File size: 4,564 Bytes
9dedb54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-finetuned-FOMC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-finetuned-FOMC

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2531
- Rouge1: 33.7697
- Rouge2: 20.9968
- Rougel: 30.2984
- Rougelsum: 30.5446
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 10   | 2.6231          | 31.9634 | 19.4463 | 28.9802 | 29.3026   | 19.0    |
| No log        | 2.0   | 20   | 2.5645          | 31.6125 | 19.0593 | 28.572  | 28.9666   | 19.0    |
| No log        | 3.0   | 30   | 2.5120          | 31.9437 | 19.4395 | 28.9629 | 29.2817   | 19.0    |
| No log        | 4.0   | 40   | 2.4752          | 30.874  | 18.8778 | 27.8613 | 28.3752   | 19.0    |
| No log        | 5.0   | 50   | 2.4449          | 30.4001 | 18.425  | 27.2624 | 27.939    | 19.0    |
| No log        | 6.0   | 60   | 2.4177          | 31.0542 | 19.1125 | 27.9874 | 28.6255   | 19.0    |
| No log        | 7.0   | 70   | 2.3935          | 31.0542 | 19.1125 | 27.9874 | 28.6255   | 19.0    |
| No log        | 8.0   | 80   | 2.3778          | 31.0542 | 19.1125 | 27.9874 | 28.6255   | 19.0    |
| No log        | 9.0   | 90   | 2.3565          | 31.0542 | 19.1125 | 27.9874 | 28.6255   | 19.0    |
| No log        | 10.0  | 100  | 2.3415          | 31.0542 | 19.1125 | 27.9874 | 28.6255   | 19.0    |
| No log        | 11.0  | 110  | 2.3296          | 32.2319 | 19.728  | 29.1471 | 29.4452   | 19.0    |
| No log        | 12.0  | 120  | 2.3206          | 32.5462 | 19.9463 | 29.5345 | 29.6243   | 19.0    |
| No log        | 13.0  | 130  | 2.3123          | 32.5462 | 19.9463 | 29.5345 | 29.6243   | 19.0    |
| No log        | 14.0  | 140  | 2.3034          | 32.5462 | 19.9463 | 29.5345 | 29.3859   | 19.0    |
| No log        | 15.0  | 150  | 2.2966          | 32.5462 | 19.9463 | 29.5345 | 29.3859   | 19.0    |
| No log        | 16.0  | 160  | 2.2882          | 32.5462 | 19.9463 | 29.5345 | 29.3859   | 19.0    |
| No log        | 17.0  | 170  | 2.2813          | 32.5462 | 19.9463 | 29.5345 | 29.3859   | 19.0    |
| No log        | 18.0  | 180  | 2.2772          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 19.0  | 190  | 2.2728          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 20.0  | 200  | 2.2683          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 21.0  | 210  | 2.2643          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 22.0  | 220  | 2.2627          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 23.0  | 230  | 2.2615          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 24.0  | 240  | 2.2586          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 25.0  | 250  | 2.2573          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 26.0  | 260  | 2.2560          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 27.0  | 270  | 2.2552          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 28.0  | 280  | 2.2542          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 29.0  | 290  | 2.2533          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |
| No log        | 30.0  | 300  | 2.2531          | 33.7697 | 20.9968 | 30.2984 | 30.5446   | 19.0    |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3