--- language: en tags: - text-classification - onnx - int8 - roberta - emotions - multi-class-classification - multi-label-classification - optimum datasets: - go_emotions license: mit inference: false widget: - text: Thank goodness ONNX is available, it is lots faster! --- This model is the ONNX version of [https://huggingface.co/SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions). ### Full precision ONNX version `onnx/model.onnx` is the full precision ONNX version - that has identical accuracy/metrics to the original Transformers model - and has the same model size (499MB) - is faster in inference than normal Transformers, particularly for smaller batch sizes - in my tests about 2x to 3x as fast for a batch size of 1 on a 8 core 11th gen i7 CPU using ONNXRuntime #### Metrics Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label: - Accuracy: 0.474 - Precision: 0.575 - Recall: 0.396 - F1: 0.450 See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric. ### Quantized (INT8) ONNX version `onnx/model_quantized.onnx` is the int8 quantized version - that is one quarter the size (125MB) of the full precision model (above) - but delivers almost all of the accuracy - is faster in inference than both the full precision ONNX above, and the normal Transformers model - about 2x as fast for a batch size of 1 on an 8 core 11th gen i7 CPU using ONNXRuntime vs the full precision model above - which makes it circa 5x as fast as the full precision normal Transformers model (on the above mentioned CPU, for a batch of 1) #### Metrics for Quantized (INT8) Model Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label: - Accuracy: 0.475 - Precision: 0.582 - Recall: 0.398 - F1: 0.447 Note how the metrics are almost identical to the full precision metrics above. See more details in the SamLowe/roberta-base-go_emotions model card for the increases possible through selecting label-specific thresholds to maximise F1 scores, or another metric. ### How to use #### Using Optimum Library ONNX Classes Optimum library has equivalents (starting `ORT`) for the main Transformers classes, so these models can be used with the familiar constructs. The only extra property needed is `file_name` on the model creation, which in the below example specifies the quantized (INT8) model. ```python sentences = ["ONNX is seriously fast for small batches. Impressive"] from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSequenceClassification model_id = "SamLowe/roberta-base-go_emotions-onnx" file_name = "onnx/model_quantized.onnx" model = ORTModelForSequenceClassification.from_pretrained(model_id, file_name=file_name) tokenizer = AutoTokenizer.from_pretrained(model_id) onnx_classifier = pipeline( task="text-classification", model=model, tokenizer=tokenizer, top_k=None, function_to_apply="sigmoid", # optional as is the default for the task ) model_outputs = onnx_classifier(sentences) # gives a list of outputs, each a list of dicts (one per label) print(model_outputs) # E.g. # [[{'label': 'admiration', 'score': 0.9203393459320068}, # {'label': 'approval', 'score': 0.0560273639857769}, # {'label': 'neutral', 'score': 0.04265536740422249}, # {'label': 'gratitude', 'score': 0.015126707963645458}, # ... ``` #### Using ONNXRuntime - Tokenization can be done before with the `tokenizers` library, - and then the fed into ONNXRuntime as the type of dict it uses, - and then simply the postprocessing sigmoid is needed afterward on the model output (which comes as a numpy array) to create the embeddings. ```python from tokenizers import Tokenizer import onnxruntime as ort from os import cpu_count import numpy as np # only used for the postprocessing sigmoid sentences = ["hello world"] # for example a batch of 1 # labels as (ordered) list - from the go_emotions dataset labels = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'] tokenizer = Tokenizer.from_pretrained("SamLowe/roberta-base-go_emotions") # Optional - set pad to only pad to longest in batch, not a fixed length. # (without this, the model will run slower, esp for shorter input strings) params = {**tokenizer.padding, "length": None} tokenizer.enable_padding(**params) tokens_obj = tokenizer.encode_batch(sentences) def load_onnx_model(model_filepath): _options = ort.SessionOptions() _options.inter_op_num_threads, _options.intra_op_num_threads = cpu_count(), cpu_count() _providers = ["CPUExecutionProvider"] # could use ort.get_available_providers() return ort.InferenceSession(path_or_bytes=model_filepath, sess_options=_options, providers=_providers) model = load_onnx_model("path_to_model_dot_onnx_or_model_quantized_dot_onnx") output_names = [model.get_outputs()[0].name] # E.g. ["logits"] input_feed_dict = { "input_ids": [t.ids for t in tokens_obj], "attention_mask": [t.attention_mask for t in tokens_obj] } logits = model.run(output_names=output_names, input_feed=input_feed_dict)[0] # produces a numpy array, one row per input item, one col per label def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) # Post-processing. Gets the scores per label in range. # Auto done by Transformers' pipeline, but we must do it manually with ORT. model_outputs = sigmoid(logits) # for example, just to show the top result per input item for probas in model_outputs: top_result_index = np.argmax(probas) print(labels[top_result_index], "with score:", probas[top_result_index]) ``` ### Example notebook: showing usage, accuracy & performance Notebook with more details to follow.