File size: 2,692 Bytes
718be7e 26b6c38 718be7e 26b6c38 718be7e 26b6c38 718be7e 26b6c38 718be7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-large-ls960-ft-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-large-ls960-ft-finetuned-gtzan
This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2625 | 1.0 | 56 | 2.2399 | 0.23 |
| 1.7887 | 1.99 | 112 | 1.7278 | 0.4 |
| 1.4728 | 2.99 | 168 | 1.4387 | 0.48 |
| 1.1536 | 4.0 | 225 | 1.3178 | 0.54 |
| 1.0758 | 5.0 | 281 | 1.1903 | 0.6 |
| 0.9742 | 5.99 | 337 | 0.8416 | 0.72 |
| 0.8285 | 6.99 | 393 | 0.5875 | 0.78 |
| 0.7953 | 8.0 | 450 | 0.7786 | 0.75 |
| 0.6224 | 9.0 | 506 | 0.6753 | 0.8 |
| 0.3806 | 9.99 | 562 | 0.5826 | 0.84 |
| 0.3121 | 10.99 | 618 | 0.7312 | 0.78 |
| 0.1729 | 12.0 | 675 | 0.6526 | 0.85 |
| 0.2958 | 13.0 | 731 | 0.7831 | 0.83 |
| 0.1496 | 13.99 | 787 | 0.8518 | 0.79 |
| 0.0659 | 14.99 | 843 | 0.8194 | 0.82 |
| 0.1208 | 16.0 | 900 | 0.8555 | 0.82 |
| 0.147 | 17.0 | 956 | 0.6768 | 0.86 |
| 0.0284 | 17.99 | 1012 | 0.7065 | 0.86 |
| 0.0295 | 18.99 | 1068 | 0.6942 | 0.87 |
| 0.0524 | 19.91 | 1120 | nan | 0.86 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|