locations in the output
|
1150 |
+
updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
|
1151 |
+
lang_x=lang_x,
|
1152 |
+
vision_tokens=vision_tokens,
|
1153 |
+
past_vision_tokens=past_vision_tokens,
|
1154 |
+
past_media_locations=past_media_locations,
|
1155 |
+
use_cache=use_cache,
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
# return logits that are the same shape as the original input_ids
|
1159 |
+
logits = output.logits
|
1160 |
+
batch_logits = []
|
1161 |
+
B, T_txt = lang_x.shape
|
1162 |
+
for i in range(B):
|
1163 |
+
sequence_logits = []
|
1164 |
+
logits_j = 0
|
1165 |
+
for j in range(T_txt):
|
1166 |
+
if lang_x[i, j] != self.media_token_id:
|
1167 |
+
sequence_logits.append(logits[i, logits_j])
|
1168 |
+
logits_j += 1
|
1169 |
+
else:
|
1170 |
+
# append the logit for the first image token, then skip over the rest
|
1171 |
+
# note: the model actually learns to predict <im_patch>, not <image>
|
1172 |
+
sequence_logits.append(logits[i, logits_j])
|
1173 |
+
logits_j += self.num_tokens_per_vis
|
1174 |
+
sequence_logits = torch.stack(sequence_logits, dim=0) # (B, vocab_size)
|
1175 |
+
batch_logits.append(sequence_logits)
|
1176 |
+
|
1177 |
+
batch_logits = torch.stack(batch_logits, dim=0) # (B, T_txt, vocab_size)
|
1178 |
+
# The final logits shape should be the same as the original input_ids shape
|
1179 |
+
assert batch_logits.shape[:2] == (B, T_txt)
|
1180 |
+
|
1181 |
+
# assemble the output
|
1182 |
+
output = VLMOutputWithPast(
|
1183 |
+
loss=output.loss,
|
1184 |
+
logits=batch_logits,
|
1185 |
+
past_key_values=output.past_key_values,
|
1186 |
+
hidden_states=output.hidden_states,
|
1187 |
+
attentions=output.attentions,
|
1188 |
+
past_media_locations=updated_media_locations,
|
1189 |
+
past_vision_tokens=updated_vision_tokens,
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
return output
|
1193 |
+
|
1194 |
+
def _post_forward_hook(self):
|
1195 |
+
pass
|
1196 |
+
|
1197 |
+
|
1198 |
+
@property
|
1199 |
+
def num_params_per_module(self):
|
1200 |
+
"""Print the number of parameters per module in the model"""
|
1201 |
+
return "\n".join(
|
1202 |
+
[
|
1203 |
+
f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
|
1204 |
+
f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
|
1205 |
+
f"Language model: {num_params(self.lang_model):,} parameters",
|
1206 |
+
]
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
@property
|
1210 |
+
def num_trainable_params_per_module(self):
|
1211 |
+
"""Print the number of trainable parameters per module in the model"""
|
1212 |
+
return "\n".join(
|
1213 |
+
[
|
1214 |
+
f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
|
1215 |
+
f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
|
1216 |
+
f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
|
1217 |
+
]
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
|
1221 |
+
class XGenMMPerceiver(VLMWithLanguageStream):
|
1222 |
+
def __init__(
|
1223 |
+
self,
|
1224 |
+
vision_encoder: nn.Module,
|
1225 |
+
vision_tokenizer: nn.Module,
|
1226 |
+
lang_model: nn.Module,
|
1227 |
+
initial_tokenizer_len: int,
|
1228 |
+
pad_token_id: int,
|
1229 |
+
decoder_layers_attr_name: str = None,
|
1230 |
+
gradient_checkpointing: bool = False,
|
1231 |
+
image_aspect_ratio: str = 'anyres',
|
1232 |
+
anyres_patch_sampling: bool = True,
|
1233 |
+
anyres_grids: list[int] = None,
|
1234 |
+
):
|
1235 |
+
"""
|
1236 |
+
Args:
|
1237 |
+
vision_encoder (nn.Module): HF CLIPModel
|
1238 |
+
lang_encoder (nn.Module): HF causal language model
|
1239 |
+
vis_feature_dim (int): final dimension of the visual features outputted by the vision_encoder
|
1240 |
+
initial_tokenizer_len (int): size of the tokenizer vocab
|
1241 |
+
padding_token_id (int): id of the padding token. None if no padding token; then a padding token
|
1242 |
+
will be inserted into self.special_tokens, which factory.py fills after creating new tokens
|
1243 |
+
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
|
1244 |
+
gradient_checkpointing (bool, optional): whether to use gradient checkpointing. Defaults to False.
|
1245 |
+
"""
|
1246 |
+
self._special_tokens = {
|
1247 |
+
"media_token": "<image>",
|
1248 |
+
"image_placeholder_token": "<image placeholder>",
|
1249 |
+
"end_of_trunk_token": "<|endofchunk|>",
|
1250 |
+
}
|
1251 |
+
lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
|
1252 |
+
super().__init__(
|
1253 |
+
vision_encoder=vision_encoder,
|
1254 |
+
vision_tokenizer=vision_tokenizer,
|
1255 |
+
lang_model=lang_model,
|
1256 |
+
initial_tokenizer_len=initial_tokenizer_len,
|
1257 |
+
gradient_checkpointing=gradient_checkpointing,
|
1258 |
+
decoder_layers_attr_name=decoder_layers_attr_name,
|
1259 |
+
pad_token_id=pad_token_id,
|
1260 |
+
)
|
1261 |
+
self.image_aspect_ratio = image_aspect_ratio
|
1262 |
+
self.anyres_patch_sampling = anyres_patch_sampling
|
1263 |
+
self.anyres_grids = anyres_grids
|
1264 |
+
|
1265 |
+
def set_trainable(self):
|
1266 |
+
"""
|
1267 |
+
Unfreeze everything except the vision_encoder
|
1268 |
+
"""
|
1269 |
+
self.requires_grad_(True)
|
1270 |
+
self.vision_encoder.requires_grad_(False)
|
1271 |
+
|
1272 |
+
def _should_apply_weight_decay(self, parameter_name):
|
1273 |
+
"""
|
1274 |
+
Kosmos applies 0.01 weight deacy to everything
|
1275 |
+
"""
|
1276 |
+
return True
|
1277 |
+
|
1278 |
+
def forward(
|
1279 |
+
self,
|
1280 |
+
vision_x: Optional[torch.Tensor],
|
1281 |
+
lang_x: torch.Tensor,
|
1282 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1283 |
+
labels: Optional[torch.Tensor] = None,
|
1284 |
+
image_size: Optional[Tuple] = None,
|
1285 |
+
past_key_values: Optional[
|
1286 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
1287 |
+
] = None,
|
1288 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
1289 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
1290 |
+
use_cache: Optional[bool] = False,
|
1291 |
+
**kwargs,
|
1292 |
+
):
|
1293 |
+
"""
|
1294 |
+
Args:
|
1295 |
+
vision_x: Vision input
|
1296 |
+
shape (B, T_img, F, C, H, W) with F=1
|
1297 |
+
only F = 1 is supported (single-frame videos)
|
1298 |
+
if T_img > the number of media tokens in the corresponding input_ids (lang_x),
|
1299 |
+
only the first number of media tokens in lang_x are used
|
1300 |
+
lang_x: Language input ids, with media tokens denoting where
|
1301 |
+
visual media should be inserted.
|
1302 |
+
shape (B, T_txt)
|
1303 |
+
attention_mask: Attention mask. Defaults to None.
|
1304 |
+
labels: Labels. Defaults to None.
|
1305 |
+
shape (B, T_txt)
|
1306 |
+
past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
|
1307 |
+
list of length = number of decoder layers in the LM
|
1308 |
+
exact implementation depends on LM, see Hugging Face docs
|
1309 |
+
past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
|
1310 |
+
shape (B, T_txt)
|
1311 |
+
past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
|
1312 |
+
use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
|
1313 |
+
If True, includes key_values, media_locations, and vision_tokens in the output.
|
1314 |
+
"""
|
1315 |
+
assert not (past_vision_tokens is None) ^ (
|
1316 |
+
past_media_locations is None
|
1317 |
+
), "past_vision_tokens and past_media_locations must both be None or both be not None"
|
1318 |
+
|
1319 |
+
# convert pixels to vision tokens
|
1320 |
+
vision_attention_mask = None
|
1321 |
+
if vision_x is not None:
|
1322 |
+
if self.image_aspect_ratio == 'anyres':
|
1323 |
+
input_dict = dict(image=vision_x, image_size=image_size)
|
1324 |
+
vision_features, vision_attn_masks = self._encode_vision_x_anyres(input_dict, lang_x.device)
|
1325 |
+
else:
|
1326 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
1327 |
+
vision_attn_masks = None
|
1328 |
+
# Same for attention masks: [b, Np, v] -> [b*Np, v]
|
1329 |
+
if self.anyres_patch_sampling:
|
1330 |
+
split_sizes = [feature.shape[0] for feature in vision_features]
|
1331 |
+
# Nested splits for multi-image samples.
|
1332 |
+
if isinstance(vision_x[0], list):
|
1333 |
+
nt_images = [len(images) for images in vision_x]
|
1334 |
+
split_split_sizes = []
|
1335 |
+
img_id = 0
|
1336 |
+
for nt in nt_images:
|
1337 |
+
split_split_sizes.append(split_sizes[img_id:img_id+nt])
|
1338 |
+
img_id += nt
|
1339 |
+
else:
|
1340 |
+
nt_images = [1] * len(vision_x)
|
1341 |
+
split_split_sizes = split_sizes
|
1342 |
+
vision_features = torch.cat(vision_features, dim=0)
|
1343 |
+
vision_features = vision_features[:, None, None, :, :] # Expand dimensions.
|
1344 |
+
vision_attn_masks = torch.cat(vision_attn_masks, dim=0)
|
1345 |
+
# TODO: add an option that allows restoring the T dimension for video tokenization.
|
1346 |
+
vision_tokens = self.vision_tokenizer(vision_features, vision_attn_masks)
|
1347 |
+
|
1348 |
+
# Post-processing: Split the batches into groups of patches and concatenate them together.
|
1349 |
+
if self.anyres_patch_sampling:
|
1350 |
+
# assert isinstance(vision_x, list)
|
1351 |
+
if isinstance(vision_x[0], list):
|
1352 |
+
vision_token_groups = torch.split(vision_tokens, list(sum(nt_img) for nt_img in split_split_sizes), dim=0)
|
1353 |
+
vision_tokens = []
|
1354 |
+
|
1355 |
+
for sample_id, patch_vis_tokens in enumerate(vision_token_groups):
|
1356 |
+
patch_vis_token_groups = torch.split(patch_vis_tokens, split_split_sizes[sample_id], dim=0) # [Np*nt, 1, v, d] -> [[Np_t, 1, v, d], ...]
|
1357 |
+
flatten_vision_tokens = []
|
1358 |
+
for image_vis_token in patch_vis_token_groups:
|
1359 |
+
image_vis_token = image_vis_token.flatten(0, 2) # [Np, 1, v, d] -> [Np*v, d]
|
1360 |
+
flatten_vision_tokens.append(image_vis_token)
|
1361 |
+
vision_tokens_i = flatten_vision_tokens
|
1362 |
+
vision_tokens.append(vision_tokens_i)
|
1363 |
+
else:
|
1364 |
+
vision_token_groups = torch.split(vision_tokens, split_sizes, dim=0)
|
1365 |
+
vision_tokens = []
|
1366 |
+
for patch_vis_tokens in vision_token_groups:
|
1367 |
+
patch_vis_tokens = patch_vis_tokens.flatten(0, 2) # [Np, 1, v, d] -> [Np*v, d]
|
1368 |
+
vision_tokens.append(patch_vis_tokens.unsqueeze(0)) # Add the nt dimension.
|
1369 |
+
else:
|
1370 |
+
vision_tokens = None
|
1371 |
+
|
1372 |
+
# fuse the vision and language tokens
|
1373 |
+
new_inputs = self._prepare_inputs_for_forward(
|
1374 |
+
vision_tokens=vision_tokens,
|
1375 |
+
lang_x=lang_x,
|
1376 |
+
attention_mask=attention_mask,
|
1377 |
+
vision_attention_mask=vision_attention_mask,
|
1378 |
+
labels=labels,
|
1379 |
+
past_key_values=past_key_values,
|
1380 |
+
past_media_locations=past_media_locations,
|
1381 |
+
padding_side="right",
|
1382 |
+
past_vision_tokens=past_vision_tokens,
|
1383 |
+
)
|
1384 |
+
output = self.lang_model(
|
1385 |
+
**new_inputs,
|
1386 |
+
use_cache=use_cache,
|
1387 |
+
past_key_values=past_key_values,
|
1388 |
+
**kwargs,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
# postforward hooks
|
1392 |
+
self._post_forward_hook()
|
1393 |
+
return output
|
1394 |
+
|
1395 |
+
def generate(
|
1396 |
+
self,
|
1397 |
+
vision_x: torch.Tensor,
|
1398 |
+
lang_x: torch.Tensor,
|
1399 |
+
image_size: Optional[Tuple] = None,
|
1400 |
+
attention_mask: torch.Tensor = None,
|
1401 |
+
past_key_values: Optional[
|
1402 |
+
List[Union[torch.Tensor, Tuple[torch.Tensor]]]
|
1403 |
+
] = None,
|
1404 |
+
past_media_locations: Optional[torch.Tensor] = None,
|
1405 |
+
past_vision_tokens: Optional[torch.Tensor] = None,
|
1406 |
+
**kwargs,
|
1407 |
+
):
|
1408 |
+
"""
|
1409 |
+
Generate text conditioned on vision and language inputs.
|
1410 |
+
Args:
|
1411 |
+
vision_x (torch.Tensor): Vision input
|
1412 |
+
shape (B, T_img, F, C, H, W)
|
1413 |
+
see documentation for forward
|
1414 |
+
lang_x (torch.Tensor): Language input
|
1415 |
+
shape (B, T_txt)
|
1416 |
+
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
|
1417 |
+
**kwargs: see generate documentation in Hugging Face CausalLM models.
|
1418 |
+
Returns:
|
1419 |
+
torch.Tensor: lang_x with generated tokens appended to it
|
1420 |
+
"""
|
1421 |
+
num_beams = kwargs.pop("num_beams", 1)
|
1422 |
+
|
1423 |
+
# convert pixels to vision tokens
|
1424 |
+
vision_attention_mask = None
|
1425 |
+
if vision_x is not None:
|
1426 |
+
if self.image_aspect_ratio == 'anyres':
|
1427 |
+
input_dict = dict(image=vision_x, image_size=image_size)
|
1428 |
+
vision_features, vision_attn_masks = self._encode_vision_x_anyres(input_dict, lang_x.device)
|
1429 |
+
else:
|
1430 |
+
vision_features = self._encode_vision_x(vision_x=vision_x)
|
1431 |
+
vision_attn_masks = None
|
1432 |
+
# TODO: If doing patch sampling, then flatten patches of shape [b, Np_i, v, d] -> [b*Np, v, d]
|
1433 |
+
# Same for attention masks: [b, Np, v] -> [b*Np, v]
|
1434 |
+
if self.anyres_patch_sampling:
|
1435 |
+
split_sizes = [feature.shape[0] for feature in vision_features]
|
1436 |
+
# Nested splits for multi-image samples.
|
1437 |
+
if isinstance(vision_x[0], list):
|
1438 |
+
nt_images = [len(images) for images in vision_x]
|
1439 |
+
split_split_sizes = []
|
1440 |
+
img_id = 0
|
1441 |
+
for nt in nt_images:
|
1442 |
+
split_split_sizes.append(split_sizes[img_id:img_id+nt])
|
1443 |
+
img_id += nt
|
1444 |
+
else:
|
1445 |
+
nt_images = [1] * len(vision_x)
|
1446 |
+
split_split_sizes = split_sizes
|
1447 |
+
vision_features = torch.cat(vision_features, dim=0)
|
1448 |
+
vision_features = vision_features[:, None, None, :, :] # Expand dimensions.
|
1449 |
+
vision_attn_masks = torch.cat(vision_attn_masks, dim=0)
|
1450 |
+
vision_tokens = self.vision_tokenizer(vision_features, vision_attn_masks)
|
1451 |
+
|
1452 |
+
# Post-processing: Split the batches into groups of patches and concatenate them together.
|
1453 |
+
if self.anyres_patch_sampling:
|
1454 |
+
assert isinstance(vision_x, list)
|
1455 |
+
if isinstance(vision_x[0], list):
|
1456 |
+
vision_token_groups = torch.split(vision_tokens, list(sum(nt_img) for nt_img in split_split_sizes), dim=0)
|
1457 |
+
vision_tokens = []
|
1458 |
+
|
1459 |
+
for sample_id, patch_vis_tokens in enumerate(vision_token_groups):
|
1460 |
+
patch_vis_token_groups = torch.split(patch_vis_tokens, split_split_sizes[sample_id], dim=0) # [Np*nt, 1, v, d] -> [[Np_t, 1, v, d], ...]
|
1461 |
+
flatten_vision_tokens = []
|
1462 |
+
for image_vis_token in patch_vis_token_groups:
|
1463 |
+
image_vis_token = image_vis_token.flatten(0, 2) # [Np, 1, v, d] -> [Np*v, d]
|
1464 |
+
flatten_vision_tokens.append(image_vis_token)
|
1465 |
+
vision_tokens_i = flatten_vision_tokens
|
1466 |
+
vision_tokens.append(vision_tokens_i)
|
1467 |
+
else:
|
1468 |
+
vision_token_groups = torch.split(vision_tokens, split_sizes, dim=0)
|
1469 |
+
vision_tokens = []
|
1470 |
+
for patch_vis_tokens in vision_token_groups:
|
1471 |
+
patch_vis_tokens = patch_vis_tokens.flatten(0, 2) # [Np, 1, v, d] -> [Np*v, d]
|
1472 |
+
vision_tokens.append(patch_vis_tokens.unsqueeze(0)) # Add the nt dimension.
|
1473 |
+
else:
|
1474 |
+
vision_tokens = None
|
1475 |
+
|
1476 |
+
# fuse the vision and language tokens
|
1477 |
+
# for xattn, vision_x and media_location are repeat_interleaved s.t.
|
1478 |
+
# the total batch size is B * num_beams
|
1479 |
+
new_inputs = self._prepare_inputs_for_forward(
|
1480 |
+
vision_tokens=vision_tokens,
|
1481 |
+
lang_x=lang_x,
|
1482 |
+
attention_mask=attention_mask,
|
1483 |
+
vision_attention_mask=vision_attention_mask,
|
1484 |
+
past_key_values=past_key_values,
|
1485 |
+
past_media_locations=past_media_locations,
|
1486 |
+
past_vision_tokens=past_vision_tokens,
|
1487 |
+
padding_side="left",
|
1488 |
+
num_beams=num_beams,
|
1489 |
+
)
|
1490 |
+
if past_key_values is not None:
|
1491 |
+
output = self.lang_model.generate(
|
1492 |
+
**new_inputs,
|
1493 |
+
past_key_values=past_key_values,
|
1494 |
+
num_beams=num_beams,
|
1495 |
+
use_cache=True,
|
1496 |
+
**kwargs,
|
1497 |
+
)
|
1498 |
+
else:
|
1499 |
+
output = self.lang_model.generate(
|
1500 |
+
**new_inputs,
|
1501 |
+
num_beams=num_beams,
|
1502 |
+
use_cache=True,
|
1503 |
+
**kwargs,
|
1504 |
+
)
|
1505 |
+
self._post_forward_hook()
|
1506 |
+
return output
|