SandLogicTechnologies commited on
Commit
a6cd9e8
1 Parent(s): adf2840

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model: meta-llama/Meta-Llama-3-8B
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - SQL
8
+ - Code
9
+ - Meta
10
+ ---
11
+ # SandLogic Technology - Quantized llama-3-sqlcoder-8b Models
12
+
13
+ ## Model Description
14
+
15
+ We have quantized the llama-3-sqlcoder-8b model into two variants:
16
+
17
+ 1. Q5_KM
18
+ 2. Q4_KM
19
+
20
+ These quantized models offer improved efficiency while maintaining performance.
21
+
22
+ Discover our full range of quantized language models by visiting our [SandLogic Lexicon GitHub](https://github.com/sandlogic/SandLogic-Lexicons). To learn more about our company and services, check out our website at [SandLogic](https://www.sandlogic.com).
23
+ ## Original Model Information
24
+
25
+ - **Name**: llama-3-sqlcoder-8b
26
+ - **Developer**: Defog, Inc.
27
+ - **Model Type**: Text-to-SQL generation
28
+ - **Base Model**: Meta-Llama-3-8B-Instruct
29
+ - **Parameters**: 8 billion
30
+ - **License**: CC-by-SA-4.0
31
+
32
+ ## Model Capabilities
33
+
34
+ The llama-3-sqlcoder-8b model is designed for generating SQL queries to answer questions, with support for Postgres, Redshift, and Snowflake databases. It has performance on-par with the most capable generalist frontier models.
35
+
36
+ ## Inference Parameters
37
+
38
+ - **Temperature**: 0 (no sampling)
39
+ - **Prompt Format**:
40
+ ```<|begin_of_text|><|start_header_id|>user<|end_header_id|>
41
+ Generate a SQL query to answer this question: {user_question}
42
+ {instructions}
43
+ DDL statements:
44
+ {create_table_statements}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
45
+ The following SQL query best answers the question {user_question}:
46
+ ```
47
+ ## Evaluation
48
+
49
+ The model was evaluated on SQL-Eval, a PostgreSQL-based evaluation framework developed by Defog for testing and alignment of model capabilities.
50
+
51
+ ## Intended Use Cases
52
+
53
+ 1. **SQL Generation**: Automatically generate SQL queries based on natural language questions or instructions.
54
+ 2. **Database Interaction**: Assist users in interacting with Postgres, Redshift, or Snowflake databases through text-based interfaces.
55
+ 3. **Data Analysis Support**: Provide SQL-based solutions to data analysis problems described in natural language.
56
+ 4. **Programming Education**: Help students learn SQL concepts and syntax by providing example queries and explanations.
57
+
58
+ ## Model Variants
59
+
60
+ We offer two quantized versions of the llama-3-sqlcoder-8b model:
61
+
62
+ 1. **Q5_KM**: 5-bit quantization using the KM method
63
+ 2. **Q4_KM**: 4-bit quantization using the KM method
64
+
65
+ These quantized models aim to reduce model size and improve inference speed while maintaining performance as close to the original model as possible.
66
+
67
+
68
+ ## Usage
69
+
70
+ ```bash
71
+ pip install llama-cpp-python
72
+ ```
73
+ Please refer to the llama-cpp-python [documentation](https://llama-cpp-python.readthedocs.io/en/latest/) to install with GPU support.
74
+
75
+ ### Basic Text Completion
76
+ Here's an example demonstrating how to use the high-level API for basic text completion:
77
+
78
+ ```bash
79
+ from llama_cpp import Llama
80
+
81
+ llm = Llama(
82
+ model_path="./model/llama-3-sqlcoder-8b.Q5_K_M.gguf",
83
+ verbose=False,
84
+ # n_gpu_layers=-1, # Uncomment to use GPU acceleration
85
+ # n_ctx=2048, # Uncomment to increase the context window
86
+ )
87
+
88
+ output = llm.create_chat_completion(
89
+ messages = [
90
+ {"role": "system", "content": "You're an AI SQL coding assistant who help in solving coding questions"},
91
+ {
92
+ "role": "user",
93
+ "content": "write an simple sql table query and code to search employee name"
94
+ }
95
+ ]
96
+ )
97
+
98
+ print(output["choices"][0]['message']['content'])
99
+ ```
100
+
101
+ ## Download
102
+ You can download `Llama` models in `gguf` format directly from Hugging Face using the `from_pretrained` method. This feature requires the `huggingface-hub` package.
103
+
104
+ To install it, run: `pip install huggingface-hub`
105
+
106
+ ```bash
107
+ from llama_cpp import Llama
108
+
109
+ llm = Llama.from_pretrained(
110
+ repo_id="SandLogicTechnologies/Llama-3-Sqlcoder-8B-GGUF",
111
+ filename="*llama-3-sqlcoder-8b.Q5_K_M.gguf",
112
+ verbose=False
113
+ )
114
+ ```
115
+ By default, from_pretrained will download the model to the Hugging Face cache directory. You can manage installed model files using the huggingface-cli tool.
116
+
117
+ ## License
118
+
119
+ License: [CC-by-SA-4.0] Finetuned from model: [Meta-Llama-3-8B-Instruct]
120
+
121
+
122
+
123
+ ## Acknowledgements
124
+
125
+ We thank Defog, Inc. for developing the original llama-3-sqlcoder-8b model and the creators of Llama3 for their foundational work.
126
+ Special thanks to Georgi Gerganov and the entire llama.cpp development team for their outstanding contributions.
127
+
128
+
129
+
130
+ ## Contact
131
+
132
+ For any inquiries or support, please contact us at support@sandlogic.com or visit our [support page](https://www.sandlogic.com).