SamTcodes commited on
Commit
25a8234
·
verified ·
1 Parent(s): d889790

Upload 26 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2-medium
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2-medium",
5
+ "bias": "none",
6
+ "fan_in_fan_out": true,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_attn",
24
+ "c_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cece29dc2ebd99547c48d93f02d24d9706b72cb023a1836d042dd27fc4683b39
3
+ size 8669080
checkpoint-15000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2-medium
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-15000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2-medium",
5
+ "bias": "none",
6
+ "fan_in_fan_out": true,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_attn",
24
+ "c_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-15000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cece29dc2ebd99547c48d93f02d24d9706b72cb023a1836d042dd27fc4683b39
3
+ size 8669080
checkpoint-15000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:581294521634c800fb3129e8a866b4856aa685eef90f0f558d2f1b4bb2a54a67
3
+ size 17422522
checkpoint-15000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1cd9afb8b81f2e61aeb86edf9edeab7ac7cb9061763c896d239117640228dcf
3
+ size 14244
checkpoint-15000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff840370edbec1a340292989ae4625426deb16a58abb8b1c5b3205e79424e60b
3
+ size 1064
checkpoint-15000/trainer_state.json ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.5968663692474365,
3
+ "best_model_checkpoint": "/content/drive/MyDrive/GPT2_medium_trained_model/checkpoint-15000",
4
+ "epoch": 4.996668887408394,
5
+ "eval_steps": 500,
6
+ "global_step": 15000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1665556295802798,
13
+ "grad_norm": 0.349942684173584,
14
+ "learning_rate": 0.0001,
15
+ "loss": 2.3138,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.1665556295802798,
20
+ "eval_loss": 1.781299114227295,
21
+ "eval_runtime": 45.0711,
22
+ "eval_samples_per_second": 33.303,
23
+ "eval_steps_per_second": 8.342,
24
+ "step": 500
25
+ },
26
+ {
27
+ "epoch": 0.3331112591605596,
28
+ "grad_norm": 0.34403911232948303,
29
+ "learning_rate": 9.655410062026189e-05,
30
+ "loss": 1.8307,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 0.3331112591605596,
35
+ "eval_loss": 1.7246960401535034,
36
+ "eval_runtime": 45.0478,
37
+ "eval_samples_per_second": 33.32,
38
+ "eval_steps_per_second": 8.347,
39
+ "step": 1000
40
+ },
41
+ {
42
+ "epoch": 0.4996668887408394,
43
+ "grad_norm": 0.39671897888183594,
44
+ "learning_rate": 9.310820124052379e-05,
45
+ "loss": 1.785,
46
+ "step": 1500
47
+ },
48
+ {
49
+ "epoch": 0.4996668887408394,
50
+ "eval_loss": 1.7043348550796509,
51
+ "eval_runtime": 45.0791,
52
+ "eval_samples_per_second": 33.297,
53
+ "eval_steps_per_second": 8.341,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 0.6662225183211192,
58
+ "grad_norm": 0.40807807445526123,
59
+ "learning_rate": 8.966230186078567e-05,
60
+ "loss": 1.7692,
61
+ "step": 2000
62
+ },
63
+ {
64
+ "epoch": 0.6662225183211192,
65
+ "eval_loss": 1.6906121969223022,
66
+ "eval_runtime": 45.0622,
67
+ "eval_samples_per_second": 33.31,
68
+ "eval_steps_per_second": 8.344,
69
+ "step": 2000
70
+ },
71
+ {
72
+ "epoch": 0.832778147901399,
73
+ "grad_norm": 0.4667167663574219,
74
+ "learning_rate": 8.621640248104756e-05,
75
+ "loss": 1.7505,
76
+ "step": 2500
77
+ },
78
+ {
79
+ "epoch": 0.832778147901399,
80
+ "eval_loss": 1.677463412284851,
81
+ "eval_runtime": 45.0632,
82
+ "eval_samples_per_second": 33.309,
83
+ "eval_steps_per_second": 8.344,
84
+ "step": 2500
85
+ },
86
+ {
87
+ "epoch": 0.9993337774816788,
88
+ "grad_norm": 0.4343186020851135,
89
+ "learning_rate": 8.277050310130945e-05,
90
+ "loss": 1.7475,
91
+ "step": 3000
92
+ },
93
+ {
94
+ "epoch": 0.9993337774816788,
95
+ "eval_loss": 1.6700527667999268,
96
+ "eval_runtime": 45.0648,
97
+ "eval_samples_per_second": 33.308,
98
+ "eval_steps_per_second": 8.344,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 1.1658894070619588,
103
+ "grad_norm": 0.45604434609413147,
104
+ "learning_rate": 7.932460372157134e-05,
105
+ "loss": 1.7341,
106
+ "step": 3500
107
+ },
108
+ {
109
+ "epoch": 1.1658894070619588,
110
+ "eval_loss": 1.659743309020996,
111
+ "eval_runtime": 45.0486,
112
+ "eval_samples_per_second": 33.32,
113
+ "eval_steps_per_second": 8.347,
114
+ "step": 3500
115
+ },
116
+ {
117
+ "epoch": 1.3324450366422385,
118
+ "grad_norm": 0.4247240126132965,
119
+ "learning_rate": 7.587870434183322e-05,
120
+ "loss": 1.734,
121
+ "step": 4000
122
+ },
123
+ {
124
+ "epoch": 1.3324450366422385,
125
+ "eval_loss": 1.6542617082595825,
126
+ "eval_runtime": 45.0632,
127
+ "eval_samples_per_second": 33.309,
128
+ "eval_steps_per_second": 8.344,
129
+ "step": 4000
130
+ },
131
+ {
132
+ "epoch": 1.4990006662225184,
133
+ "grad_norm": 0.42194628715515137,
134
+ "learning_rate": 7.243280496209511e-05,
135
+ "loss": 1.7152,
136
+ "step": 4500
137
+ },
138
+ {
139
+ "epoch": 1.4990006662225184,
140
+ "eval_loss": 1.6479216814041138,
141
+ "eval_runtime": 45.0448,
142
+ "eval_samples_per_second": 33.322,
143
+ "eval_steps_per_second": 8.347,
144
+ "step": 4500
145
+ },
146
+ {
147
+ "epoch": 1.6655562958027983,
148
+ "grad_norm": 0.48870036005973816,
149
+ "learning_rate": 6.8986905582357e-05,
150
+ "loss": 1.7146,
151
+ "step": 5000
152
+ },
153
+ {
154
+ "epoch": 1.6655562958027983,
155
+ "eval_loss": 1.6431379318237305,
156
+ "eval_runtime": 45.0495,
157
+ "eval_samples_per_second": 33.319,
158
+ "eval_steps_per_second": 8.346,
159
+ "step": 5000
160
+ },
161
+ {
162
+ "epoch": 1.832111925383078,
163
+ "grad_norm": 0.4430600106716156,
164
+ "learning_rate": 6.554100620261888e-05,
165
+ "loss": 1.7073,
166
+ "step": 5500
167
+ },
168
+ {
169
+ "epoch": 1.832111925383078,
170
+ "eval_loss": 1.6352075338363647,
171
+ "eval_runtime": 45.0591,
172
+ "eval_samples_per_second": 33.312,
173
+ "eval_steps_per_second": 8.345,
174
+ "step": 5500
175
+ },
176
+ {
177
+ "epoch": 1.9986675549633577,
178
+ "grad_norm": 0.4781087338924408,
179
+ "learning_rate": 6.209510682288078e-05,
180
+ "loss": 1.7011,
181
+ "step": 6000
182
+ },
183
+ {
184
+ "epoch": 1.9986675549633577,
185
+ "eval_loss": 1.6312915086746216,
186
+ "eval_runtime": 45.0576,
187
+ "eval_samples_per_second": 33.313,
188
+ "eval_steps_per_second": 8.345,
189
+ "step": 6000
190
+ },
191
+ {
192
+ "epoch": 2.1652231845436374,
193
+ "grad_norm": 0.4676028788089752,
194
+ "learning_rate": 5.864920744314266e-05,
195
+ "loss": 1.699,
196
+ "step": 6500
197
+ },
198
+ {
199
+ "epoch": 2.1652231845436374,
200
+ "eval_loss": 1.6273860931396484,
201
+ "eval_runtime": 45.0547,
202
+ "eval_samples_per_second": 33.315,
203
+ "eval_steps_per_second": 8.345,
204
+ "step": 6500
205
+ },
206
+ {
207
+ "epoch": 2.3317788141239175,
208
+ "grad_norm": 0.5153520703315735,
209
+ "learning_rate": 5.5203308063404545e-05,
210
+ "loss": 1.6886,
211
+ "step": 7000
212
+ },
213
+ {
214
+ "epoch": 2.3317788141239175,
215
+ "eval_loss": 1.622995138168335,
216
+ "eval_runtime": 45.0582,
217
+ "eval_samples_per_second": 33.312,
218
+ "eval_steps_per_second": 8.345,
219
+ "step": 7000
220
+ },
221
+ {
222
+ "epoch": 2.498334443704197,
223
+ "grad_norm": 0.44470497965812683,
224
+ "learning_rate": 5.1757408683666443e-05,
225
+ "loss": 1.6857,
226
+ "step": 7500
227
+ },
228
+ {
229
+ "epoch": 2.498334443704197,
230
+ "eval_loss": 1.6191588640213013,
231
+ "eval_runtime": 45.051,
232
+ "eval_samples_per_second": 33.318,
233
+ "eval_steps_per_second": 8.346,
234
+ "step": 7500
235
+ },
236
+ {
237
+ "epoch": 2.664890073284477,
238
+ "grad_norm": 0.517364501953125,
239
+ "learning_rate": 4.831150930392833e-05,
240
+ "loss": 1.6828,
241
+ "step": 8000
242
+ },
243
+ {
244
+ "epoch": 2.664890073284477,
245
+ "eval_loss": 1.6161798238754272,
246
+ "eval_runtime": 45.0439,
247
+ "eval_samples_per_second": 33.323,
248
+ "eval_steps_per_second": 8.347,
249
+ "step": 8000
250
+ },
251
+ {
252
+ "epoch": 2.831445702864757,
253
+ "grad_norm": 0.5027415752410889,
254
+ "learning_rate": 4.486560992419022e-05,
255
+ "loss": 1.6808,
256
+ "step": 8500
257
+ },
258
+ {
259
+ "epoch": 2.831445702864757,
260
+ "eval_loss": 1.6137065887451172,
261
+ "eval_runtime": 45.0572,
262
+ "eval_samples_per_second": 33.313,
263
+ "eval_steps_per_second": 8.345,
264
+ "step": 8500
265
+ },
266
+ {
267
+ "epoch": 2.9980013324450367,
268
+ "grad_norm": 0.47020256519317627,
269
+ "learning_rate": 4.1419710544452104e-05,
270
+ "loss": 1.6889,
271
+ "step": 9000
272
+ },
273
+ {
274
+ "epoch": 2.9980013324450367,
275
+ "eval_loss": 1.6114857196807861,
276
+ "eval_runtime": 45.0897,
277
+ "eval_samples_per_second": 33.289,
278
+ "eval_steps_per_second": 8.339,
279
+ "step": 9000
280
+ },
281
+ {
282
+ "epoch": 3.1645569620253164,
283
+ "grad_norm": 0.5054105520248413,
284
+ "learning_rate": 3.797381116471399e-05,
285
+ "loss": 1.6835,
286
+ "step": 9500
287
+ },
288
+ {
289
+ "epoch": 3.1645569620253164,
290
+ "eval_loss": 1.6083775758743286,
291
+ "eval_runtime": 45.0444,
292
+ "eval_samples_per_second": 33.323,
293
+ "eval_steps_per_second": 8.347,
294
+ "step": 9500
295
+ },
296
+ {
297
+ "epoch": 3.331112591605596,
298
+ "grad_norm": 0.4983905553817749,
299
+ "learning_rate": 3.452791178497588e-05,
300
+ "loss": 1.6733,
301
+ "step": 10000
302
+ },
303
+ {
304
+ "epoch": 3.331112591605596,
305
+ "eval_loss": 1.606980800628662,
306
+ "eval_runtime": 45.0583,
307
+ "eval_samples_per_second": 33.312,
308
+ "eval_steps_per_second": 8.345,
309
+ "step": 10000
310
+ },
311
+ {
312
+ "epoch": 3.497668221185876,
313
+ "grad_norm": 0.4818781316280365,
314
+ "learning_rate": 3.108201240523777e-05,
315
+ "loss": 1.6659,
316
+ "step": 10500
317
+ },
318
+ {
319
+ "epoch": 3.497668221185876,
320
+ "eval_loss": 1.6059489250183105,
321
+ "eval_runtime": 45.0647,
322
+ "eval_samples_per_second": 33.308,
323
+ "eval_steps_per_second": 8.344,
324
+ "step": 10500
325
+ },
326
+ {
327
+ "epoch": 3.664223850766156,
328
+ "grad_norm": 0.5904703140258789,
329
+ "learning_rate": 2.7636113025499656e-05,
330
+ "loss": 1.6701,
331
+ "step": 11000
332
+ },
333
+ {
334
+ "epoch": 3.664223850766156,
335
+ "eval_loss": 1.6036906242370605,
336
+ "eval_runtime": 45.0719,
337
+ "eval_samples_per_second": 33.302,
338
+ "eval_steps_per_second": 8.342,
339
+ "step": 11000
340
+ },
341
+ {
342
+ "epoch": 3.8307794803464357,
343
+ "grad_norm": 0.5586133003234863,
344
+ "learning_rate": 2.4190213645761544e-05,
345
+ "loss": 1.6688,
346
+ "step": 11500
347
+ },
348
+ {
349
+ "epoch": 3.8307794803464357,
350
+ "eval_loss": 1.6019277572631836,
351
+ "eval_runtime": 45.0455,
352
+ "eval_samples_per_second": 33.322,
353
+ "eval_steps_per_second": 8.347,
354
+ "step": 11500
355
+ },
356
+ {
357
+ "epoch": 3.9973351099267154,
358
+ "grad_norm": 0.525917649269104,
359
+ "learning_rate": 2.0744314266023432e-05,
360
+ "loss": 1.6627,
361
+ "step": 12000
362
+ },
363
+ {
364
+ "epoch": 3.9973351099267154,
365
+ "eval_loss": 1.60073983669281,
366
+ "eval_runtime": 45.0484,
367
+ "eval_samples_per_second": 33.32,
368
+ "eval_steps_per_second": 8.347,
369
+ "step": 12000
370
+ },
371
+ {
372
+ "epoch": 4.1638907395069955,
373
+ "grad_norm": 0.5083144307136536,
374
+ "learning_rate": 1.7298414886285323e-05,
375
+ "loss": 1.6688,
376
+ "step": 12500
377
+ },
378
+ {
379
+ "epoch": 4.1638907395069955,
380
+ "eval_loss": 1.59957754611969,
381
+ "eval_runtime": 45.065,
382
+ "eval_samples_per_second": 33.307,
383
+ "eval_steps_per_second": 8.344,
384
+ "step": 12500
385
+ },
386
+ {
387
+ "epoch": 4.330446369087275,
388
+ "grad_norm": 0.5289840698242188,
389
+ "learning_rate": 1.385251550654721e-05,
390
+ "loss": 1.66,
391
+ "step": 13000
392
+ },
393
+ {
394
+ "epoch": 4.330446369087275,
395
+ "eval_loss": 1.5992504358291626,
396
+ "eval_runtime": 45.0504,
397
+ "eval_samples_per_second": 33.318,
398
+ "eval_steps_per_second": 8.346,
399
+ "step": 13000
400
+ },
401
+ {
402
+ "epoch": 4.497001998667555,
403
+ "grad_norm": 0.549419105052948,
404
+ "learning_rate": 1.0406616126809098e-05,
405
+ "loss": 1.6672,
406
+ "step": 13500
407
+ },
408
+ {
409
+ "epoch": 4.497001998667555,
410
+ "eval_loss": 1.5988696813583374,
411
+ "eval_runtime": 45.053,
412
+ "eval_samples_per_second": 33.316,
413
+ "eval_steps_per_second": 8.346,
414
+ "step": 13500
415
+ },
416
+ {
417
+ "epoch": 4.663557628247835,
418
+ "grad_norm": 0.485193133354187,
419
+ "learning_rate": 6.9607167470709864e-06,
420
+ "loss": 1.6596,
421
+ "step": 14000
422
+ },
423
+ {
424
+ "epoch": 4.663557628247835,
425
+ "eval_loss": 1.5973259210586548,
426
+ "eval_runtime": 45.0682,
427
+ "eval_samples_per_second": 33.305,
428
+ "eval_steps_per_second": 8.343,
429
+ "step": 14000
430
+ },
431
+ {
432
+ "epoch": 4.830113257828114,
433
+ "grad_norm": 0.5129671692848206,
434
+ "learning_rate": 3.514817367332874e-06,
435
+ "loss": 1.6509,
436
+ "step": 14500
437
+ },
438
+ {
439
+ "epoch": 4.830113257828114,
440
+ "eval_loss": 1.596968173980713,
441
+ "eval_runtime": 45.0647,
442
+ "eval_samples_per_second": 33.308,
443
+ "eval_steps_per_second": 8.344,
444
+ "step": 14500
445
+ },
446
+ {
447
+ "epoch": 4.996668887408394,
448
+ "grad_norm": 0.5455211997032166,
449
+ "learning_rate": 6.891798759476224e-08,
450
+ "loss": 1.6642,
451
+ "step": 15000
452
+ },
453
+ {
454
+ "epoch": 4.996668887408394,
455
+ "eval_loss": 1.5968663692474365,
456
+ "eval_runtime": 45.0733,
457
+ "eval_samples_per_second": 33.301,
458
+ "eval_steps_per_second": 8.342,
459
+ "step": 15000
460
+ }
461
+ ],
462
+ "logging_steps": 500,
463
+ "max_steps": 15010,
464
+ "num_input_tokens_seen": 0,
465
+ "num_train_epochs": 5,
466
+ "save_steps": 1000,
467
+ "stateful_callbacks": {
468
+ "TrainerControl": {
469
+ "args": {
470
+ "should_epoch_stop": false,
471
+ "should_evaluate": false,
472
+ "should_log": false,
473
+ "should_save": true,
474
+ "should_training_stop": false
475
+ },
476
+ "attributes": {}
477
+ }
478
+ },
479
+ "total_flos": 5.612066832384e+16,
480
+ "train_batch_size": 4,
481
+ "trial_name": null,
482
+ "trial_params": null
483
+ }
checkpoint-15000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e471f2f0c4dceb261687daad8da87d0e1bad01dadd5e8e698925382fc3baf1
3
+ size 5176
checkpoint-15010/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gpt2-medium
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-15010/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "gpt2-medium",
5
+ "bias": "none",
6
+ "fan_in_fan_out": true,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_attn",
24
+ "c_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-15010/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a488380821bb60de6a0e43b96a9e8530ed4e416f211b38d9cb800714513faad
3
+ size 8669080
checkpoint-15010/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3cc4628b88211ddc1c5121acae4630b7666ede10bbdaef32dd31eb3d575021e
3
+ size 17422522
checkpoint-15010/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1253c1ec8629cca27a18dfa64c726792fde9d5ebee1ad8beb2ee10bf1e27cedb
3
+ size 14244
checkpoint-15010/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a4c2ae7eef5c3c9ff1b1eac8289957f5b3dfdb9273adc28f59a2b4f98ecf51e
3
+ size 1064
checkpoint-15010/trainer_state.json ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.5968663692474365,
3
+ "best_model_checkpoint": "/content/drive/MyDrive/GPT2_medium_trained_model/checkpoint-15000",
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 15010,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1665556295802798,
13
+ "grad_norm": 0.349942684173584,
14
+ "learning_rate": 0.0001,
15
+ "loss": 2.3138,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.1665556295802798,
20
+ "eval_loss": 1.781299114227295,
21
+ "eval_runtime": 45.0711,
22
+ "eval_samples_per_second": 33.303,
23
+ "eval_steps_per_second": 8.342,
24
+ "step": 500
25
+ },
26
+ {
27
+ "epoch": 0.3331112591605596,
28
+ "grad_norm": 0.34403911232948303,
29
+ "learning_rate": 9.655410062026189e-05,
30
+ "loss": 1.8307,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 0.3331112591605596,
35
+ "eval_loss": 1.7246960401535034,
36
+ "eval_runtime": 45.0478,
37
+ "eval_samples_per_second": 33.32,
38
+ "eval_steps_per_second": 8.347,
39
+ "step": 1000
40
+ },
41
+ {
42
+ "epoch": 0.4996668887408394,
43
+ "grad_norm": 0.39671897888183594,
44
+ "learning_rate": 9.310820124052379e-05,
45
+ "loss": 1.785,
46
+ "step": 1500
47
+ },
48
+ {
49
+ "epoch": 0.4996668887408394,
50
+ "eval_loss": 1.7043348550796509,
51
+ "eval_runtime": 45.0791,
52
+ "eval_samples_per_second": 33.297,
53
+ "eval_steps_per_second": 8.341,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 0.6662225183211192,
58
+ "grad_norm": 0.40807807445526123,
59
+ "learning_rate": 8.966230186078567e-05,
60
+ "loss": 1.7692,
61
+ "step": 2000
62
+ },
63
+ {
64
+ "epoch": 0.6662225183211192,
65
+ "eval_loss": 1.6906121969223022,
66
+ "eval_runtime": 45.0622,
67
+ "eval_samples_per_second": 33.31,
68
+ "eval_steps_per_second": 8.344,
69
+ "step": 2000
70
+ },
71
+ {
72
+ "epoch": 0.832778147901399,
73
+ "grad_norm": 0.4667167663574219,
74
+ "learning_rate": 8.621640248104756e-05,
75
+ "loss": 1.7505,
76
+ "step": 2500
77
+ },
78
+ {
79
+ "epoch": 0.832778147901399,
80
+ "eval_loss": 1.677463412284851,
81
+ "eval_runtime": 45.0632,
82
+ "eval_samples_per_second": 33.309,
83
+ "eval_steps_per_second": 8.344,
84
+ "step": 2500
85
+ },
86
+ {
87
+ "epoch": 0.9993337774816788,
88
+ "grad_norm": 0.4343186020851135,
89
+ "learning_rate": 8.277050310130945e-05,
90
+ "loss": 1.7475,
91
+ "step": 3000
92
+ },
93
+ {
94
+ "epoch": 0.9993337774816788,
95
+ "eval_loss": 1.6700527667999268,
96
+ "eval_runtime": 45.0648,
97
+ "eval_samples_per_second": 33.308,
98
+ "eval_steps_per_second": 8.344,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 1.1658894070619588,
103
+ "grad_norm": 0.45604434609413147,
104
+ "learning_rate": 7.932460372157134e-05,
105
+ "loss": 1.7341,
106
+ "step": 3500
107
+ },
108
+ {
109
+ "epoch": 1.1658894070619588,
110
+ "eval_loss": 1.659743309020996,
111
+ "eval_runtime": 45.0486,
112
+ "eval_samples_per_second": 33.32,
113
+ "eval_steps_per_second": 8.347,
114
+ "step": 3500
115
+ },
116
+ {
117
+ "epoch": 1.3324450366422385,
118
+ "grad_norm": 0.4247240126132965,
119
+ "learning_rate": 7.587870434183322e-05,
120
+ "loss": 1.734,
121
+ "step": 4000
122
+ },
123
+ {
124
+ "epoch": 1.3324450366422385,
125
+ "eval_loss": 1.6542617082595825,
126
+ "eval_runtime": 45.0632,
127
+ "eval_samples_per_second": 33.309,
128
+ "eval_steps_per_second": 8.344,
129
+ "step": 4000
130
+ },
131
+ {
132
+ "epoch": 1.4990006662225184,
133
+ "grad_norm": 0.42194628715515137,
134
+ "learning_rate": 7.243280496209511e-05,
135
+ "loss": 1.7152,
136
+ "step": 4500
137
+ },
138
+ {
139
+ "epoch": 1.4990006662225184,
140
+ "eval_loss": 1.6479216814041138,
141
+ "eval_runtime": 45.0448,
142
+ "eval_samples_per_second": 33.322,
143
+ "eval_steps_per_second": 8.347,
144
+ "step": 4500
145
+ },
146
+ {
147
+ "epoch": 1.6655562958027983,
148
+ "grad_norm": 0.48870036005973816,
149
+ "learning_rate": 6.8986905582357e-05,
150
+ "loss": 1.7146,
151
+ "step": 5000
152
+ },
153
+ {
154
+ "epoch": 1.6655562958027983,
155
+ "eval_loss": 1.6431379318237305,
156
+ "eval_runtime": 45.0495,
157
+ "eval_samples_per_second": 33.319,
158
+ "eval_steps_per_second": 8.346,
159
+ "step": 5000
160
+ },
161
+ {
162
+ "epoch": 1.832111925383078,
163
+ "grad_norm": 0.4430600106716156,
164
+ "learning_rate": 6.554100620261888e-05,
165
+ "loss": 1.7073,
166
+ "step": 5500
167
+ },
168
+ {
169
+ "epoch": 1.832111925383078,
170
+ "eval_loss": 1.6352075338363647,
171
+ "eval_runtime": 45.0591,
172
+ "eval_samples_per_second": 33.312,
173
+ "eval_steps_per_second": 8.345,
174
+ "step": 5500
175
+ },
176
+ {
177
+ "epoch": 1.9986675549633577,
178
+ "grad_norm": 0.4781087338924408,
179
+ "learning_rate": 6.209510682288078e-05,
180
+ "loss": 1.7011,
181
+ "step": 6000
182
+ },
183
+ {
184
+ "epoch": 1.9986675549633577,
185
+ "eval_loss": 1.6312915086746216,
186
+ "eval_runtime": 45.0576,
187
+ "eval_samples_per_second": 33.313,
188
+ "eval_steps_per_second": 8.345,
189
+ "step": 6000
190
+ },
191
+ {
192
+ "epoch": 2.1652231845436374,
193
+ "grad_norm": 0.4676028788089752,
194
+ "learning_rate": 5.864920744314266e-05,
195
+ "loss": 1.699,
196
+ "step": 6500
197
+ },
198
+ {
199
+ "epoch": 2.1652231845436374,
200
+ "eval_loss": 1.6273860931396484,
201
+ "eval_runtime": 45.0547,
202
+ "eval_samples_per_second": 33.315,
203
+ "eval_steps_per_second": 8.345,
204
+ "step": 6500
205
+ },
206
+ {
207
+ "epoch": 2.3317788141239175,
208
+ "grad_norm": 0.5153520703315735,
209
+ "learning_rate": 5.5203308063404545e-05,
210
+ "loss": 1.6886,
211
+ "step": 7000
212
+ },
213
+ {
214
+ "epoch": 2.3317788141239175,
215
+ "eval_loss": 1.622995138168335,
216
+ "eval_runtime": 45.0582,
217
+ "eval_samples_per_second": 33.312,
218
+ "eval_steps_per_second": 8.345,
219
+ "step": 7000
220
+ },
221
+ {
222
+ "epoch": 2.498334443704197,
223
+ "grad_norm": 0.44470497965812683,
224
+ "learning_rate": 5.1757408683666443e-05,
225
+ "loss": 1.6857,
226
+ "step": 7500
227
+ },
228
+ {
229
+ "epoch": 2.498334443704197,
230
+ "eval_loss": 1.6191588640213013,
231
+ "eval_runtime": 45.051,
232
+ "eval_samples_per_second": 33.318,
233
+ "eval_steps_per_second": 8.346,
234
+ "step": 7500
235
+ },
236
+ {
237
+ "epoch": 2.664890073284477,
238
+ "grad_norm": 0.517364501953125,
239
+ "learning_rate": 4.831150930392833e-05,
240
+ "loss": 1.6828,
241
+ "step": 8000
242
+ },
243
+ {
244
+ "epoch": 2.664890073284477,
245
+ "eval_loss": 1.6161798238754272,
246
+ "eval_runtime": 45.0439,
247
+ "eval_samples_per_second": 33.323,
248
+ "eval_steps_per_second": 8.347,
249
+ "step": 8000
250
+ },
251
+ {
252
+ "epoch": 2.831445702864757,
253
+ "grad_norm": 0.5027415752410889,
254
+ "learning_rate": 4.486560992419022e-05,
255
+ "loss": 1.6808,
256
+ "step": 8500
257
+ },
258
+ {
259
+ "epoch": 2.831445702864757,
260
+ "eval_loss": 1.6137065887451172,
261
+ "eval_runtime": 45.0572,
262
+ "eval_samples_per_second": 33.313,
263
+ "eval_steps_per_second": 8.345,
264
+ "step": 8500
265
+ },
266
+ {
267
+ "epoch": 2.9980013324450367,
268
+ "grad_norm": 0.47020256519317627,
269
+ "learning_rate": 4.1419710544452104e-05,
270
+ "loss": 1.6889,
271
+ "step": 9000
272
+ },
273
+ {
274
+ "epoch": 2.9980013324450367,
275
+ "eval_loss": 1.6114857196807861,
276
+ "eval_runtime": 45.0897,
277
+ "eval_samples_per_second": 33.289,
278
+ "eval_steps_per_second": 8.339,
279
+ "step": 9000
280
+ },
281
+ {
282
+ "epoch": 3.1645569620253164,
283
+ "grad_norm": 0.5054105520248413,
284
+ "learning_rate": 3.797381116471399e-05,
285
+ "loss": 1.6835,
286
+ "step": 9500
287
+ },
288
+ {
289
+ "epoch": 3.1645569620253164,
290
+ "eval_loss": 1.6083775758743286,
291
+ "eval_runtime": 45.0444,
292
+ "eval_samples_per_second": 33.323,
293
+ "eval_steps_per_second": 8.347,
294
+ "step": 9500
295
+ },
296
+ {
297
+ "epoch": 3.331112591605596,
298
+ "grad_norm": 0.4983905553817749,
299
+ "learning_rate": 3.452791178497588e-05,
300
+ "loss": 1.6733,
301
+ "step": 10000
302
+ },
303
+ {
304
+ "epoch": 3.331112591605596,
305
+ "eval_loss": 1.606980800628662,
306
+ "eval_runtime": 45.0583,
307
+ "eval_samples_per_second": 33.312,
308
+ "eval_steps_per_second": 8.345,
309
+ "step": 10000
310
+ },
311
+ {
312
+ "epoch": 3.497668221185876,
313
+ "grad_norm": 0.4818781316280365,
314
+ "learning_rate": 3.108201240523777e-05,
315
+ "loss": 1.6659,
316
+ "step": 10500
317
+ },
318
+ {
319
+ "epoch": 3.497668221185876,
320
+ "eval_loss": 1.6059489250183105,
321
+ "eval_runtime": 45.0647,
322
+ "eval_samples_per_second": 33.308,
323
+ "eval_steps_per_second": 8.344,
324
+ "step": 10500
325
+ },
326
+ {
327
+ "epoch": 3.664223850766156,
328
+ "grad_norm": 0.5904703140258789,
329
+ "learning_rate": 2.7636113025499656e-05,
330
+ "loss": 1.6701,
331
+ "step": 11000
332
+ },
333
+ {
334
+ "epoch": 3.664223850766156,
335
+ "eval_loss": 1.6036906242370605,
336
+ "eval_runtime": 45.0719,
337
+ "eval_samples_per_second": 33.302,
338
+ "eval_steps_per_second": 8.342,
339
+ "step": 11000
340
+ },
341
+ {
342
+ "epoch": 3.8307794803464357,
343
+ "grad_norm": 0.5586133003234863,
344
+ "learning_rate": 2.4190213645761544e-05,
345
+ "loss": 1.6688,
346
+ "step": 11500
347
+ },
348
+ {
349
+ "epoch": 3.8307794803464357,
350
+ "eval_loss": 1.6019277572631836,
351
+ "eval_runtime": 45.0455,
352
+ "eval_samples_per_second": 33.322,
353
+ "eval_steps_per_second": 8.347,
354
+ "step": 11500
355
+ },
356
+ {
357
+ "epoch": 3.9973351099267154,
358
+ "grad_norm": 0.525917649269104,
359
+ "learning_rate": 2.0744314266023432e-05,
360
+ "loss": 1.6627,
361
+ "step": 12000
362
+ },
363
+ {
364
+ "epoch": 3.9973351099267154,
365
+ "eval_loss": 1.60073983669281,
366
+ "eval_runtime": 45.0484,
367
+ "eval_samples_per_second": 33.32,
368
+ "eval_steps_per_second": 8.347,
369
+ "step": 12000
370
+ },
371
+ {
372
+ "epoch": 4.1638907395069955,
373
+ "grad_norm": 0.5083144307136536,
374
+ "learning_rate": 1.7298414886285323e-05,
375
+ "loss": 1.6688,
376
+ "step": 12500
377
+ },
378
+ {
379
+ "epoch": 4.1638907395069955,
380
+ "eval_loss": 1.59957754611969,
381
+ "eval_runtime": 45.065,
382
+ "eval_samples_per_second": 33.307,
383
+ "eval_steps_per_second": 8.344,
384
+ "step": 12500
385
+ },
386
+ {
387
+ "epoch": 4.330446369087275,
388
+ "grad_norm": 0.5289840698242188,
389
+ "learning_rate": 1.385251550654721e-05,
390
+ "loss": 1.66,
391
+ "step": 13000
392
+ },
393
+ {
394
+ "epoch": 4.330446369087275,
395
+ "eval_loss": 1.5992504358291626,
396
+ "eval_runtime": 45.0504,
397
+ "eval_samples_per_second": 33.318,
398
+ "eval_steps_per_second": 8.346,
399
+ "step": 13000
400
+ },
401
+ {
402
+ "epoch": 4.497001998667555,
403
+ "grad_norm": 0.549419105052948,
404
+ "learning_rate": 1.0406616126809098e-05,
405
+ "loss": 1.6672,
406
+ "step": 13500
407
+ },
408
+ {
409
+ "epoch": 4.497001998667555,
410
+ "eval_loss": 1.5988696813583374,
411
+ "eval_runtime": 45.053,
412
+ "eval_samples_per_second": 33.316,
413
+ "eval_steps_per_second": 8.346,
414
+ "step": 13500
415
+ },
416
+ {
417
+ "epoch": 4.663557628247835,
418
+ "grad_norm": 0.485193133354187,
419
+ "learning_rate": 6.9607167470709864e-06,
420
+ "loss": 1.6596,
421
+ "step": 14000
422
+ },
423
+ {
424
+ "epoch": 4.663557628247835,
425
+ "eval_loss": 1.5973259210586548,
426
+ "eval_runtime": 45.0682,
427
+ "eval_samples_per_second": 33.305,
428
+ "eval_steps_per_second": 8.343,
429
+ "step": 14000
430
+ },
431
+ {
432
+ "epoch": 4.830113257828114,
433
+ "grad_norm": 0.5129671692848206,
434
+ "learning_rate": 3.514817367332874e-06,
435
+ "loss": 1.6509,
436
+ "step": 14500
437
+ },
438
+ {
439
+ "epoch": 4.830113257828114,
440
+ "eval_loss": 1.596968173980713,
441
+ "eval_runtime": 45.0647,
442
+ "eval_samples_per_second": 33.308,
443
+ "eval_steps_per_second": 8.344,
444
+ "step": 14500
445
+ },
446
+ {
447
+ "epoch": 4.996668887408394,
448
+ "grad_norm": 0.5455211997032166,
449
+ "learning_rate": 6.891798759476224e-08,
450
+ "loss": 1.6642,
451
+ "step": 15000
452
+ },
453
+ {
454
+ "epoch": 4.996668887408394,
455
+ "eval_loss": 1.5968663692474365,
456
+ "eval_runtime": 45.0733,
457
+ "eval_samples_per_second": 33.301,
458
+ "eval_steps_per_second": 8.342,
459
+ "step": 15000
460
+ }
461
+ ],
462
+ "logging_steps": 500,
463
+ "max_steps": 15010,
464
+ "num_input_tokens_seen": 0,
465
+ "num_train_epochs": 5,
466
+ "save_steps": 1000,
467
+ "stateful_callbacks": {
468
+ "TrainerControl": {
469
+ "args": {
470
+ "should_epoch_stop": false,
471
+ "should_evaluate": false,
472
+ "should_log": false,
473
+ "should_save": true,
474
+ "should_training_stop": true
475
+ },
476
+ "attributes": {}
477
+ }
478
+ },
479
+ "total_flos": 5.615808210272256e+16,
480
+ "train_batch_size": 4,
481
+ "trial_name": null,
482
+ "trial_params": null
483
+ }
checkpoint-15010/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e471f2f0c4dceb261687daad8da87d0e1bad01dadd5e8e698925382fc3baf1
3
+ size 5176
events.out.tfevents.1729978976.e101cddf3e5e.448.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49920183dc093b7747bf3e2401b6d3a4194542145783ddb5addad29076399ac6
3
+ size 20095
events.out.tfevents.1729984800.e101cddf3e5e.448.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ceaa137f48a97702a4558937a2af07dbfaaf0fb0147ea7de83f7fe95a78924a
3
+ size 359
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "50256": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ }
13
+ },
14
+ "bos_token": "<|endoftext|>",
15
+ "clean_up_tokenization_spaces": true,
16
+ "eos_token": "<|endoftext|>",
17
+ "errors": "replace",
18
+ "model_max_length": 1024,
19
+ "pad_token": "<|endoftext|>",
20
+ "tokenizer_class": "GPT2Tokenizer",
21
+ "unk_token": "<|endoftext|>"
22
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e471f2f0c4dceb261687daad8da87d0e1bad01dadd5e8e698925382fc3baf1
3
+ size 5176
vocab.json ADDED
The diff for this file is too large to render. See raw diff