File size: 98,248 Bytes
a1b0c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
import ast
import math
from einops import rearrange, repeat
from einops_exts import rearrange_many
from einops import rearrange
from PIL import Image
import torch
from torch import einsum, nn

import numpy


from typing import List, Optional, Tuple, Union
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass
from transformers import CLIPVisionModel
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoModel
from transformers import PretrainedConfig, logging, CONFIG_MAPPING
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer


logger = logging.get_logger(__name__)


class XGenMMVisionEncoderConfig(PretrainedConfig):
    model_type = "xgenmm_vision_encoder"

    def __init__(
        self,
        model_name: str = "google/siglip-so400m-patch14-384",
        anyres_grids: list[int] = [
            [384, 768],
            [768, 384],
            [768, 768],
            [1152, 384],
            [384, 1152],
        ],
        **kwargs,
    ):
        self.model_name = model_name
        self.anyres_grids = anyres_grids
        super().__init__(**kwargs)


class XGenMMVisionTokenizerConfig(PretrainedConfig):
    model_type = "xgenmm_vision_tokenizer"

    def __init__(
        self,
        vis_feature_dim: int = 1152,
        lang_embedding_dim: int = 3072,
        num_vis_tokens: int = 128,
        image_aspect_ratio: str = "anyres",
        **kwargs,
    ):
        self.vis_feature_dim = vis_feature_dim
        self.lang_embedding_dim = lang_embedding_dim
        self.num_vis_tokens = num_vis_tokens
        self.image_aspect_ratio = image_aspect_ratio
        super().__init__(**kwargs)


class XGenMMConfig(PretrainedConfig):
    model_type = "xgenmm"

    def __init__(
        self,
        vision_encoder_config: dict = None,
        vision_tokenizer_config: dict = None,
        text_config: dict = None,
        **kwargs,
    ):

        if vision_encoder_config is None:
            vision_encoder_config = {
                "image_aspect_ratio": "pad",
                "anyres_patch_sampling": False,
            }
            logger.info(
                "vision_encoder_config is None. initializing the XGenMMVisionEncoderConfig with default values."
            )

        if vision_tokenizer_config is None:
            vision_tokenizer_config = {}
            logger.info(
                "vision_tokenizer_config is None. Initializing the XGenMMVisionTokenizerConfig with default values."
            )

        if text_config is None:
            text_config = {
                "initial_tokenizer_len": 32012,
                "pad_token_id": 32011,
                "bos_token_id": 1,
                "eos_token_id": 32000,
                "vocab_size": 32064,
                "hidden_size": 3072,
                "intermediate_size": 8192,
                "num_hidden_layers": 32,
                "num_attention_heads": 32,
                "num_key_value_heads": 32,
                "resid_pdrop": 0.0,
                "embd_pdrop": 0.0,
                "attention_dropout": 0.0,
                "hidden_act": "silu",
                "max_position_embeddings": 4096,
                "original_max_position_embeddings": 4096,
                "initializer_range": 0.02,
                "rms_norm_eps": 1e-05,
                "use_cache": True,
                "rope_theta": 10000.0,
                "rope_scaling": None,
                "sliding_window": 2047,
                "return_dict": True,
                "output_hidden_states": False,
                "output_attentions": False,
                "torchscript": False,
                "torch_dtype": "bfloat16",
                "use_bfloat16": False,
                "tf_legacy_loss": False,
                "pruned_heads": {},
                "tie_word_embeddings": False,
                "chunk_size_feed_forward": 0,
                "is_encoder_decoder": False,
                "is_decoder": False,
                "cross_attention_hidden_size": None,
                "add_cross_attention": False,
                "tie_encoder_decoder": False,
                "max_length": 20,
                "min_length": 0,
                "do_sample": False,
                "early_stopping": False,
                "num_beams": 1,
                "num_beam_groups": 1,
                "diversity_penalty": 0.0,
                "temperature": 1.0,
                "top_k": 50,
                "top_p": 1.0,
                "typical_p": 1.0,
                "repetition_penalty": 1.0,
                "length_penalty": 1.0,
                "no_repeat_ngram_size": 0,
                "encoder_no_repeat_ngram_size": 0,
                "bad_words_ids": None,
                "num_return_sequences": 1,
                "output_scores": False,
                "return_dict_in_generate": False,
                "forced_bos_token_id": None,
                "forced_eos_token_id": None,
                "remove_invalid_values": False,
                "exponential_decay_length_penalty": None,
                "suppress_tokens": None,
                "begin_suppress_tokens": None,
                "finetuning_task": None,
                "id2label": {0: "LABEL_0", 1: "LABEL_1"},
                "label2id": {"LABEL_0": 0, "LABEL_1": 1},
                "tokenizer_class": None,
                "prefix": None,
                "bos_token_id": 1,
                "pad_token_id": 32000,
                "eos_token_id": 32000,
                "sep_token_id": None,
                "decoder_start_token_id": None,
                "task_specific_params": None,
                "problem_type": None,
                "model_type": "phi3",
            }
            logger.info(
                "text_config is None. Initializing the text config with default values (`Phi3Config`)."
            )

        self.vision_encoder_config = XGenMMVisionEncoderConfig(**vision_encoder_config)

        self.vision_tokenizer_config = XGenMMVisionTokenizerConfig(
            **vision_tokenizer_config
        )

        text_model_type = (
            text_config["model_type"] if "model_type" in text_config else "phi3"
        )
        self.text_config = CONFIG_MAPPING[text_model_type](**text_config)

        for key in ["initial_tokenizer_len", "pad_token_id"]:
            if key not in self.text_config.to_dict():
                raise ValueError(f"The key `{key}` is missing in the text_config.")

        super().__init__(**kwargs)


def hasattr_recursive(obj, att):
    """
    Check if obj has nested attribute
    Example: hasattr_recursive(obj, 'a.b.c') is equivalent to hasattr(obj, 'a') and hasattr(obj.a, 'b') and hasattr(obj.a.b, 'c')
    """
    if att == "":
        return True
    i = att.find(".")
    if i < 0:
        return hasattr(obj, att)
    else:
        try:
            return hasattr_recursive(getattr(obj, att[:i]), att[i + 1 :])
        except:
            return False


def getattr_recursive(obj, att):
    """
    Return nested attribute of obj
    Example: getattr_recursive(obj, 'a.b.c') is equivalent to obj.a.b.c
    """
    if att == "":
        return obj
    i = att.find(".")
    if i < 0:
        return getattr(obj, att)
    else:
        return getattr_recursive(getattr(obj, att[:i]), att[i + 1 :])


def setattr_recursive(obj, att, val):
    """
    Set nested attribute of obj
    Example: setattr_recursive(obj, 'a.b.c', val) is equivalent to obj.a.b.c = val
    """
    if "." in att:
        obj = getattr_recursive(obj, ".".join(att.split(".")[:-1]))
    setattr(obj, att.split(".")[-1], val)


def check_embedding_fns(lang_model):
    """Checks for and attempts to set {get/set}_{input/output}_embeddings functions to the model"""
    if not has_fn(lang_model, "get_input_embeddings"):
        if hasattr_recursive(lang_model, "transformer.wte"):  # MPT
            lang_model.get_input_embeddings = lambda: lang_model.transformer.wte
        elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"):  # OPT
            lang_model.get_input_embeddings = lambda: lang_model.decoder.embed_tokens
        else:
            raise ValueError(
                "We require the language encoder to have a get_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
            )

    if not has_fn(lang_model, "set_input_embeddings"):
        if hasattr_recursive(lang_model, "transformer.wte"):  # MPT
            lang_model.set_input_embeddings = lambda x: setattr_recursive(
                lang_model, "transformer.wte", x
            )
        elif hasattr_recursive(lang_model, "model.decoder.embed_tokens"):  # OPT
            lang_model.set_input_embeddings = lambda x: setattr_recursive(
                lang_model, "model.decoder.embed_tokens", x
            )
        else:
            raise ValueError(
                "We require the language encoder to have a set_input_embeddings method but we couldn't determine the name of the input embeddings attribute. Please supply this manually in factory.py."
            )

    if not has_fn(lang_model, "get_output_embeddings"):
        if hasattr_recursive(lang_model, "lm_head"):
            lang_model.get_output_embeddings = lambda: lang_model.lm_head
        else:
            raise ValueError(
                "We require the language encoder to have a get_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
            )

    if not has_fn(lang_model, "set_output_embeddings"):
        if hasattr_recursive(lang_model, "lm_head"):
            lang_model.set_output_embeddings = lambda x: setattr_recursive(
                lang_model, "lm_head", x
            )
        else:
            raise ValueError(
                "We require the language encoder to have a set_output_embeddings method but we couldn't determine the name of the output embeddings attribute. Please supply this manually in factory.py."
            )


def has_fn(model, fn_name):
    """Check if model has a function fn_name"""
    return callable(getattr(model, fn_name, None))


def stack_with_padding(list_of_tensors, padding_value=0, padding_side="right"):
    """
    Stack a list of tensors with padding on one side
    Args:
        list_of_tensors (list[torch.Tensor]): List of tensors to stack
        padding_value (int, optional): Value to pad with. Defaults to 0.
        padding_side (str, optional): Side to pad on. Defaults to "right".
    Returns:
        torch.Tensor: Stacked tensors
    """
    max_tokens = max(tensor.size(0) for tensor in list_of_tensors)
    padded_tensors = []
    for tensor in list_of_tensors:
        num_tokens = tensor.size(0)
        if len(tensor.size()) == 1:
            padding = torch.full(
                (max_tokens - num_tokens,),
                padding_value,
                dtype=tensor.dtype,
                device=tensor.device,
            )
        else:
            padding = torch.full(
                (max_tokens - num_tokens, tensor.size(1)),
                padding_value,
                dtype=tensor.dtype,
                device=tensor.device,
            )
        padded_tensor = (
            torch.cat((tensor, padding), dim=0)
            if padding_side == "right"
            else torch.cat((padding, tensor), dim=0)
        )
        padded_tensors.append(padded_tensor)
    return torch.stack(padded_tensors)


def unpad_image(tensor, original_size, keep_original_shape=False):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        if keep_original_shape:
            attention_mask = torch.ones(
                (current_height, current_width), device=tensor.device
            )
            attention_mask[:padding, :] = 0
            attention_mask[current_height - padding :, :] = 0
            return tensor, attention_mask
        else:
            unpadded_tensor = tensor[:, padding : current_height - padding, :]
            return unpadded_tensor, None
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        if keep_original_shape:
            attention_mask = torch.ones(
                (current_height, current_width), device=tensor.device
            )
            attention_mask[:, :padding] = 0
            attention_mask[:, current_width - padding :] = 0
            return tensor, attention_mask
        else:
            unpadded_tensor = tensor[:, :, padding : current_width - padding]
            return unpadded_tensor, None


def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(
            original_height * scale
        )
        effective_resolution = min(
            downscaled_width * downscaled_height, original_width * original_height
        )
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (
            effective_resolution == max_effective_resolution
            and wasted_resolution < min_wasted_resolution
        ):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image


def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions)
    return width // patch_size, height // patch_size


def process_anyres_image(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    # FIXME: determine grid_pinpoints from image sizes.
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    processor_size = processor.transforms[0].size
    patches = divide_to_patches(image_padded, processor_size[0])

    image_original_resize = image.resize((processor_size[0], processor_size[0]))

    image_patches = [image_original_resize] + patches
    image_patches = [processor(image_patch) for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


class VisionTokenizer(nn.Module):
    def __init__(self, dim_media, num_tokens_per_media):
        super().__init__()
        self.dim_media = dim_media
        self.num_tokens_per_media = num_tokens_per_media


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm_media = nn.LayerNorm(dim)
        self.norm_latents = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents, vision_attn_masks=None):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, n1, D)
            latent (torch.Tensor): latent features
                shape (b, T, n2, D)
        """
        x = self.norm_media(x)
        latents = self.norm_latents(latents)

        h = self.heads

        q = self.to_q(latents)
        kv_input = torch.cat(
            (x, latents), dim=-2
        )  # TODO: Change the shape of vision attention mask according to this.
        if vision_attn_masks is not None:
            vision_attn_masks = torch.cat(
                (
                    vision_attn_masks,
                    torch.ones(
                        (latents.shape[0], latents.shape[-2]),
                        dtype=latents.dtype,
                        device=latents.device,
                    ),
                ),
                dim=-1,
            )
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)
        q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
        q = q * self.scale

        # attention
        sim = einsum("... i d, ... j d  -> ... i j", q, k)
        # Apply vision attention mask here.
        # Reference: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html#torch.nn.functional.scaled_dot_product_attention
        if vision_attn_masks is not None:
            attn_bias = torch.zeros(
                (q.size(0), 1, 1, q.size(-2), k.size(-2)),
                dtype=q.dtype,
                device=q.device,
            )
            vision_attn_masks = repeat(
                vision_attn_masks, "b n -> b 1 1 l n", l=q.size(-2)
            )
            attn_bias.masked_fill_(vision_attn_masks.logical_not(), float("-inf"))
            sim += attn_bias

        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
        return self.to_out(out)


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def MLP(dim, inner_dim=-1, out_dim=-1):
    inner_dim = dim * 2 if inner_dim < 0 else inner_dim
    out_dim = dim if out_dim < 0 else out_dim

    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, out_dim, bias=False),
    )


def get_emb(sin_inp):
    """
    Gets a base embedding for one dimension with sin and cos intertwined
    """
    emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
    return torch.flatten(emb, -2, -1)


class PositionalEncoding1D(nn.Module):
    def __init__(self, channels):
        """
        :param channels: The last dimension of the tensor you want to apply pos emb to.
        """
        super(PositionalEncoding1D, self).__init__()
        self.org_channels = channels
        channels = int(numpy.ceil(channels / 2) * 2)
        self.channels = channels
        inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
        self.register_buffer("inv_freq", inv_freq)
        self.register_buffer("cached_penc", None, persistent=False)

    def forward(self, tensor):
        """
        :param tensor: A 3d tensor of size (batch_size, x, ch)
        :return: Positional Encoding Matrix of size (batch_size, x, ch)
        """
        if len(tensor.shape) != 3:
            raise RuntimeError("The input tensor has to be 3d!")

        if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
            return self.cached_penc

        self.cached_penc = None
        batch_size, x, orig_ch = tensor.shape
        pos_x = torch.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
        sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
        emb_x = get_emb(sin_inp_x)
        emb = torch.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
        emb[:, : self.channels] = emb_x

        self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
        return self.cached_penc


class MultiHeadSelfAttention(nn.Module):
    def __init__(self, *, dim, inner_dim, heads=8):
        super().__init__()
        dim_head = inner_dim // heads
        self.scale = dim_head**-0.5
        self.heads = heads

        self.norm = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_k = nn.Linear(dim, inner_dim, bias=False)
        self.to_v = nn.Linear(dim, inner_dim, bias=False)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n, D)
        """
        latents = self.norm(x)

        h = self.heads

        q = self.to_q(latents)
        k = self.to_k(latents)
        v = self.to_v(latents)
        q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)
        q = q * self.scale

        # attention
        sim = einsum("... i d, ... j d  -> ... i j", q, k)
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)", h=h)
        return out


class TokenLearnerAttentionModule(nn.Module):
    def __init__(self, *, dim, num_target_tokens):
        super().__init__()

        self.mlp = MLP(dim, inner_dim=num_target_tokens * 2, out_dim=num_target_tokens)

        self.norm = nn.LayerNorm(dim)
        self.num_target_tokens = num_target_tokens

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, n, D)
        """
        inputs = self.norm(x)

        attn = self.mlp(inputs)
        attn = attn.softmax(dim=-2)

        out = einsum("... n i, ... n d -> ... i d", attn, x)

        return out


class GroupedTokenTuringMachineUnit(nn.Module):
    def __init__(
        self,
        *,
        dim,
        process_size=128,
        memory_size_per_group=4,
        num_layers=1,
        num_heads=8,
    ):
        super().__init__()

        self.process_layers = nn.ModuleList([])
        for _ in range(num_layers):
            self.process_layers.append(
                nn.ModuleList(
                    [
                        MultiHeadSelfAttention(
                            dim=dim, inner_dim=dim, heads=num_heads
                        ),
                        FeedForward(dim=dim, mult=4),
                    ]
                )
            )
        
        self.read_layer = TokenLearnerAttentionModule(dim=dim, num_target_tokens=process_size)
        self.write_layer = TokenLearnerAttentionModule(dim=dim, num_target_tokens=memory_size_per_group)
    
    def forward(self, memory_tokens, input_tokens):
        """
        Args:
            memory_tokens (torch.Tensor):
                shape (b, n, group_memory_size, D)
            input_tokens (torch.Tensor):
                shape (b, n, D)
        """
        b, n, g, D = memory_tokens.shape

        input_tokens = input_tokens.unsqueeze(2)  # (b, n, 1, D)
        all_tokens = torch.cat([memory_tokens, input_tokens], dim=2)

        latents = all_tokens.view(b*n, g+1, D)

        for attn, ff in self.process_layers:
            latents = attn(latents) + latents
            latents = ff(latents) + latents

        # mem_out_tokens = memory_tokens.view(b*n, g, D)
        latents = latents.view(b, n, g+1, D)
        mem_out_tokens = torch.cat([memory_tokens, latents], dim=2)

        mem_out_tokens = mem_out_tokens.view(b*n, -1, D)
        mem_out_tokens = self.write_layer(mem_out_tokens)
        mem_out_tokens = mem_out_tokens.view(b, n, g, D)

        return mem_out_tokens


class TokenTuringMachineUnit(nn.Module):
    def __init__(
        self,
        *,
        dim,
        process_size=64,
        memory_size=128,
        output_size=32,
        num_layers=1,
        num_heads=8,
    ):
        super().__init__()

        self.process_layers = nn.ModuleList([])
        for _ in range(num_layers):
            self.process_layers.append(
                nn.ModuleList(
                    [
                        MultiHeadSelfAttention(
                            dim=dim, inner_dim=dim, heads=num_heads
                        ),
                        FeedForward(dim=dim, mult=4),
                    ]
                )
            )
        
        self.read_layer = TokenLearnerAttentionModule(dim=dim, num_target_tokens=process_size)
        self.write_layer = TokenLearnerAttentionModule(dim=dim, num_target_tokens=memory_size)
        self.output_layer = TokenLearnerAttentionModule(dim=dim, num_target_tokens=output_size)
    
    def forward(self, memory_tokens, input_tokens):
        """
        Args:
            memory_tokens (torch.Tensor):
                shape (b, memory_size, D)
            input_tokens (torch.Tensor):
                shape (b, n, D)
        """
        all_tokens = torch.cat([memory_tokens, input_tokens], dim=1)

        latents = self.read_layer(all_tokens)

        for attn, ff in self.process_layers:
            latents = attn(latents) + latents
            latents = ff(latents) + latents

        mem_out_tokens = torch.cat([memory_tokens, latents], dim=1)
        mem_out_tokens = self.write_layer(mem_out_tokens)

        output_tokens = self.output_layer(latents)

        return (mem_out_tokens, output_tokens)


class GroupedTokenTuringMachine4(nn.Module):
    def __init__(
        self,
        *,
        dim,
        process_size=128,
        memory_size_per_group=4,
        output_size=128,
        num_layers=4,
        num_heads=8,
    ):
        super().__init__()

        self.ttm_unit = GroupedTokenTuringMachineUnit(
            dim=dim,
            process_size=process_size,
            memory_size_per_group=memory_size_per_group,
            num_layers=num_layers,
            num_heads=num_heads)

        self.initial_memory = nn.Parameter(torch.randn(process_size, memory_size_per_group, dim))
        
        self.pos_emb = PositionalEncoding1D(dim)

        self.final_output = TokenLearnerAttentionModule(dim=dim, num_target_tokens=output_size)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor):
                shape (b, T, n, D)
        """
        b, T, n, D = x.shape

        memory_tokens = repeat(self.initial_memory, "n g d -> b n g d", b=b)

        mean_x = torch.mean(x, dim=-2, keepdim=False)
        positional_embeddings = self.pos_emb(mean_x)  # (b, T, d)

        for i in range(T):
            step_tokens = x[:, i, :, :]

            pos = positional_embeddings[:, i, :]
            pos = pos.unsqueeze(1)
            step_tokens = step_tokens + pos
            memory_tokens = self.ttm_unit(memory_tokens, step_tokens)

        output_tokens = memory_tokens.view(b, -1, D)
        output_tokens = self.final_output(output_tokens)

        return output_tokens.unsqueeze(1)


class GroupedTokenTuringMachine(nn.Module):
    def __init__(
        self,
        *,
        dim,
        process_size=128,
        memory_size_per_group=4,
        num_layers=4,
        num_heads=8,
    ):
        super().__init__()

        self.ttm_unit = GroupedTokenTuringMachineUnit(
            dim=dim,
            process_size=process_size,
            memory_size_per_group=memory_size_per_group,
            num_layers=num_layers,
            num_heads=num_heads)

        self.initial_memory = nn.Parameter(torch.randn(process_size, memory_size_per_group, dim))
        
        self.pos_emb = PositionalEncoding1D(dim)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor):
                shape (b, T, n, D)
        """
        b, T, n, D = x.shape

        memory_tokens = repeat(self.initial_memory, "n g d -> b n g d", b=b)

        mean_x = torch.mean(x, dim=-2, keepdim=False)
        positional_embeddings = self.pos_emb(mean_x)  # (b, T, d)

        for i in range(T):
            step_tokens = x[:, i, :, :]

            pos = positional_embeddings[:, i, :]
            pos = pos.unsqueeze(1)
            step_tokens = step_tokens + pos
            memory_tokens = self.ttm_unit(memory_tokens, step_tokens)

        memory_tokens = torch.mean(memory_tokens, dim=-2, keepdim=False)
        # memory_tokens = torch.amax(memory_tokens, dim=-2, keepdim=False)

        return memory_tokens.unsqueeze(1)


class TokenTuringMachine(nn.Module):
    def __init__(
        self,
        *,
        dim,
        process_size=64,
        memory_size=128,
        output_size=32,
        num_layers=2,
        num_heads=8,
        final_output_only=False,
        memory_out_mode=False,
    ):
        super().__init__()

        self.ttm_unit = TokenTuringMachineUnit(
            dim=dim,
            process_size=process_size,
            memory_size=memory_size,
            output_size=output_size,
            num_layers=num_layers,
            num_heads=num_heads)

        self.initial_memory = nn.Parameter(torch.randn(memory_size, dim))

        self.final_output_only = final_output_only

        self.memory_out_mode = memory_out_mode
        if self.memory_out_mode:
            self.pos_emb = PositionalEncoding1D(dim)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor):
                shape (b, T, n, D)
        """
        b, T, n, D = x.shape

        output_tokens_list = []

        memory_tokens = repeat(self.initial_memory, "n d -> b n d", b=b)

        if self.memory_out_mode:
            positional_embeddings = self.pos_emb(x[:, :, 0, :])

        for i in range(T):
            step_tokens = x[:, i, :, :]

            if self.memory_out_mode:
                pos = positional_embeddings[:, i, :]
                pos = pos.unsqueeze(1)
                step_tokens = step_tokens + pos

            # print(step_tokens.shape)
            memory_tokens, output_tokens = self.ttm_unit(memory_tokens, step_tokens)
            # print(f'memory_tokens shape: {memory_tokens.shape}')
            # print(f'output_tokens shape: {output_tokens.shape}')
            output_tokens_list.append(output_tokens)

        if self.final_output_only:
            # return output_tokens.unsqueeze(1)
            return output_tokens.unsqueeze(1)
        elif self.memory_out_mode:
            return memory_tokens.unsqueeze(1)
        else:
            output_tokens = torch.stack(output_tokens_list, dim=1)
            return output_tokens


def num_params(module, filter_to_trainable=False):
    """Returns the number of parameters in the module, or optionally only the trainable parameters"""
    if filter_to_trainable:
        return sum(p.numel() for p in module.parameters() if p.requires_grad)
    else:
        return sum(p.numel() for p in module.parameters())


class PerceiverResampler(VisionTokenizer):
    def __init__(
        self,
        *,
        dim,
        dim_inner=None,
        depth=6,
        dim_head=96,
        heads=16,
        num_latents=128,
        max_num_media=None,
        max_num_frames=None,
        ff_mult=4,
        video_mode='gttm',
    ):
        """
        Perceiver module which takes in image features and outputs image tokens.
        Args:
            dim (int): dimension of the incoming image features
            dim_inner (int, optional): final dimension to project the incoming image features to;
                also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
            depth (int, optional): number of layers. Defaults to 6.
            dim_head (int, optional): dimension of each head. Defaults to 64.
            heads (int, optional): number of heads. Defaults to 8.
            num_latents (int, optional): number of latent tokens to use in the Perceiver;
                also corresponds to number of tokens per sequence to output. Defaults to 64.
            max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
                and keep positional embeddings for. If None, no positional embeddings are used.
            max_num_frames (int, optional): maximum number of frames to input into the Perceiver
                and keep positional embeddings for. If None, no positional embeddings are used.
            ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
        """
        if dim_inner is not None:
            projection = nn.Linear(dim, dim_inner)
        else:
            projection = None
            dim_inner = dim
        super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
        self.projection = projection
        self.latents = nn.Parameter(torch.randn(num_latents, dim))

        # positional embeddings
        self.frame_embs = (
            nn.Parameter(torch.randn(max_num_frames, dim))
            if exists(max_num_frames)
            else None
        )
        self.media_time_embs = (
            nn.Parameter(torch.randn(max_num_media, 1, dim))
            if exists(max_num_media)
            else None
        )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

        self.norm = nn.LayerNorm(dim)

        self.video_mode = video_mode
        if self.video_mode=='gttm':
            # self.ttm = TokenTuringMachine(dim=dim, memory_size=128, memory_out_mode=True)
            self.temporal_encoder = GroupedTokenTuringMachine(dim=dim, process_size=128, memory_size_per_group=4)
            # self.temporal_encoder = GroupedTokenTuringMachine4(dim=dim, process_size=128, memory_size_per_group=4, output_size=32)

    def forward(self, x, vision_attn_masks):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, F, v, D)
            vision_attn_masks (torch.Tensor): attention masks for padded visiont tokens (i.e., x)
                shape (b, v)
        Returns:
            shape (b, T, n, D) where n is self.num_latents
        """
        b, T, F, v = x.shape[:4]

        # frame and media time embeddings
        if exists(self.frame_embs):
            frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
            x = x + frame_embs
        x = rearrange(
            x, "b T F v d -> b T (F v) d"
        )  # flatten the frame and spatial dimensions
        if exists(self.media_time_embs):
            x = x + self.media_time_embs[:T]

        # blocks
        latents = self.latents
        latents = repeat(latents, "n d -> b T n d", b=b, T=T)
        for attn, ff in self.layers:
            latents = attn(x, latents, vision_attn_masks) + latents
            latents = ff(latents) + latents

        if self.video_mode is not None:
            latents = self.temporal_encoder(latents)

        if exists(self.projection):
            return self.projection(self.norm(latents))
        else:
            return self.norm(latents)


class DecoupledEmbedding(nn.Embedding):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
    then it will create `num_additional_embeddings` additional parameters that are always trained. If
    `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
    """

    def __init__(
        self,
        max_original_id: int,
        num_additional_embeddings: int = 0,
        _weight: torch.Tensor = None,
        num_original_embeddings: int = None,
        embedding_dim: int = None,
        partially_freeze=True,
        device=None,
        dtype=None,
        pad_token_id=None,
    ) -> None:
        """
        Args:
            max_original_id (`int`):
                The largest token id that should be embedded using the regular embedding (regular `weight`).
                This is usually len(tokenizer) - 1 before additional tokens are added.
                Note that this may not equal self.weight.shape[0]
            num_additional_embeddings (`int`):
                Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
            _weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
                If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
            num_original_embeddings (`int`):
                self.weight.shape[0]
            embedding_dim (`int`):
                The size of each embedding vector
            partially_freeze: (`bool`, *optional*, defaults to `True`):
                If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
            padding_idx (`int`, *optional*):
                The padding index (needs to be less than num_embeddings)

        Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
        `max_norm` or `norm_type`. We are not supporting these.
        """
        # validate args
        if pad_token_id is not None and pad_token_id > max_original_id:
            raise ValueError(
                f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
                + "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
            )
        if _weight is not None:
            assert (num_original_embeddings is None) or (
                _weight.shape[0] == num_original_embeddings
            ), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
            assert (embedding_dim is None) or (
                _weight.shape[1] == embedding_dim
            ), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
            num_original_embeddings = _weight.shape[0]
            embedding_dim = _weight.shape[1]
        else:
            assert (
                num_original_embeddings is not None
            ), "num_original_embeddings must be provided if _weight is not provided"
            assert (
                embedding_dim is not None
            ), "embedding_dim must be provided if _weight is not provided"

        super().__init__(
            num_embeddings=num_original_embeddings,
            embedding_dim=embedding_dim,
            device=device,
            dtype=dtype,
            padding_idx=pad_token_id,
            _weight=_weight,
        )
        self.max_original_id = max_original_id
        self.padding_idx = pad_token_id
        self.num_additional_embeddings = num_additional_embeddings
        if self.num_additional_embeddings > 0:
            self.additional_embedding = nn.Embedding(
                num_embeddings=self.num_additional_embeddings,
                embedding_dim=embedding_dim,
                device=device,
                dtype=dtype,
            )
        self.set_requires_grad(
            require_regular_grad=not partially_freeze, require_additional_grad=True
        )

    def set_requires_grad(self, require_regular_grad, require_additional_grad):
        """
        Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
        """
        self.weight.requires_grad_(require_regular_grad)
        self.additional_embedding.requires_grad_(require_additional_grad)

    def forward(self, input_ids):
        """
        we have 2 embeddings, with different indices - one pretrained self.weight and another
        self.additional_embedding.weight that is being trained.

        in order to make a lookup of the input ids, we:
        1. find out the indices of the entries belonging to the 2nd embedding
        2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
        embedding starts from 0 and not num_embeddings
        3. perform the 2nd embedding lookup
        4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
        5. perform the 1st embedding lookup
        6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup

        note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
        then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
        i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
        usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
        measure.

        """
        if self.num_additional_embeddings == 0:
            return F.embedding(input_ids, self.weight)

        # Clone so that we don't modify the original input_ids later on
        input_ids = input_ids.clone()
        additional_vocab_indices = torch.where(input_ids > self.max_original_id)
        input_ids_additional_vocab = input_ids[additional_vocab_indices]
        additional_embeddings = self.additional_embedding(
            input_ids_additional_vocab - self.max_original_id - 1
        )

        # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
        input_ids[additional_vocab_indices] = 0
        full_vector = F.embedding(input_ids, self.weight)

        # overwrite the records with high indices
        full_vector[additional_vocab_indices] = additional_embeddings

        return full_vector

    def extra_repr(self) -> str:
        return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
            self.max_original_id + 1,
            self.num_additional_embeddings,
            self.embedding_dim,
            (not self.weight.requires_grad),
        )


class DecoupledLinear(nn.Linear):
    # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
    """
    Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
    regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
    then it will create `additional_out_features * in_features` additional parameters that are always trained. If
    `additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
    """

    def __init__(
        self,
        max_original_id: int,
        additional_out_features: int = 0,
        _weight: torch.Tensor = None,
        _bias: torch.Tensor = None,
        in_features: int = None,
        original_out_features: int = None,
        bias: bool = True,
        partially_freeze: bool = True,
        device=None,
        dtype=None,
    ) -> None:
        """
        Args:
            max_original_id (`int`): The largest token id that should be extracted from the regular weight.
                This is usually len(tokenizer) - 1 before additional tokens are added.
                Note that this may not equal original_out_features - 1
            _weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
                If provided, this sets the `in_features` and `original_out_features` parameters.
            _bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
            in_features: int. Input hidden size.
            original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
            additional_out_features: int. Number of additional trainable dimensions.
            bias: bool. Whether to include a bias term.
            partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
        """
        # argument validation
        if _weight is not None:
            assert (_weight.shape[0] == original_out_features) or (
                original_out_features is None
            ), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
            assert (_weight.shape[1] == in_features) or (
                in_features is None
            ), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
            in_features = _weight.shape[1]
            original_out_features = _weight.shape[0]
        else:
            assert (
                in_features is not None
            ), "in_features must be provided if _weight is not provided"
            assert (
                original_out_features is not None
            ), "original_out_features must be provided if _weight is not provided"

        if _bias is not None:
            assert bias is True, "bias must be True if _bias is provided"

        # initialize original linear
        super().__init__(in_features, original_out_features, bias, device, dtype)

        # set weight and bias manually
        if _weight is not None:
            self.weight = nn.Parameter(_weight)
        if _bias is not None:
            self.bias = nn.Parameter(_bias)

        self.in_features = in_features
        self.original_out_features = original_out_features
        self.max_original_id = max_original_id

        # initialize additional linear
        self.additional_out_features = additional_out_features
        self.has_bias = bias
        if additional_out_features > 0:
            self.additional_fc = nn.Linear(
                in_features=in_features,
                out_features=additional_out_features,
                bias=self.has_bias,
                device=device,
                dtype=dtype,
            )
        self.set_requires_grad(
            require_regular_grad=not partially_freeze, require_additional_grad=True
        )

    def set_requires_grad(self, require_regular_grad, require_additional_grad):
        """
        Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
        """
        self.weight.requires_grad_(require_regular_grad)
        if self.has_bias:
            self.bias.requires_grad_(require_regular_grad)
        self.additional_fc.requires_grad_(require_additional_grad)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = F.linear(input, self.weight, self.bias)
        output = output[..., : self.max_original_id + 1]

        if self.additional_out_features > 0:
            additional_features = F.linear(
                input, self.additional_fc.weight, self.additional_fc.bias
            )
            output = torch.cat((output, additional_features), -1)
        return output

    def extra_repr(self) -> str:
        """Overwriting `nn.Linear.extra_repr` to include new parameters."""
        return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
            self.in_features,
            self.max_original_id + 1,
            self.additional_out_features,
            self.bias is not None,
            (not self.weight.requires_grad or not self.bias.requires_grad),
        )


class VLM(nn.Module):
    """
    Generic vision-language model (VLM) class.
    A VLM consists of four components:
        1. A vision encoder that extracts features from pixels, e.g. CLIP
            input: (B, T_img, F, C, H, W)
            output: (B, T_img, F, v, d)
        2. A vision tokenizer that converts these features to visual token-like embeddings, e.g. Perceiver, or a linear projection head
            input: (B, T_img, F, v, d)
            output: (B, T_img, n, d)
        3. A fusion method that allows the language model to attend to these tokens, e.g. cross-attention, or placing the tokens directly in the language model's input sequence
        4. A language model
    """

    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        gradient_checkpointing: bool = False,
    ):
        """
        Args:
            vision_encoder (nn.Module): e.g. CLIP
            vision_tokenizer (nn.Module): e.g. PerceiverResampler
            lang_model (nn.Module): e.g. MPT
            initial_tokenizer_len (int): size of the original tokenizer vocab
            pad_token_id (int): id of the pad token
            gradient_checkpointing (bool, optional): Whether to use gradient checkpointing. Defaults to False.
        """
        super().__init__()

        # save dimension information
        self.lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
        if hasattr(lang_model.config, "d_model"):
            self.lang_hidden_dim = lang_model.config.d_model  # mpt uses d_model
        else:
            self.lang_hidden_dim = lang_model.config.hidden_size
        self.vis_embedding_dim = vision_tokenizer.dim_media
        self.num_tokens_per_vis = vision_tokenizer.num_tokens_per_media

        # core components
        self.vision_encoder = vision_encoder
        self.vision_tokenizer = vision_tokenizer
        self.lang_model = lang_model

        # lm embeddings
        self.pad_token_id = pad_token_id
        self.initial_tokenizer_len = initial_tokenizer_len
        input_embeds = DecoupledEmbedding(
            max_original_id=initial_tokenizer_len - 1,
            num_additional_embeddings=len(self.special_tokens),
            _weight=self.lang_model.get_input_embeddings().weight,
            pad_token_id=self.pad_token_id,
        )
        if hasattr(input_embeds, "additional_embedding"):
            input_embeds.additional_embedding.weight.data.normal_(
                mean=0.0,
                std=(
                    self.lang_model.config.initializer_range
                    if hasattr(self.lang_model.config, "initializer_range")
                    else 0.02
                ),
            )
        self.lang_model.set_input_embeddings(input_embeds)

        out_embeds = DecoupledLinear(
            max_original_id=initial_tokenizer_len - 1,
            additional_out_features=len(self.special_tokens),
            _weight=self.lang_model.get_output_embeddings().weight,
            _bias=(
                self.lang_model.get_output_embeddings().bias
                if hasattr(self.lang_model.get_output_embeddings(), "bias")
                else None
            ),
        )
        if hasattr(out_embeds, "additional_fc"):
            out_embeds.additional_fc.weight.data.normal_(
                mean=0.0,
                std=(
                    self.lang_model.config.initializer_range
                    if hasattr(self.lang_model.config, "initializer_range")
                    else 0.02
                ),
            )
        self.lang_model.set_output_embeddings(out_embeds)

        # gradient checkpointing
        self.vision_tokenizer._use_gradient_checkpointing = gradient_checkpointing

    def forward(
        self,
        vision_x: Optional[torch.Tensor],
        lang_x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = False,
        **kwargs,
    ):
        """
        Args:
            vision_x: Vision input
                shape (B, T_img, F, C, H, W) with F=1
                only F = 1 is supported (single-frame videos)
                if T_img > the number of media tokens in the corresponding input_ids (lang_x),
                only the first number of media tokens in lang_x are used
            lang_x: Language input ids, with media tokens denoting where
                visual media should be inserted.
                shape (B, T_txt)
            attention_mask: Attention mask. Defaults to None.
            labels: Labels. Defaults to None.
                shape (B, T_txt)
            past_key_values (Tuple[torch.Tensor]], optional): Past key value pairs for each of the T_txt previous tokens in the language model. Defaults to None.
                list of length = number of decoder layers in the LM
                exact implementation depends on LM, see Hugging Face docs
            past_media_locations (torch.Tensor, optional): boolean mask denoting which of the previous T_txt tokens were media tokens. Defaults to None.
                shape (B, T_txt)
            past_vision_tokens (torch.Tensor, optional): Previous vision tokens. Defaults to None.
            use_cache (Optional[bool], optional): Whether to use cache. Defaults to False.
                If True, includes key_values, media_locations, and vision_tokens in the output.
        """
        assert not (past_vision_tokens is None) ^ (
            past_media_locations is None
        ), "past_vision_tokens and past_media_locations must both be None or both be not None"

        # convert pixels to vision tokens
        if vision_x is not None:
            vision_features = self._encode_vision_x(vision_x=vision_x)
            vision_tokens = self.vision_tokenizer(vision_features)
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            labels=labels,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            padding_side="right",
            past_vision_tokens=past_vision_tokens,
        )
        output = self.lang_model(
            **new_inputs,
            use_cache=use_cache,
            past_key_values=past_key_values,
            **kwargs,
        )

        # postprocessing may be needed, e.g. to remove extra tokens from logits that were inserted into the language stream
        # or to add the past_vision_tokens and past_media_locations to the output
        output = self._postprocess_outputs_from_forward(
            output=output,
            lang_x=lang_x,
            vision_tokens=vision_tokens,
            use_cache=use_cache,
            past_vision_tokens=past_vision_tokens,
            past_media_locations=past_media_locations,
        )

        # postforward hooks
        self._post_forward_hook()
        return output

    def _encode_vision_x_anyres(self, samples, device):
        assert self.anyres_grids is not None
        image_raw = samples[
            "image"
        ]  # list of patch list in of shape [1, N_patch, C, H, W]
        image_sizes = samples["image_size"]

        # Image_raw can be a list of list of patches, when a `samples` has multiple images.
        if isinstance(image_raw[0], list):
            images = [x.squeeze(0) for sample_img in image_raw for x in sample_img]
            image_sizes = [s for sample_sizes in image_sizes for s in sample_sizes]
        else:
            # assert isinstance(image_raw[0], torch.Tensor), f"Unkown image type: {image_raw[0]}"
            # concate list of patches into one big patch for any res encoding.
            images = [x.squeeze(0) for x in image_raw]  # [N_patch, C, H, W]
        image = torch.cat(images, dim=0)  # [\sum{B}{N_patch_i}, C, H, W]
        image = image.to(device)

        with torch.no_grad():
            if self.vision_encoder.__class__.__name__ == "TimmModel":
                image_embeds = self.vision_encoder.trunk.forward_features(image)
            elif self.vision_encoder.__class__.__name__ in [
                "CLIPVisionModel",
                "SiglipVisionTransformer",
            ]:
                image_embeds = self.vision_encoder(image).last_hidden_state
            else:
                image_embeds = self.vision_encoder(image)[1]  # OpenCLIP returns tuples

        if isinstance(self.vision_encoder, CLIPVisionModel) or isinstance(
            self.vision_encoder, SiglipVisionTransformer
        ):
            base_img_size = self.vision_encoder.config.image_size
        else:
            base_img_size = self.vision_encoder.image_size[0]

        if self.vision_encoder.__class__.__name__ == "TimmModel":
            grid_size = self.vision_encoder.trunk.patch_embed.grid_size
        elif self.vision_encoder.__class__.__name__ in [
            "CLIPVisionModel",
            "SiglipVisionTransformer",
        ]:
            grid_size_base = (
                self.vision_encoder.config.image_size
                // self.vision_encoder.config.patch_size
            )
            grid_size = (grid_size_base, grid_size_base)
        else:
            grid_size = self.vision_encoder.grid_size
        height, width = grid_size

        if not image_embeds.shape[1] == height * width:
            assert (
                image_embeds.shape[1] == height * width + 1
            )  # For vision encoders that has [CLS] token.
            image_embeds = image_embeds[:, 1:, :]  # Drop the cls token for each patch.
        n_vis_token_per_patch = image_embeds.shape[1]

        # Split encoded patches and merge patch features
        # 1. Get the raw sizes from samples, and split the image embeds [\sum_{B}(N_patch_i), N_tok(16*16), C]
        split_sizes = [image.shape[0] for image in images]
        image_embeds = torch.split(image_embeds, split_sizes, dim=0)
        # 2. For each image (consist of a list of patches), merge the patches spatially (of shape [C, n_patch_height, n_patch_width])
        new_image_embeds = []
        patch_attn_masks = []
        max_n_img_token = -1
        for idx, patch_embeds in enumerate(image_embeds):
            if patch_embeds.shape[0] > 1:
                # 3. Flatten the patch features and get [C, n_patch_height * (n_patch_width+1)]
                base_patch_embeds = patch_embeds[
                    0
                ]  # TODO: prepend the CLS token for th base patch embeds (of the resized entire image).
                patch_embeds = patch_embeds[1:]

                assert height * width == base_patch_embeds.shape[0]

                num_patch_width, num_patch_height = get_anyres_image_grid_shape(
                    image_sizes[idx], self.anyres_grids, base_img_size
                )  # Hardcoded grid_pinpoints.
                patch_embeds = patch_embeds.view(
                    num_patch_height, num_patch_width, height, width, -1
                )

                patch_embeds = patch_embeds.permute(4, 0, 2, 1, 3).contiguous()
                patch_embeds = patch_embeds.flatten(1, 2).flatten(2, 3)
                patch_embeds, patch_attn_mask = unpad_image(
                    patch_embeds, image_sizes[idx], self.anyres_patch_sampling
                )
                if hasattr(self, "image_newline"):
                    patch_embeds = torch.cat(
                        (
                            patch_embeds,
                            self.image_newline[:, None, None].expand(
                                *patch_embeds.shape[:-1], 1
                            ),
                        ),
                        dim=-1,
                    )
                if self.anyres_patch_sampling:
                    patch_embeds = patch_embeds.view(
                        -1, num_patch_height, num_patch_width, height * width
                    )
                    patch_embeds = patch_embeds.flatten(1, 2).permute(1, 2, 0)
                    assert patch_attn_mask is not None
                    patch_attn_mask = patch_attn_mask.view(
                        num_patch_height, num_patch_width, height * width
                    )
                    patch_attn_mask = patch_attn_mask.flatten(0, 1)
                    patch_embeds = torch.cat(
                        (base_patch_embeds.unsqueeze(0), patch_embeds), dim=0
                    )
                    patch_attn_mask = torch.cat(
                        (
                            torch.ones(
                                n_vis_token_per_patch, device=patch_embeds.device
                            ).unsqueeze(0),
                            patch_attn_mask,
                        ),
                        dim=0,
                    )
                else:
                    patch_embeds = patch_embeds.flatten(1, 2).transpose(0, 1)
                    patch_embeds = torch.cat((base_patch_embeds, patch_embeds), dim=0)
            else:
                patch_embeds = (
                    patch_embeds[0].unsqueeze(0)
                    if self.anyres_patch_sampling
                    else patch_embeds[0]
                )
                patch_attn_mask = (
                    torch.ones(
                        n_vis_token_per_patch, device=patch_embeds.device
                    ).unsqueeze(0)
                    if self.anyres_patch_sampling
                    else None
                )
                if hasattr(self, "image_newline"):
                    patch_embeds = torch.cat(
                        (patch_embeds, self.image_newline[None]), dim=0
                    )
            if not self.anyres_patch_sampling:
                max_n_img_token = max(patch_embeds.shape[0], max_n_img_token)

            new_image_embeds.append(patch_embeds)
            patch_attn_masks.append(patch_attn_mask)

        if self.anyres_patch_sampling:
            # Return individual patches for independent token downsampling.
            return new_image_embeds, patch_attn_masks

        # 4. Pad and concat the list of image_embeds [N_tok_i, C] together into a batch. Also modify the query attention mask.
        image_embeds = []
        image_atts = []
        for image_embed in new_image_embeds:
            n_img_token = image_embed.shape[0]
            img_attn = torch.ones(
                (max_n_img_token), dtype=torch.long, device=image_embed.device
            )
            if n_img_token < max_n_img_token:
                padded_embed = torch.zeros(
                    (max_n_img_token, image_embed.shape[-1]),
                    dtype=image_embed.dtype,
                    device=image_embed.device,
                )
                padded_embed[:n_img_token, :] = image_embed
                img_attn[n_img_token:] = 0  # Mask out the padded entries.
            else:
                padded_embed = image_embed
            image_embeds.append(padded_embed)
            image_atts.append(img_attn)
        image_embeds = torch.stack(
            image_embeds, dim=0
        )  # Shape [B, N_tok_longest, C_dim]
        image_atts = torch.stack(image_atts, dim=0)  # Shape [B, N_tok_longest, C_dim]
        # TODO: reshape image_embeds and image_atts to "b T F v d"
        image_embeds = image_embeds[:, None, None, :, :]
        # image_atts = image_atts[:, None, None, :, :]

        return image_embeds, image_atts

    def _encode_vision_x(self, vision_x: torch.Tensor):
        """
        Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
        Args:
            vision_x: Vision input
                shape (B, T_img, F, C, H, W)
                Images in the same chunk are collated along T_img, and frames are collated along F
                Currently only F=1 is supported (single-frame videos)

        rearrange code based on https://github.com/dhansmair/flamingo-mini
        """
        assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
        b, T, F = vision_x.shape[:3]

        vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
        with torch.no_grad():
            if self.vision_encoder.__class__.__name__ == "TimmModel":
                vision_x = self.vision_encoder.trunk.forward_features(vision_x)
            elif self.vision_encoder.__class__.__name__ in [
                "CLIPVisionModel",
                "SiglipVisionTransformer",
            ]:
                vision_x = self.vision_encoder(vision_x).last_hidden_state
            else:
                vision_x = self.vision_encoder(vision_x)[1]  # OpenCLIP returns tuples
        vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
        return vision_x

    def _concat_vision_cache(
        self, lang_x, vision_tokens, past_vision_tokens, past_media_locations, use_cache
    ):
        """
        Helper function to include the past vision tokens and past media locations in the output.
        """
        if use_cache:
            if past_media_locations is not None and past_vision_tokens is not None:
                if vision_tokens is not None:
                    updated_vision_tokens = torch.cat(
                        [
                            past_vision_tokens,
                            vision_tokens,
                        ],
                        dim=1,
                    )
                else:
                    updated_vision_tokens = past_vision_tokens
                updated_media_locations = torch.cat(
                    [
                        past_media_locations,
                        lang_x == self.media_token_id,
                    ],
                    dim=1,
                )
            else:
                updated_vision_tokens = vision_tokens
                updated_media_locations = lang_x == self.media_token_id

        else:
            updated_vision_tokens = None
            updated_media_locations = None

        return updated_vision_tokens, updated_media_locations

    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        """
        Generate text conditioned on vision and language inputs.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                see documentation for forward
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            **kwargs: see generate documentation in Hugging Face CausalLM models.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        num_beams = kwargs.pop("num_beams", 1)

        # convert pixels to vision tokens
        if vision_x is not None:
            vision_features = self._encode_vision_x(vision_x=vision_x)
            vision_tokens = self.vision_tokenizer(vision_features)
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        # for xattn, vision_x and media_location are repeat_interleaved s.t.
        # the total batch size is B * num_beams
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            past_vision_tokens=past_vision_tokens,
            padding_side="left",
            num_beams=num_beams,
        )
        output = self.lang_model.generate(
            **new_inputs,
            past_key_values=past_key_values,
            num_beams=num_beams,
            use_cache=True,
            **kwargs,
        )
        self._post_forward_hook()
        return output

    @property
    def num_trainable_params(self):
        """Print the number of trainable parameters"""
        return num_params(self, filter_to_trainable=True)

    def set_trainable(self):
        """
        Freeze appropriate parameters in the model.
        """
        raise NotImplementedError

    def group_params_by_weight_decay(self):
        """
        Return a tuple of (params to optimize w/ weight decay, params to optimize w/o weight decay)
        """
        params_with_wd, params_without_wd = [], []
        for n, p in self.named_parameters():
            if p.requires_grad:
                if self._should_apply_weight_decay(n):
                    params_with_wd.append(p)
                else:
                    params_without_wd.append(p)
        return params_with_wd, params_without_wd

    def _should_apply_weight_decay(self, parameter_name):
        """
        Return whether weight decay should be applied to a parameter.
        """
        raise NotImplementedError

    @property
    def special_tokens(self):
        """
        Returns a dict mapping from the attribute name of a special token to its string format,
         e.g. "media_token": "<image>"
        """
        assert (
            "media_token" in self._special_tokens
        ), "VLMs need to request that the tokenizer add a media_token and call set_special_token_ids to set self.media_token_id"
        return self._special_tokens

    @property
    def special_token_ids(self):
        """
        Returns a list of the special token ids
        """
        return [getattr(self, f"{att_name}_id") for att_name in self.special_tokens]

    def set_special_token_ids(self, string_to_ids):
        """
        Args:
            string_to_ids (dict): mapping from token string to id
        """
        assert set(self.special_tokens.values()).issubset(set(string_to_ids.keys()))
        for att_name, token_str in self.special_tokens.items():
            token_id = string_to_ids[token_str]
            setattr(self, f"{att_name}_id", token_id)
            setattr(self.lang_model, f"{att_name}_id", token_id)

    def init_gradient_checkpointing(self):
        from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
            checkpoint_wrapper,
            CheckpointWrapper,
            CheckpointImpl,
            apply_activation_checkpointing,
        )
        from functools import partial

        non_reentrant_wrapper = partial(
            checkpoint_wrapper,
            checkpoint_impl=CheckpointImpl.NO_REENTRANT,
        )
        apply_activation_checkpointing(
            self,
            checkpoint_wrapper_fn=non_reentrant_wrapper,
            check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
            and not isinstance(m, CheckpointWrapper),
        )


@dataclass
class VLMOutputWithPast(CausalLMOutputWithPast):
    """
    VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
    """

    past_media_locations: Optional[torch.Tensor] = None
    past_vision_tokens: Optional[torch.Tensor] = None


def exists(val):
    return val is not None


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


class VLMWithLanguageStream(VLM):
    """
    VLM that fuses modalities by inserting vision tokens directly into the language stream.
    """

    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        decoder_layers_attr_name: str = None,
        gradient_checkpointing: bool = False,
    ):
        super().__init__(
            vision_encoder=vision_encoder,
            vision_tokenizer=vision_tokenizer,
            lang_model=lang_model,
            initial_tokenizer_len=initial_tokenizer_len,
            pad_token_id=pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
        )
        self.decoder_layers_attr_name = decoder_layers_attr_name
        if decoder_layers_attr_name is not None:
            for block in getattr_recursive(
                self.lang_model, self.decoder_layers_attr_name
            ):
                block._use_gradient_checkpointing = gradient_checkpointing

    def _prepare_inputs_for_forward(
        self,
        vision_tokens: torch.Tensor,
        lang_x: torch.Tensor,
        attention_mask: torch.Tensor,
        labels: torch.Tensor = None,
        past_key_values=None,
        vision_attention_mask: Optional[torch.Tensor] = None,
        past_media_locations: torch.Tensor = None,
        past_vision_tokens: torch.Tensor = None,
        padding_side: str = "left",
        num_beams: int = 1,
    ):
        """
        Insert the vision tokens directly into the language stream/
        This requires us to modify the input_ids, attention_mask, and labels.
        """
        if past_key_values is not None:
            past_len = past_key_values[0][0].shape[2]
            assert attention_mask.shape[1] == past_len + lang_x.shape[1], (
                "Attention_mask must be as long as the entire past len (including image tokens) and current input IDs. "
                + "Check that you've expanded the attention mask to account for past image tokens."
            )

        if vision_tokens is None:
            return {
                "input_ids": lang_x,
                "attention_mask": attention_mask,
                "labels": labels,
            }

        # get the language embeddings
        lang_embeds = self.lang_model.get_input_embeddings()(lang_x)

        # build up the multimodal embeddings
        B = lang_x.shape[0]
        has_labels = labels is not None
        multimodal_embeds = []
        multimodal_attention_mask = []
        multimodal_labels = [] if has_labels else None
        for i in range(B):
            # get index of <image> tokens in lang_x[i]
            image_token_idxs = torch.where(lang_x[i] == self.media_token_id)[0]

            if len(image_token_idxs) == 0:
                multimodal_embeds.append(lang_embeds[i].clone())
                multimodal_attention_mask.append(attention_mask[i].clone())
                if has_labels:
                    multimodal_labels.append(labels[i].clone())
                continue

            # loop through the image_token_idxs and insert the vision tokens
            new_embed = lang_embeds[i].clone()
            new_attention_mask = (
                attention_mask[i].clone() if attention_mask is not None else None
            )
            if has_labels:
                new_label = labels[i].clone()

            for img_num, img_idx in enumerate(image_token_idxs):
                # Get vision token attention mask for padded llava-style any resolution image tokens.
                if self.image_aspect_ratio == "anyres":
                    num_vis_tokens = vision_tokens[i][img_num].shape[0]
                    if vision_attention_mask is not None:
                        vis_attention_mask = vision_attention_mask[i]
                    else:
                        vis_attention_mask = torch.ones(
                            num_vis_tokens, dtype=torch.long
                        ).to(attention_mask.device)
                else:
                    # assert (
                    #     vision_tokens[i][img_num].shape[0] == self.num_tokens_per_vis
                    # ), f"vision token number mismatch: image embedding ({vision_tokens[i][img_num].shape[0]}) \
                    #         vs. model.num_tokens_per_vis ({self.num_tokens_per_vis})"
                    # By default, vision tokens are not padded.
                    num_vis_tokens = vision_tokens[i][img_num].shape[0]
                    vis_attention_mask = torch.ones(
                        num_vis_tokens, dtype=torch.long
                    ).to(attention_mask.device)

                new_embed = torch.cat(
                    (
                        new_embed[:img_idx],
                        vision_tokens[i][img_num],
                        new_embed[img_idx + 1 :],
                    ),
                    dim=0,
                )
                new_attention_mask = torch.cat(
                    (
                        new_attention_mask[:img_idx],
                        vis_attention_mask,
                        new_attention_mask[img_idx + 1 :],
                    ),
                    dim=0,
                )
                if has_labels:
                    new_label = torch.cat(
                        (
                            new_label[:img_idx],
                            torch.ones(num_vis_tokens, dtype=torch.long).to(
                                labels.device
                            )
                            * -100,
                            new_label[img_idx + 1 :],
                        ),
                        dim=0,
                    )
            multimodal_embeds.append(new_embed)
            multimodal_attention_mask.append(new_attention_mask)
            if has_labels:
                multimodal_labels.append(new_label)

        # stack
        multimodal_embeds = stack_with_padding(
            multimodal_embeds,
            padding_value=self.pad_token_id,
            padding_side=padding_side,
        )
        multimodal_attention_mask = stack_with_padding(
            multimodal_attention_mask,
            padding_value=0,
            padding_side=padding_side,
        )
        if has_labels:
            multimodal_labels = stack_with_padding(
                multimodal_labels,
                padding_value=-100,
                padding_side=padding_side,
            )

        return {
            "inputs_embeds": multimodal_embeds,
            "attention_mask": multimodal_attention_mask,
            "labels": multimodal_labels,
        }

    def _postprocess_outputs_from_forward(
        self,
        output: CausalLMOutputWithPast,
        lang_x: torch.Tensor,
        vision_tokens: torch.Tensor,
        past_vision_tokens: torch.Tensor,
        past_media_locations: torch.Tensor,
        use_cache: bool = False,
    ):
        # Include the past vision tokens and past media locations in the output
        updated_vision_tokens, updated_media_locations = self._concat_vision_cache(
            lang_x=lang_x,
            vision_tokens=vision_tokens,
            past_vision_tokens=past_vision_tokens,
            past_media_locations=past_media_locations,
            use_cache=use_cache,
        )

        # return logits that are the same shape as the original input_ids
        logits = output.logits
        batch_logits = []
        B, T_txt = lang_x.shape
        for i in range(B):
            sequence_logits = []
            logits_j = 0
            for j in range(T_txt):
                if lang_x[i, j] != self.media_token_id:
                    sequence_logits.append(logits[i, logits_j])
                    logits_j += 1
                else:
                    # append the logit for the first image token, then skip over the rest
                    # note: the model actually learns to predict <im_patch>, not <image>
                    sequence_logits.append(logits[i, logits_j])
                    logits_j += self.num_tokens_per_vis
            sequence_logits = torch.stack(sequence_logits, dim=0)  # (B, vocab_size)
            batch_logits.append(sequence_logits)

        batch_logits = torch.stack(batch_logits, dim=0)  # (B, T_txt, vocab_size)
        # The final logits shape should be the same as the original input_ids shape
        assert batch_logits.shape[:2] == (B, T_txt)

        # assemble the output
        output = VLMOutputWithPast(
            loss=output.loss,
            logits=batch_logits,
            past_key_values=output.past_key_values,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
            past_media_locations=updated_media_locations,
            past_vision_tokens=updated_vision_tokens,
        )

        return output

    def _post_forward_hook(self):
        pass

    @property
    def num_params_per_module(self):
        """Print the number of parameters per module in the model"""
        return "\n".join(
            [
                f"Vision encoder: {num_params(self.vision_encoder):,} parameters",
                f"Vision tokenizer: {num_params(self.vision_tokenizer):,} parameters",
                f"Language model: {num_params(self.lang_model):,} parameters",
            ]
        )

    @property
    def num_trainable_params_per_module(self):
        """Print the number of trainable parameters per module in the model"""
        return "\n".join(
            [
                f"Vision encoder: {num_params(self.vision_encoder, filter_to_trainable=True):,} trainable parameters",
                f"Vision tokenizer: {num_params(self.vision_tokenizer, filter_to_trainable=True):,} trainable parameters",
                f"Language model: {num_params(self.lang_model, filter_to_trainable=True):,} trainable parameters",
            ]
        )


class XGenMMPerceiver(VLMWithLanguageStream):
    def __init__(
        self,
        vision_encoder: nn.Module,
        vision_tokenizer: nn.Module,
        lang_model: nn.Module,
        initial_tokenizer_len: int,
        pad_token_id: int,
        decoder_layers_attr_name: str = None,
        gradient_checkpointing: bool = False,
        image_aspect_ratio: str = "anyres",
        anyres_patch_sampling: bool = True,
        anyres_grids: list[int] = None,
    ):
        """
        Args:
            vision_encoder (nn.Module): HF CLIPModel
            lang_encoder (nn.Module): HF causal language model
            vis_feature_dim (int): final dimension of the visual features outputted by the vision_encoder
            initial_tokenizer_len (int): size of the tokenizer vocab
            padding_token_id (int): id of the padding token. None if no padding token; then a padding token
                will be inserted into self.special_tokens, which factory.py fills after creating new tokens
            decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
            gradient_checkpointing (bool, optional): whether to use gradient checkpointing. Defaults to False.
        """
        self._special_tokens = {
            "media_token": "<image>",
            "image_placeholder_token": "<image placeholder>",
            "end_of_trunk_token": "<|endofchunk|>",
        }
        lang_embedding_dim = lang_model.get_input_embeddings().weight.shape[1]
        super().__init__(
            vision_encoder=vision_encoder,
            vision_tokenizer=vision_tokenizer,
            lang_model=lang_model,
            initial_tokenizer_len=initial_tokenizer_len,
            gradient_checkpointing=gradient_checkpointing,
            decoder_layers_attr_name=decoder_layers_attr_name,
            pad_token_id=pad_token_id,
        )
        self.image_aspect_ratio = image_aspect_ratio
        self.anyres_patch_sampling = anyres_patch_sampling
        self.anyres_grids = anyres_grids

    def set_trainable(self):
        """
        Unfreeze everything except the vision_encoder
        """
        self.requires_grad_(True)
        self.vision_encoder.requires_grad_(False)

    def _should_apply_weight_decay(self, parameter_name):
        """
        Kosmos applies 0.01 weight deacy to everything
        """
        return True

    def generate(
        self,
        vision_x: torch.Tensor,
        lang_x: torch.Tensor,
        image_size: Optional[Tuple] = None,
        attention_mask: torch.Tensor = None,
        past_key_values: Optional[
            List[Union[torch.Tensor, Tuple[torch.Tensor]]]
        ] = None,
        past_media_locations: Optional[torch.Tensor] = None,
        past_vision_tokens: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        """
        Generate text conditioned on vision and language inputs.
        Args:
            vision_x (torch.Tensor): Vision input
                shape (B, T_img, F, C, H, W)
                see documentation for forward
            lang_x (torch.Tensor): Language input
                shape (B, T_txt)
            attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
            **kwargs: see generate documentation in Hugging Face CausalLM models.
        Returns:
            torch.Tensor: lang_x with generated tokens appended to it
        """
        num_beams = kwargs.pop("num_beams", 1)

        # convert pixels to vision tokens
        vision_attention_mask = None
        if vision_x is not None:
            if self.image_aspect_ratio == "anyres":
                input_dict = dict(image=vision_x, image_size=image_size)
                vision_features, vision_attn_masks = self._encode_vision_x_anyres(
                    input_dict, lang_x.device
                )
            else:
                vision_features = self._encode_vision_x(vision_x=vision_x)
                vision_attn_masks = None
            # If doing patch sampling, then flatten patches of shape [b, Np_i, v, d] -> [b*Np, v, d]
            # Same for attention masks: [b, Np, v] -> [b*Np, v]
            if self.anyres_patch_sampling:
                split_sizes = [feature.shape[0] for feature in vision_features]
                # Nested splits for multi-image samples.
                if isinstance(vision_x[0], list):
                    nt_images = [len(images) for images in vision_x]
                    split_split_sizes = []
                    img_id = 0
                    for nt in nt_images:
                        split_split_sizes.append(split_sizes[img_id : img_id + nt])
                        img_id += nt
                else:
                    nt_images = [1] * len(vision_x)
                    split_split_sizes = split_sizes
                vision_features = torch.cat(vision_features, dim=0)
                vision_features = vision_features[
                    :, None, None, :, :
                ]  # Expand dimensions.
                vision_attn_masks = torch.cat(vision_attn_masks, dim=0)

            vision_tokens = self.vision_tokenizer(vision_features, vision_attn_masks)

            # Post-processing: Split the batches into groups of patches and concatenate them together.
            if self.anyres_patch_sampling:
                assert isinstance(vision_x, list)
                if isinstance(vision_x[0], list):
                    vision_token_groups = torch.split(
                        vision_tokens,
                        list(sum(nt_img) for nt_img in split_split_sizes),
                        dim=0,
                    )
                    vision_tokens = []

                    for sample_id, patch_vis_tokens in enumerate(vision_token_groups):
                        patch_vis_token_groups = torch.split(
                            patch_vis_tokens, split_split_sizes[sample_id], dim=0
                        )  # [Np*nt, 1, v, d] -> [[Np_t, 1, v, d], ...]
                        flatten_vision_tokens = []
                        for image_vis_token in patch_vis_token_groups:
                            image_vis_token = image_vis_token.flatten(
                                0, 2
                            )  # [Np, 1, v, d] -> [Np*v, d]
                            flatten_vision_tokens.append(image_vis_token)
                        vision_tokens_i = flatten_vision_tokens
                        vision_tokens.append(vision_tokens_i)
                else:
                    vision_token_groups = torch.split(vision_tokens, split_sizes, dim=0)
                    vision_tokens = []
                    for patch_vis_tokens in vision_token_groups:
                        patch_vis_tokens = patch_vis_tokens.flatten(
                            0, 2
                        )  # [Np, 1, v, d] -> [Np*v, d]
                        vision_tokens.append(
                            patch_vis_tokens.unsqueeze(0)
                        )  # Add the nt dimension.
        else:
            vision_tokens = None

        # fuse the vision and language tokens
        # for xattn, vision_x and media_location are repeat_interleaved s.t.
        # the total batch size is B * num_beams
        new_inputs = self._prepare_inputs_for_forward(
            vision_tokens=vision_tokens,
            lang_x=lang_x,
            attention_mask=attention_mask,
            vision_attention_mask=vision_attention_mask,
            past_key_values=past_key_values,
            past_media_locations=past_media_locations,
            past_vision_tokens=past_vision_tokens,
            padding_side="left",
            num_beams=num_beams,
        )
        if past_key_values is not None:
            output = self.lang_model.generate(
                **new_inputs,
                past_key_values=past_key_values,
                num_beams=num_beams,
                use_cache=True,
                **kwargs,
            )
        else:
            output = self.lang_model.generate(
                **new_inputs,
                num_beams=num_beams,
                use_cache=True,
                **kwargs,
            )
        self._post_forward_hook()
        return output


class XGenMMVisionEncoder(PreTrainedModel):
    main_input_name = "pixel_values"
    config_class = XGenMMVisionEncoderConfig

    def __init__(self, config: XGenMMVisionEncoderConfig):
        super().__init__(config)
        if config.model_name != "google/siglip-so400m-patch14-384":
            raise ValueError(
                f"Unsupported model {config.model_name}. New vision models will be added soon."
            )
        self.model = AutoModel.from_pretrained(config.model_name)

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        # assert pixel_values.ndim == 4, f"Expected 4D tensor (bs, c, h, w), got {pixel_values.ndim}"
        return self.model.encode_image(pixel_values)


# vision tokenizer
class XGenMMVisionTokenizer(PreTrainedModel):
    config_class = XGenMMVisionTokenizerConfig

    def __init__(self, config: XGenMMVisionTokenizerConfig):
        super().__init__(config)
        self.model = PerceiverResampler(
            dim=config.vis_feature_dim,
            dim_inner=config.lang_embedding_dim,
            # TODO: hardwiring for now...
            num_latents=128,
        )

    def forward(self, vision_features: torch.Tensor, vision_attn_masks: torch.Tensor):
        return self.model(vision_features, vision_attn_masks)


# XGenMM model
class XGenMMModelForConditionalGeneration(PreTrainedModel):
    config_class = XGenMMConfig

    def __init__(self, config: XGenMMConfig):
        super().__init__(config)

        # vision encoder initialization
        vision_encoder = AutoModel.from_pretrained(
            config.vision_encoder_config.model_name
        ).vision_model

        # language model initialization
        language_model = AutoModelForCausalLM.from_config(config.text_config)
        check_embedding_fns(language_model)
        # Update _tied_weights_keys using the base model used.
        if language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [
                f"language_model.{k}" for k in language_model._tied_weights_keys
            ]

        # vision tokenizer initialization
        if (
            config.vision_tokenizer_config.lang_embedding_dim
            != language_model.get_input_embeddings().weight.shape[1]
        ):
            overwrite = language_model.get_input_embeddings().weight.shape[1]
            config.vision_tokenizer_config.lang_embedding_dim = overwrite
            print(
                f"Warning: The language embedding dimension in the vision tokenizer config is different from the language model's embedding dimension. Overwriting the language embedding dimension in the vision tokenizer config to {overwrite}."
            )

        vision_tokenizer = XGenMMVisionTokenizer(config.vision_tokenizer_config).model

        self.vlm = XGenMMPerceiver(
            vision_encoder=vision_encoder,
            vision_tokenizer=vision_tokenizer,
            lang_model=language_model,
            initial_tokenizer_len=config.text_config.initial_tokenizer_len,
            pad_token_id=config.text_config.pad_token_id,
            image_aspect_ratio=config.vision_encoder_config.image_aspect_ratio,
            anyres_patch_sampling=config.vision_encoder_config.anyres_patch_sampling,
            anyres_grids=config.vision_encoder_config.anyres_grids,
        )
        # Initialize weights and apply final processing
        self.post_init()

    @torch.no_grad()
    def generate(
        self,
        pixel_values: torch.FloatTensor,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        **generate_kwargs,
    ) -> torch.LongTensor:
        self.vlm = self.vlm.eval()
        return self.vlm.generate(
            vision_x=pixel_values,
            lang_x=input_ids,
            attention_mask=attention_mask,
            **generate_kwargs,
        )

    def update_special_tokens(self, tokenizer):
        tokenizer.add_special_tokens(
            {"additional_special_tokens": list(self.vlm.special_tokens.values())}
        )
        self.vlm.lang_model.config.vocab_size = len(tokenizer)
        self.vlm.set_special_token_ids(
            {
                v: tokenizer.convert_tokens_to_ids(v)
                for v in self.vlm.special_tokens.values()
            }
        )
        return tokenizer