## How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch BIGTRANSLATE_LANG_TABLE = { "zh": "汉语", "es": "西班牙语", "fr": "法语", "de": "德语", "hi": "印地语", "pt": "葡萄牙语", "tr": "土耳其语", "en": "英语", "ja": "日语" } def get_prompt(src_lang, tgt_lang, src_sentence): translate_instruct = f"请将以下{BIGTRANSLATE_LANG_TABLE[src_lang]}句子翻译成{BIGTRANSLATE_LANG_TABLE[tgt_lang]}:{src_sentence}" return ( "以下是一个描述任务的指令,请写一个完成该指令的适当回复。\n\n" f"### 指令:\n{translate_instruct}\n\n### 回复:") def translate(input_text, src_lang, trg_lang): prompt = get_prompt(src_lang, trg_lang, input_text) input_ids = tokenizer(prompt, return_tensors="pt") generated_tokens = model.generate(**input_ids, max_new_tokens=256)[0] return tokenizer.decode(generated_tokens, skip_special_tokens=True)[len(prompt):] translation = translate("set the temperature on my thermostat to 29 degrees ", "en", "de") # translation: stell die temperatur auf meinem thermostat auf 29 grad ``` ## Model fine tuning code https://github.com/Samsung/MT-LLM-NLU/tree/main/BigTranslateFineTuning