init
Browse files- .gitignore +1 -0
- PowerPaint_Brushnet/config.json +57 -0
- PowerPaint_Brushnet/diffusion_pytorch_model.fp16.safetensors +3 -0
- PowerPaint_Brushnet/diffusion_pytorch_model.safetensors +3 -0
- context-aware_result.png +0 -0
- image-outpainting_result.png +0 -0
- inpaint_result.png +0 -0
- main.py +210 -0
- object-removal_result.png +0 -0
- powerpaint_v2/BrushNet_CA.py +933 -0
- powerpaint_v2/pipeline_PowerPaint_Brushnet_CA.py +1494 -0
- powerpaint_v2/power_paint_tokenizer.py +513 -0
- powerpaint_v2/unet_2d_blocks.py +0 -0
- powerpaint_v2/unet_2d_condition.py +1353 -0
- shape-guided_result.png +0 -0
- text_encoder_brushnet/config.json +25 -0
- text_encoder_brushnet/model.fp16.safetensors +3 -0
- text_encoder_brushnet/model.safetensors +3 -0
- tokenizer/added_tokens.json +32 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +270 -0
- tokenizer/vocab.json +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
PowerPaint_Brushnet/config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "BrushNetModel",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": null,
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": null,
|
8 |
+
"attention_head_dim": 8,
|
9 |
+
"block_out_channels": [
|
10 |
+
320,
|
11 |
+
640,
|
12 |
+
1280,
|
13 |
+
1280
|
14 |
+
],
|
15 |
+
"brushnet_conditioning_channel_order": "rgb",
|
16 |
+
"class_embed_type": null,
|
17 |
+
"conditioning_channels": 5,
|
18 |
+
"conditioning_embedding_out_channels": [
|
19 |
+
16,
|
20 |
+
32,
|
21 |
+
96,
|
22 |
+
256
|
23 |
+
],
|
24 |
+
"cross_attention_dim": 768,
|
25 |
+
"down_block_types": [
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"CrossAttnDownBlock2D",
|
29 |
+
"DownBlock2D"
|
30 |
+
],
|
31 |
+
"downsample_padding": 1,
|
32 |
+
"encoder_hid_dim": null,
|
33 |
+
"encoder_hid_dim_type": null,
|
34 |
+
"flip_sin_to_cos": true,
|
35 |
+
"freq_shift": 0,
|
36 |
+
"global_pool_conditions": false,
|
37 |
+
"in_channels": 4,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_scale_factor": 1,
|
40 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
41 |
+
"norm_eps": 1e-05,
|
42 |
+
"norm_num_groups": 32,
|
43 |
+
"num_attention_heads": null,
|
44 |
+
"num_class_embeds": null,
|
45 |
+
"only_cross_attention": false,
|
46 |
+
"projection_class_embeddings_input_dim": null,
|
47 |
+
"resnet_time_scale_shift": "default",
|
48 |
+
"transformer_layers_per_block": 1,
|
49 |
+
"up_block_types": [
|
50 |
+
"UpBlock2D",
|
51 |
+
"CrossAttnUpBlock2D",
|
52 |
+
"CrossAttnUpBlock2D",
|
53 |
+
"CrossAttnUpBlock2D"
|
54 |
+
],
|
55 |
+
"upcast_attention": false,
|
56 |
+
"use_linear_projection": false
|
57 |
+
}
|
PowerPaint_Brushnet/diffusion_pytorch_model.fp16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9c63d0b055c91cb098d303f83087090c09b4edd7848f1fedab313eff004f014
|
3 |
+
size 1772227696
|
PowerPaint_Brushnet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:745a3babce414c8b765c57e86412544cecdbdb0601648900d10b482256babb76
|
3 |
+
size 3544366408
|
context-aware_result.png
ADDED
image-outpainting_result.png
ADDED
inpaint_result.png
ADDED
main.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageFilter, ImageOps
|
5 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
6 |
+
from diffusers.utils import load_image
|
7 |
+
from diffusers import DPMSolverMultistepScheduler
|
8 |
+
from safetensors.torch import load_model
|
9 |
+
|
10 |
+
from powerpaint_v2.BrushNet_CA import BrushNetModel
|
11 |
+
from powerpaint_v2.pipeline_PowerPaint_Brushnet_CA import (
|
12 |
+
StableDiffusionPowerPaintBrushNetPipeline,
|
13 |
+
)
|
14 |
+
from powerpaint_v2.power_paint_tokenizer import PowerPaintTokenizer
|
15 |
+
from powerpaint_v2.unet_2d_condition import UNet2DConditionModel
|
16 |
+
|
17 |
+
|
18 |
+
def task_to_prompt(control_type):
|
19 |
+
if control_type == "object-removal":
|
20 |
+
promptA = "P_ctxt"
|
21 |
+
promptB = "P_ctxt"
|
22 |
+
negative_promptA = "P_obj"
|
23 |
+
negative_promptB = "P_obj"
|
24 |
+
elif control_type == "context-aware":
|
25 |
+
promptA = "P_ctxt"
|
26 |
+
promptB = "P_ctxt"
|
27 |
+
negative_promptA = ""
|
28 |
+
negative_promptB = ""
|
29 |
+
elif control_type == "shape-guided":
|
30 |
+
promptA = "P_shape"
|
31 |
+
promptB = "P_ctxt"
|
32 |
+
negative_promptA = "P_shape"
|
33 |
+
negative_promptB = "P_ctxt"
|
34 |
+
elif control_type == "image-outpainting":
|
35 |
+
promptA = "P_ctxt"
|
36 |
+
promptB = "P_ctxt"
|
37 |
+
negative_promptA = "P_obj"
|
38 |
+
negative_promptB = "P_obj"
|
39 |
+
else:
|
40 |
+
promptA = "P_obj"
|
41 |
+
promptB = "P_obj"
|
42 |
+
negative_promptA = "P_obj"
|
43 |
+
negative_promptB = "P_obj"
|
44 |
+
|
45 |
+
return promptA, promptB, negative_promptA, negative_promptB
|
46 |
+
|
47 |
+
|
48 |
+
@torch.inference_mode()
|
49 |
+
def predict(
|
50 |
+
pipe,
|
51 |
+
input_image,
|
52 |
+
prompt,
|
53 |
+
fitting_degree,
|
54 |
+
ddim_steps,
|
55 |
+
scale,
|
56 |
+
negative_prompt,
|
57 |
+
task,
|
58 |
+
):
|
59 |
+
promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(task)
|
60 |
+
print(task, promptA, promptB, negative_promptA, negative_promptB)
|
61 |
+
img = np.array(input_image["image"].convert("RGB"))
|
62 |
+
|
63 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
64 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
65 |
+
input_image["image"] = input_image["image"].resize((H, W))
|
66 |
+
input_image["mask"] = input_image["mask"].resize((H, W))
|
67 |
+
|
68 |
+
np_inpimg = np.array(input_image["image"])
|
69 |
+
np_inmask = np.array(input_image["mask"]) / 255.0
|
70 |
+
|
71 |
+
np_inpimg = np_inpimg * (1 - np_inmask)
|
72 |
+
|
73 |
+
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
|
74 |
+
|
75 |
+
result = pipe(
|
76 |
+
promptA=promptA,
|
77 |
+
promptB=promptB,
|
78 |
+
promptU=prompt,
|
79 |
+
tradoff=fitting_degree,
|
80 |
+
tradoff_nag=fitting_degree,
|
81 |
+
image=input_image["image"].convert("RGB"),
|
82 |
+
mask=input_image["mask"].convert("RGB"),
|
83 |
+
num_inference_steps=ddim_steps,
|
84 |
+
brushnet_conditioning_scale=1.0,
|
85 |
+
negative_promptA=negative_promptA,
|
86 |
+
negative_promptB=negative_promptB,
|
87 |
+
negative_promptU=negative_prompt,
|
88 |
+
guidance_scale=scale,
|
89 |
+
width=H,
|
90 |
+
height=W,
|
91 |
+
).images[0]
|
92 |
+
return result
|
93 |
+
m_img = (
|
94 |
+
input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
|
95 |
+
)
|
96 |
+
m_img = np.asarray(m_img) / 255.0
|
97 |
+
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
|
98 |
+
ours_np = np.asarray(result) / 255.0
|
99 |
+
ours_np = ours_np * m_img + (1 - m_img) * img_np
|
100 |
+
result_paste = Image.fromarray(np.uint8(ours_np * 255))
|
101 |
+
return result_paste
|
102 |
+
|
103 |
+
|
104 |
+
text_encoder_brushnet = CLIPTextModel.from_pretrained(
|
105 |
+
"text_encoder_brushnet",
|
106 |
+
variant="fp16",
|
107 |
+
torch_dtype=torch.float16,
|
108 |
+
)
|
109 |
+
unet = UNet2DConditionModel.from_pretrained(
|
110 |
+
"runwayml/stable-diffusion-v1-5",
|
111 |
+
subfolder="unet",
|
112 |
+
variant="fp16",
|
113 |
+
torch_dtype=torch.float16,
|
114 |
+
)
|
115 |
+
brushnet = BrushNetModel.from_pretrained(
|
116 |
+
"./PowerPaint_Brushnet",
|
117 |
+
variant="fp16",
|
118 |
+
torch_dtype=torch.float16,
|
119 |
+
)
|
120 |
+
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
|
121 |
+
"runwayml/stable-diffusion-v1-5",
|
122 |
+
torch_dtype=torch.float16,
|
123 |
+
safety_checker=None,
|
124 |
+
unet=unet,
|
125 |
+
brushnet=brushnet,
|
126 |
+
text_encoder_brushnet=text_encoder_brushnet,
|
127 |
+
variant="fp16",
|
128 |
+
)
|
129 |
+
pipe.tokenizer = PowerPaintTokenizer(CLIPTokenizer.from_pretrained("./tokenizer"))
|
130 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
131 |
+
pipe = pipe.to("mps")
|
132 |
+
|
133 |
+
|
134 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
135 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
136 |
+
image = load_image(img_url).convert("RGB").resize((512, 512))
|
137 |
+
mask = load_image(mask_url).convert("RGB").resize((512, 512))
|
138 |
+
|
139 |
+
|
140 |
+
input_image = {"image": image, "mask": mask}
|
141 |
+
prompt = "Face of a fox sitting on a bench"
|
142 |
+
negative_prompt = "out of frame, lowres, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, disfigured, gross proportions, malformed limbs, watermark, signature"
|
143 |
+
fitting_degree = 1
|
144 |
+
steps = 30
|
145 |
+
tasks = [
|
146 |
+
{
|
147 |
+
"task": "object-removal",
|
148 |
+
"guidance_scale": 12,
|
149 |
+
"prompt": "empty scene blur",
|
150 |
+
"negative_prompt": "",
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"task": "shape-guided",
|
154 |
+
"guidance_scale": 7.5,
|
155 |
+
"prompt": prompt,
|
156 |
+
"negative_prompt": negative_prompt,
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"task": "context-aware",
|
160 |
+
"guidance_scale": 7.5,
|
161 |
+
"prompt": "empty secne",
|
162 |
+
"negative_prompt": negative_prompt,
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"task": "inpaint",
|
166 |
+
"guidance_scale": 7.5,
|
167 |
+
"prompt": prompt,
|
168 |
+
"negative_prompt": negative_prompt,
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"task": "image-outpainting",
|
172 |
+
"guidance_scale": 7.5,
|
173 |
+
"prompt": "empty scene",
|
174 |
+
"negative_prompt": negative_prompt,
|
175 |
+
},
|
176 |
+
]
|
177 |
+
|
178 |
+
for task in tasks:
|
179 |
+
if task["task"] == "image-outpainting":
|
180 |
+
margin = 128
|
181 |
+
input_image["image"] = ImageOps.expand(
|
182 |
+
input_image["image"],
|
183 |
+
border=(margin, margin, margin, margin),
|
184 |
+
fill=(127, 127, 127),
|
185 |
+
)
|
186 |
+
outpaint_mask = np.zeros_like(np.asarray(input_image["mask"]))
|
187 |
+
input_image["mask"] = Image.fromarray(
|
188 |
+
cv2.copyMakeBorder(
|
189 |
+
outpaint_mask,
|
190 |
+
margin,
|
191 |
+
margin,
|
192 |
+
margin,
|
193 |
+
margin,
|
194 |
+
cv2.BORDER_CONSTANT,
|
195 |
+
value=(255, 255, 255),
|
196 |
+
)
|
197 |
+
)
|
198 |
+
|
199 |
+
result_image = predict(
|
200 |
+
pipe,
|
201 |
+
input_image,
|
202 |
+
task["prompt"],
|
203 |
+
fitting_degree,
|
204 |
+
steps,
|
205 |
+
task["guidance_scale"],
|
206 |
+
task["negative_prompt"],
|
207 |
+
task["task"],
|
208 |
+
)
|
209 |
+
|
210 |
+
result_image.save(f"{task['task']}_result.png")
|
object-removal_result.png
ADDED
powerpaint_v2/BrushNet_CA.py
ADDED
@@ -0,0 +1,933 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.utils import BaseOutput, logging
|
9 |
+
from diffusers.models.attention_processor import (
|
10 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
11 |
+
CROSS_ATTENTION_PROCESSORS,
|
12 |
+
AttentionProcessor,
|
13 |
+
AttnAddedKVProcessor,
|
14 |
+
AttnProcessor,
|
15 |
+
)
|
16 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, \
|
17 |
+
TimestepEmbedding, Timesteps
|
18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
19 |
+
from .unet_2d_blocks import (
|
20 |
+
CrossAttnDownBlock2D,
|
21 |
+
DownBlock2D,
|
22 |
+
get_down_block,
|
23 |
+
get_mid_block,
|
24 |
+
get_up_block
|
25 |
+
)
|
26 |
+
|
27 |
+
from .unet_2d_condition import UNet2DConditionModel
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class BrushNetOutput(BaseOutput):
|
34 |
+
"""
|
35 |
+
The output of [`BrushNetModel`].
|
36 |
+
|
37 |
+
Args:
|
38 |
+
up_block_res_samples (`tuple[torch.Tensor]`):
|
39 |
+
A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
|
40 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
41 |
+
used to condition the original UNet's upsampling activations.
|
42 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
43 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
44 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
45 |
+
used to condition the original UNet's downsampling activations.
|
46 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
47 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
48 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
49 |
+
Output can be used to condition the original UNet's middle block activation.
|
50 |
+
"""
|
51 |
+
|
52 |
+
up_block_res_samples: Tuple[torch.Tensor]
|
53 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
54 |
+
mid_block_res_sample: torch.Tensor
|
55 |
+
|
56 |
+
|
57 |
+
class BrushNetModel(ModelMixin, ConfigMixin):
|
58 |
+
"""
|
59 |
+
A BrushNet model.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
in_channels (`int`, defaults to 4):
|
63 |
+
The number of channels in the input sample.
|
64 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
65 |
+
Whether to flip the sin to cos in the time embedding.
|
66 |
+
freq_shift (`int`, defaults to 0):
|
67 |
+
The frequency shift to apply to the time embedding.
|
68 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
69 |
+
The tuple of downsample blocks to use.
|
70 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
71 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
72 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
73 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
74 |
+
The tuple of upsample blocks to use.
|
75 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
76 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
77 |
+
The tuple of output channels for each block.
|
78 |
+
layers_per_block (`int`, defaults to 2):
|
79 |
+
The number of layers per block.
|
80 |
+
downsample_padding (`int`, defaults to 1):
|
81 |
+
The padding to use for the downsampling convolution.
|
82 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
83 |
+
The scale factor to use for the mid block.
|
84 |
+
act_fn (`str`, defaults to "silu"):
|
85 |
+
The activation function to use.
|
86 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
87 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
88 |
+
in post-processing.
|
89 |
+
norm_eps (`float`, defaults to 1e-5):
|
90 |
+
The epsilon to use for the normalization.
|
91 |
+
cross_attention_dim (`int`, defaults to 1280):
|
92 |
+
The dimension of the cross attention features.
|
93 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
94 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
95 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
96 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
97 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
98 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
99 |
+
dimension to `cross_attention_dim`.
|
100 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
101 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
102 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
103 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
104 |
+
The dimension of the attention heads.
|
105 |
+
use_linear_projection (`bool`, defaults to `False`):
|
106 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
107 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
108 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
109 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
110 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
111 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
112 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
113 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
114 |
+
class conditioning with `class_embed_type` equal to `None`.
|
115 |
+
upcast_attention (`bool`, defaults to `False`):
|
116 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
117 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
118 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
119 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
120 |
+
`class_embed_type="projection"`.
|
121 |
+
brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
122 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
123 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
124 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
125 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
126 |
+
TODO(Patrick) - unused parameter.
|
127 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
128 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
129 |
+
"""
|
130 |
+
|
131 |
+
_supports_gradient_checkpointing = True
|
132 |
+
|
133 |
+
@register_to_config
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
in_channels: int = 4,
|
137 |
+
conditioning_channels: int = 5,
|
138 |
+
flip_sin_to_cos: bool = True,
|
139 |
+
freq_shift: int = 0,
|
140 |
+
down_block_types: Tuple[str, ...] = (
|
141 |
+
"CrossAttnDownBlock2D",
|
142 |
+
"CrossAttnDownBlock2D",
|
143 |
+
"CrossAttnDownBlock2D",
|
144 |
+
"DownBlock2D",
|
145 |
+
),
|
146 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
147 |
+
up_block_types: Tuple[str, ...] = (
|
148 |
+
"UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"
|
149 |
+
),
|
150 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
151 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
152 |
+
layers_per_block: int = 2,
|
153 |
+
downsample_padding: int = 1,
|
154 |
+
mid_block_scale_factor: float = 1,
|
155 |
+
act_fn: str = "silu",
|
156 |
+
norm_num_groups: Optional[int] = 32,
|
157 |
+
norm_eps: float = 1e-5,
|
158 |
+
cross_attention_dim: int = 1280,
|
159 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
160 |
+
encoder_hid_dim: Optional[int] = None,
|
161 |
+
encoder_hid_dim_type: Optional[str] = None,
|
162 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
163 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
164 |
+
use_linear_projection: bool = False,
|
165 |
+
class_embed_type: Optional[str] = None,
|
166 |
+
addition_embed_type: Optional[str] = None,
|
167 |
+
addition_time_embed_dim: Optional[int] = None,
|
168 |
+
num_class_embeds: Optional[int] = None,
|
169 |
+
upcast_attention: bool = False,
|
170 |
+
resnet_time_scale_shift: str = "default",
|
171 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
172 |
+
brushnet_conditioning_channel_order: str = "rgb",
|
173 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
174 |
+
global_pool_conditions: bool = False,
|
175 |
+
addition_embed_type_num_heads: int = 64,
|
176 |
+
):
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
180 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
181 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
182 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
183 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
184 |
+
# which is why we correct for the naming here.
|
185 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
186 |
+
|
187 |
+
# Check inputs
|
188 |
+
if len(down_block_types) != len(up_block_types):
|
189 |
+
raise ValueError(
|
190 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
191 |
+
)
|
192 |
+
|
193 |
+
if len(block_out_channels) != len(down_block_types):
|
194 |
+
raise ValueError(
|
195 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
196 |
+
)
|
197 |
+
|
198 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
199 |
+
raise ValueError(
|
200 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
201 |
+
)
|
202 |
+
|
203 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
204 |
+
raise ValueError(
|
205 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
206 |
+
)
|
207 |
+
|
208 |
+
if isinstance(transformer_layers_per_block, int):
|
209 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
210 |
+
|
211 |
+
# input
|
212 |
+
conv_in_kernel = 3
|
213 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
214 |
+
self.conv_in_condition = nn.Conv2d(
|
215 |
+
in_channels + conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel,
|
216 |
+
padding=conv_in_padding
|
217 |
+
)
|
218 |
+
|
219 |
+
# time
|
220 |
+
time_embed_dim = block_out_channels[0] * 4
|
221 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
222 |
+
timestep_input_dim = block_out_channels[0]
|
223 |
+
self.time_embedding = TimestepEmbedding(
|
224 |
+
timestep_input_dim,
|
225 |
+
time_embed_dim,
|
226 |
+
act_fn=act_fn,
|
227 |
+
)
|
228 |
+
|
229 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
230 |
+
encoder_hid_dim_type = "text_proj"
|
231 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
232 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
233 |
+
|
234 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
235 |
+
raise ValueError(
|
236 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if encoder_hid_dim_type == "text_proj":
|
240 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
241 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
242 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
243 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
244 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
245 |
+
self.encoder_hid_proj = TextImageProjection(
|
246 |
+
text_embed_dim=encoder_hid_dim,
|
247 |
+
image_embed_dim=cross_attention_dim,
|
248 |
+
cross_attention_dim=cross_attention_dim,
|
249 |
+
)
|
250 |
+
|
251 |
+
elif encoder_hid_dim_type is not None:
|
252 |
+
raise ValueError(
|
253 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
self.encoder_hid_proj = None
|
257 |
+
|
258 |
+
# class embedding
|
259 |
+
if class_embed_type is None and num_class_embeds is not None:
|
260 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
261 |
+
elif class_embed_type == "timestep":
|
262 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
263 |
+
elif class_embed_type == "identity":
|
264 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
265 |
+
elif class_embed_type == "projection":
|
266 |
+
if projection_class_embeddings_input_dim is None:
|
267 |
+
raise ValueError(
|
268 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
269 |
+
)
|
270 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
271 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
272 |
+
# 2. it projects from an arbitrary input dimension.
|
273 |
+
#
|
274 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
275 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
276 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
277 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
278 |
+
else:
|
279 |
+
self.class_embedding = None
|
280 |
+
|
281 |
+
if addition_embed_type == "text":
|
282 |
+
if encoder_hid_dim is not None:
|
283 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
284 |
+
else:
|
285 |
+
text_time_embedding_from_dim = cross_attention_dim
|
286 |
+
|
287 |
+
self.add_embedding = TextTimeEmbedding(
|
288 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
289 |
+
)
|
290 |
+
elif addition_embed_type == "text_image":
|
291 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
292 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
293 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
294 |
+
self.add_embedding = TextImageTimeEmbedding(
|
295 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
296 |
+
)
|
297 |
+
elif addition_embed_type == "text_time":
|
298 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
299 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
300 |
+
|
301 |
+
elif addition_embed_type is not None:
|
302 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
303 |
+
|
304 |
+
self.down_blocks = nn.ModuleList([])
|
305 |
+
self.brushnet_down_blocks = nn.ModuleList([])
|
306 |
+
|
307 |
+
if isinstance(only_cross_attention, bool):
|
308 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
309 |
+
|
310 |
+
if isinstance(attention_head_dim, int):
|
311 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
312 |
+
|
313 |
+
if isinstance(num_attention_heads, int):
|
314 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
315 |
+
|
316 |
+
# down
|
317 |
+
output_channel = block_out_channels[0]
|
318 |
+
|
319 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
320 |
+
brushnet_block = zero_module(brushnet_block)
|
321 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
322 |
+
|
323 |
+
for i, down_block_type in enumerate(down_block_types):
|
324 |
+
input_channel = output_channel
|
325 |
+
output_channel = block_out_channels[i]
|
326 |
+
is_final_block = i == len(block_out_channels) - 1
|
327 |
+
|
328 |
+
down_block = get_down_block(
|
329 |
+
down_block_type,
|
330 |
+
num_layers=layers_per_block,
|
331 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
332 |
+
in_channels=input_channel,
|
333 |
+
out_channels=output_channel,
|
334 |
+
temb_channels=time_embed_dim,
|
335 |
+
add_downsample=not is_final_block,
|
336 |
+
resnet_eps=norm_eps,
|
337 |
+
resnet_act_fn=act_fn,
|
338 |
+
resnet_groups=norm_num_groups,
|
339 |
+
cross_attention_dim=cross_attention_dim,
|
340 |
+
num_attention_heads=num_attention_heads[i],
|
341 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
342 |
+
downsample_padding=downsample_padding,
|
343 |
+
use_linear_projection=use_linear_projection,
|
344 |
+
only_cross_attention=only_cross_attention[i],
|
345 |
+
upcast_attention=upcast_attention,
|
346 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
347 |
+
)
|
348 |
+
self.down_blocks.append(down_block)
|
349 |
+
|
350 |
+
for _ in range(layers_per_block):
|
351 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
352 |
+
brushnet_block = zero_module(brushnet_block)
|
353 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
354 |
+
|
355 |
+
if not is_final_block:
|
356 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
357 |
+
brushnet_block = zero_module(brushnet_block)
|
358 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
359 |
+
|
360 |
+
# mid
|
361 |
+
mid_block_channel = block_out_channels[-1]
|
362 |
+
|
363 |
+
brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
364 |
+
brushnet_block = zero_module(brushnet_block)
|
365 |
+
self.brushnet_mid_block = brushnet_block
|
366 |
+
|
367 |
+
self.mid_block = get_mid_block(
|
368 |
+
mid_block_type,
|
369 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
370 |
+
in_channels=mid_block_channel,
|
371 |
+
temb_channels=time_embed_dim,
|
372 |
+
resnet_eps=norm_eps,
|
373 |
+
resnet_act_fn=act_fn,
|
374 |
+
output_scale_factor=mid_block_scale_factor,
|
375 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
+
cross_attention_dim=cross_attention_dim,
|
377 |
+
num_attention_heads=num_attention_heads[-1],
|
378 |
+
resnet_groups=norm_num_groups,
|
379 |
+
use_linear_projection=use_linear_projection,
|
380 |
+
upcast_attention=upcast_attention,
|
381 |
+
)
|
382 |
+
|
383 |
+
# count how many layers upsample the images
|
384 |
+
self.num_upsamplers = 0
|
385 |
+
|
386 |
+
# up
|
387 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
388 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
389 |
+
reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block)))
|
390 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
391 |
+
|
392 |
+
output_channel = reversed_block_out_channels[0]
|
393 |
+
|
394 |
+
self.up_blocks = nn.ModuleList([])
|
395 |
+
self.brushnet_up_blocks = nn.ModuleList([])
|
396 |
+
|
397 |
+
for i, up_block_type in enumerate(up_block_types):
|
398 |
+
is_final_block = i == len(block_out_channels) - 1
|
399 |
+
|
400 |
+
prev_output_channel = output_channel
|
401 |
+
output_channel = reversed_block_out_channels[i]
|
402 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
403 |
+
|
404 |
+
# add upsample block for all BUT final layer
|
405 |
+
if not is_final_block:
|
406 |
+
add_upsample = True
|
407 |
+
self.num_upsamplers += 1
|
408 |
+
else:
|
409 |
+
add_upsample = False
|
410 |
+
|
411 |
+
up_block = get_up_block(
|
412 |
+
up_block_type,
|
413 |
+
num_layers=layers_per_block + 1,
|
414 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
415 |
+
in_channels=input_channel,
|
416 |
+
out_channels=output_channel,
|
417 |
+
prev_output_channel=prev_output_channel,
|
418 |
+
temb_channels=time_embed_dim,
|
419 |
+
add_upsample=add_upsample,
|
420 |
+
resnet_eps=norm_eps,
|
421 |
+
resnet_act_fn=act_fn,
|
422 |
+
resolution_idx=i,
|
423 |
+
resnet_groups=norm_num_groups,
|
424 |
+
cross_attention_dim=cross_attention_dim,
|
425 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
426 |
+
use_linear_projection=use_linear_projection,
|
427 |
+
only_cross_attention=only_cross_attention[i],
|
428 |
+
upcast_attention=upcast_attention,
|
429 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
430 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
431 |
+
)
|
432 |
+
self.up_blocks.append(up_block)
|
433 |
+
prev_output_channel = output_channel
|
434 |
+
|
435 |
+
for _ in range(layers_per_block + 1):
|
436 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
437 |
+
brushnet_block = zero_module(brushnet_block)
|
438 |
+
self.brushnet_up_blocks.append(brushnet_block)
|
439 |
+
|
440 |
+
if not is_final_block:
|
441 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
442 |
+
brushnet_block = zero_module(brushnet_block)
|
443 |
+
self.brushnet_up_blocks.append(brushnet_block)
|
444 |
+
|
445 |
+
@classmethod
|
446 |
+
def from_unet(
|
447 |
+
cls,
|
448 |
+
unet: UNet2DConditionModel,
|
449 |
+
brushnet_conditioning_channel_order: str = "rgb",
|
450 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
451 |
+
load_weights_from_unet: bool = True,
|
452 |
+
conditioning_channels: int = 5,
|
453 |
+
):
|
454 |
+
r"""
|
455 |
+
Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
|
456 |
+
|
457 |
+
Parameters:
|
458 |
+
unet (`UNet2DConditionModel`):
|
459 |
+
The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
|
460 |
+
where applicable.
|
461 |
+
"""
|
462 |
+
transformer_layers_per_block = (
|
463 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
464 |
+
)
|
465 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
466 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
467 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
468 |
+
addition_time_embed_dim = (
|
469 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
470 |
+
)
|
471 |
+
|
472 |
+
brushnet = cls(
|
473 |
+
in_channels=unet.config.in_channels,
|
474 |
+
conditioning_channels=conditioning_channels,
|
475 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
476 |
+
freq_shift=unet.config.freq_shift,
|
477 |
+
# down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'],
|
478 |
+
down_block_types=["CrossAttnDownBlock2D",
|
479 |
+
"CrossAttnDownBlock2D",
|
480 |
+
"CrossAttnDownBlock2D",
|
481 |
+
"DownBlock2D", ],
|
482 |
+
# mid_block_type='MidBlock2D',
|
483 |
+
mid_block_type="UNetMidBlock2DCrossAttn",
|
484 |
+
# up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'],
|
485 |
+
up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
|
486 |
+
only_cross_attention=unet.config.only_cross_attention,
|
487 |
+
block_out_channels=unet.config.block_out_channels,
|
488 |
+
layers_per_block=unet.config.layers_per_block,
|
489 |
+
downsample_padding=unet.config.downsample_padding,
|
490 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
491 |
+
act_fn=unet.config.act_fn,
|
492 |
+
norm_num_groups=unet.config.norm_num_groups,
|
493 |
+
norm_eps=unet.config.norm_eps,
|
494 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
495 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
496 |
+
encoder_hid_dim=encoder_hid_dim,
|
497 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
498 |
+
attention_head_dim=unet.config.attention_head_dim,
|
499 |
+
num_attention_heads=unet.config.num_attention_heads,
|
500 |
+
use_linear_projection=unet.config.use_linear_projection,
|
501 |
+
class_embed_type=unet.config.class_embed_type,
|
502 |
+
addition_embed_type=addition_embed_type,
|
503 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
504 |
+
num_class_embeds=unet.config.num_class_embeds,
|
505 |
+
upcast_attention=unet.config.upcast_attention,
|
506 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
507 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
508 |
+
brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
|
509 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
510 |
+
)
|
511 |
+
|
512 |
+
if load_weights_from_unet:
|
513 |
+
conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight)
|
514 |
+
conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
|
515 |
+
conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
|
516 |
+
brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight)
|
517 |
+
brushnet.conv_in_condition.bias = unet.conv_in.bias
|
518 |
+
|
519 |
+
brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
520 |
+
brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
521 |
+
|
522 |
+
if brushnet.class_embedding:
|
523 |
+
brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
524 |
+
|
525 |
+
brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
526 |
+
brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
527 |
+
brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
|
528 |
+
|
529 |
+
return brushnet.to(unet.dtype)
|
530 |
+
|
531 |
+
@property
|
532 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
533 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
534 |
+
r"""
|
535 |
+
Returns:
|
536 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
537 |
+
indexed by its weight name.
|
538 |
+
"""
|
539 |
+
# set recursively
|
540 |
+
processors = {}
|
541 |
+
|
542 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
543 |
+
if hasattr(module, "get_processor"):
|
544 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
545 |
+
|
546 |
+
for sub_name, child in module.named_children():
|
547 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
548 |
+
|
549 |
+
return processors
|
550 |
+
|
551 |
+
for name, module in self.named_children():
|
552 |
+
fn_recursive_add_processors(name, module, processors)
|
553 |
+
|
554 |
+
return processors
|
555 |
+
|
556 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
557 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
558 |
+
r"""
|
559 |
+
Sets the attention processor to use to compute attention.
|
560 |
+
|
561 |
+
Parameters:
|
562 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
563 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
564 |
+
for **all** `Attention` layers.
|
565 |
+
|
566 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
567 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
568 |
+
|
569 |
+
"""
|
570 |
+
count = len(self.attn_processors.keys())
|
571 |
+
|
572 |
+
if isinstance(processor, dict) and len(processor) != count:
|
573 |
+
raise ValueError(
|
574 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
575 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
576 |
+
)
|
577 |
+
|
578 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
579 |
+
if hasattr(module, "set_processor"):
|
580 |
+
if not isinstance(processor, dict):
|
581 |
+
module.set_processor(processor)
|
582 |
+
else:
|
583 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
584 |
+
|
585 |
+
for sub_name, child in module.named_children():
|
586 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
587 |
+
|
588 |
+
for name, module in self.named_children():
|
589 |
+
fn_recursive_attn_processor(name, module, processor)
|
590 |
+
|
591 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
592 |
+
def set_default_attn_processor(self):
|
593 |
+
"""
|
594 |
+
Disables custom attention processors and sets the default attention implementation.
|
595 |
+
"""
|
596 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
597 |
+
processor = AttnAddedKVProcessor()
|
598 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
599 |
+
processor = AttnProcessor()
|
600 |
+
else:
|
601 |
+
raise ValueError(
|
602 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
603 |
+
)
|
604 |
+
|
605 |
+
self.set_attn_processor(processor)
|
606 |
+
|
607 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
608 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
609 |
+
r"""
|
610 |
+
Enable sliced attention computation.
|
611 |
+
|
612 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
613 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
614 |
+
|
615 |
+
Args:
|
616 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
617 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
618 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
619 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
620 |
+
must be a multiple of `slice_size`.
|
621 |
+
"""
|
622 |
+
sliceable_head_dims = []
|
623 |
+
|
624 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
625 |
+
if hasattr(module, "set_attention_slice"):
|
626 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
627 |
+
|
628 |
+
for child in module.children():
|
629 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
630 |
+
|
631 |
+
# retrieve number of attention layers
|
632 |
+
for module in self.children():
|
633 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
634 |
+
|
635 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
636 |
+
|
637 |
+
if slice_size == "auto":
|
638 |
+
# half the attention head size is usually a good trade-off between
|
639 |
+
# speed and memory
|
640 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
641 |
+
elif slice_size == "max":
|
642 |
+
# make smallest slice possible
|
643 |
+
slice_size = num_sliceable_layers * [1]
|
644 |
+
|
645 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
646 |
+
|
647 |
+
if len(slice_size) != len(sliceable_head_dims):
|
648 |
+
raise ValueError(
|
649 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
650 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
651 |
+
)
|
652 |
+
|
653 |
+
for i in range(len(slice_size)):
|
654 |
+
size = slice_size[i]
|
655 |
+
dim = sliceable_head_dims[i]
|
656 |
+
if size is not None and size > dim:
|
657 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
658 |
+
|
659 |
+
# Recursively walk through all the children.
|
660 |
+
# Any children which exposes the set_attention_slice method
|
661 |
+
# gets the message
|
662 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
663 |
+
if hasattr(module, "set_attention_slice"):
|
664 |
+
module.set_attention_slice(slice_size.pop())
|
665 |
+
|
666 |
+
for child in module.children():
|
667 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
668 |
+
|
669 |
+
reversed_slice_size = list(reversed(slice_size))
|
670 |
+
for module in self.children():
|
671 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
672 |
+
|
673 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
674 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
675 |
+
module.gradient_checkpointing = value
|
676 |
+
|
677 |
+
def forward(
|
678 |
+
self,
|
679 |
+
sample: torch.FloatTensor,
|
680 |
+
timestep: Union[torch.Tensor, float, int],
|
681 |
+
encoder_hidden_states: torch.Tensor,
|
682 |
+
brushnet_cond: torch.FloatTensor,
|
683 |
+
conditioning_scale: float = 1.0,
|
684 |
+
class_labels: Optional[torch.Tensor] = None,
|
685 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
686 |
+
attention_mask: Optional[torch.Tensor] = None,
|
687 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
688 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
689 |
+
guess_mode: bool = False,
|
690 |
+
return_dict: bool = True,
|
691 |
+
) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
692 |
+
"""
|
693 |
+
The [`BrushNetModel`] forward method.
|
694 |
+
|
695 |
+
Args:
|
696 |
+
sample (`torch.FloatTensor`):
|
697 |
+
The noisy input tensor.
|
698 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
699 |
+
The number of timesteps to denoise an input.
|
700 |
+
encoder_hidden_states (`torch.Tensor`):
|
701 |
+
The encoder hidden states.
|
702 |
+
brushnet_cond (`torch.FloatTensor`):
|
703 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
704 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
705 |
+
The scale factor for BrushNet outputs.
|
706 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
707 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
708 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
709 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
710 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
711 |
+
embeddings.
|
712 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
713 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
714 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
715 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
716 |
+
added_cond_kwargs (`dict`):
|
717 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
718 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
719 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
720 |
+
guess_mode (`bool`, defaults to `False`):
|
721 |
+
In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
|
722 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
723 |
+
return_dict (`bool`, defaults to `True`):
|
724 |
+
Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
|
725 |
+
|
726 |
+
Returns:
|
727 |
+
[`~models.brushnet.BrushNetOutput`] **or** `tuple`:
|
728 |
+
If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
|
729 |
+
returned where the first element is the sample tensor.
|
730 |
+
"""
|
731 |
+
# check channel order
|
732 |
+
channel_order = self.config.brushnet_conditioning_channel_order
|
733 |
+
|
734 |
+
if channel_order == "rgb":
|
735 |
+
# in rgb order by default
|
736 |
+
...
|
737 |
+
elif channel_order == "bgr":
|
738 |
+
brushnet_cond = torch.flip(brushnet_cond, dims=[1])
|
739 |
+
else:
|
740 |
+
raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
|
741 |
+
|
742 |
+
# prepare attention_mask
|
743 |
+
if attention_mask is not None:
|
744 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
745 |
+
attention_mask = attention_mask.unsqueeze(1)
|
746 |
+
|
747 |
+
# 1. time
|
748 |
+
timesteps = timestep
|
749 |
+
if not torch.is_tensor(timesteps):
|
750 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
751 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
752 |
+
is_mps = sample.device.type == "mps"
|
753 |
+
if isinstance(timestep, float):
|
754 |
+
dtype = torch.float32 if is_mps else torch.float64
|
755 |
+
else:
|
756 |
+
dtype = torch.int32 if is_mps else torch.int64
|
757 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
758 |
+
elif len(timesteps.shape) == 0:
|
759 |
+
timesteps = timesteps[None].to(sample.device)
|
760 |
+
|
761 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
762 |
+
timesteps = timesteps.expand(sample.shape[0])
|
763 |
+
|
764 |
+
t_emb = self.time_proj(timesteps)
|
765 |
+
|
766 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
767 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
768 |
+
# there might be better ways to encapsulate this.
|
769 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
770 |
+
|
771 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
772 |
+
aug_emb = None
|
773 |
+
|
774 |
+
if self.class_embedding is not None:
|
775 |
+
if class_labels is None:
|
776 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
777 |
+
|
778 |
+
if self.config.class_embed_type == "timestep":
|
779 |
+
class_labels = self.time_proj(class_labels)
|
780 |
+
|
781 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
782 |
+
emb = emb + class_emb
|
783 |
+
|
784 |
+
if self.config.addition_embed_type is not None:
|
785 |
+
if self.config.addition_embed_type == "text":
|
786 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
787 |
+
|
788 |
+
elif self.config.addition_embed_type == "text_time":
|
789 |
+
if "text_embeds" not in added_cond_kwargs:
|
790 |
+
raise ValueError(
|
791 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
792 |
+
)
|
793 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
794 |
+
if "time_ids" not in added_cond_kwargs:
|
795 |
+
raise ValueError(
|
796 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
797 |
+
)
|
798 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
799 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
800 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
801 |
+
|
802 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
803 |
+
add_embeds = add_embeds.to(emb.dtype)
|
804 |
+
aug_emb = self.add_embedding(add_embeds)
|
805 |
+
|
806 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
807 |
+
|
808 |
+
# 2. pre-process
|
809 |
+
brushnet_cond = torch.concat([sample, brushnet_cond], 1)
|
810 |
+
sample = self.conv_in_condition(brushnet_cond)
|
811 |
+
|
812 |
+
# 3. down
|
813 |
+
down_block_res_samples = (sample,)
|
814 |
+
for downsample_block in self.down_blocks:
|
815 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
816 |
+
sample, res_samples = downsample_block(
|
817 |
+
hidden_states=sample,
|
818 |
+
temb=emb,
|
819 |
+
encoder_hidden_states=encoder_hidden_states,
|
820 |
+
attention_mask=attention_mask,
|
821 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
822 |
+
)
|
823 |
+
else:
|
824 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
825 |
+
|
826 |
+
down_block_res_samples += res_samples
|
827 |
+
|
828 |
+
# 4. PaintingNet down blocks
|
829 |
+
brushnet_down_block_res_samples = ()
|
830 |
+
for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
|
831 |
+
down_block_res_sample = brushnet_down_block(down_block_res_sample)
|
832 |
+
brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
|
833 |
+
|
834 |
+
# 5. mid
|
835 |
+
if self.mid_block is not None:
|
836 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
837 |
+
sample = self.mid_block(
|
838 |
+
sample,
|
839 |
+
emb,
|
840 |
+
encoder_hidden_states=encoder_hidden_states,
|
841 |
+
attention_mask=attention_mask,
|
842 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
843 |
+
)
|
844 |
+
else:
|
845 |
+
sample = self.mid_block(sample, emb)
|
846 |
+
|
847 |
+
# 6. BrushNet mid blocks
|
848 |
+
brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
|
849 |
+
|
850 |
+
# 7. up
|
851 |
+
up_block_res_samples = ()
|
852 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
853 |
+
is_final_block = i == len(self.up_blocks) - 1
|
854 |
+
|
855 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
856 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
857 |
+
|
858 |
+
# if we have not reached the final block and need to forward the
|
859 |
+
# upsample size, we do it here
|
860 |
+
if not is_final_block:
|
861 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
862 |
+
|
863 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
864 |
+
sample, up_res_samples = upsample_block(
|
865 |
+
hidden_states=sample,
|
866 |
+
temb=emb,
|
867 |
+
res_hidden_states_tuple=res_samples,
|
868 |
+
encoder_hidden_states=encoder_hidden_states,
|
869 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
870 |
+
upsample_size=upsample_size,
|
871 |
+
attention_mask=attention_mask,
|
872 |
+
return_res_samples=True
|
873 |
+
)
|
874 |
+
else:
|
875 |
+
sample, up_res_samples = upsample_block(
|
876 |
+
hidden_states=sample,
|
877 |
+
temb=emb,
|
878 |
+
res_hidden_states_tuple=res_samples,
|
879 |
+
upsample_size=upsample_size,
|
880 |
+
return_res_samples=True
|
881 |
+
)
|
882 |
+
|
883 |
+
up_block_res_samples += up_res_samples
|
884 |
+
|
885 |
+
# 8. BrushNet up blocks
|
886 |
+
brushnet_up_block_res_samples = ()
|
887 |
+
for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
|
888 |
+
up_block_res_sample = brushnet_up_block(up_block_res_sample)
|
889 |
+
brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
|
890 |
+
|
891 |
+
# 6. scaling
|
892 |
+
if guess_mode and not self.config.global_pool_conditions:
|
893 |
+
scales = torch.logspace(-1, 0,
|
894 |
+
len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples),
|
895 |
+
device=sample.device) # 0.1 to 1.0
|
896 |
+
scales = scales * conditioning_scale
|
897 |
+
|
898 |
+
brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples,
|
899 |
+
scales[:len(
|
900 |
+
brushnet_down_block_res_samples)])]
|
901 |
+
brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
|
902 |
+
brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples,
|
903 |
+
scales[
|
904 |
+
len(brushnet_down_block_res_samples) + 1:])]
|
905 |
+
else:
|
906 |
+
brushnet_down_block_res_samples = [sample * conditioning_scale for sample in
|
907 |
+
brushnet_down_block_res_samples]
|
908 |
+
brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
|
909 |
+
brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
|
910 |
+
|
911 |
+
if self.config.global_pool_conditions:
|
912 |
+
brushnet_down_block_res_samples = [
|
913 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
|
914 |
+
]
|
915 |
+
brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
|
916 |
+
brushnet_up_block_res_samples = [
|
917 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
|
918 |
+
]
|
919 |
+
|
920 |
+
if not return_dict:
|
921 |
+
return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
|
922 |
+
|
923 |
+
return BrushNetOutput(
|
924 |
+
down_block_res_samples=brushnet_down_block_res_samples,
|
925 |
+
mid_block_res_sample=brushnet_mid_block_res_sample,
|
926 |
+
up_block_res_samples=brushnet_up_block_res_samples
|
927 |
+
)
|
928 |
+
|
929 |
+
|
930 |
+
def zero_module(module):
|
931 |
+
for p in module.parameters():
|
932 |
+
nn.init.zeros_(p)
|
933 |
+
return module
|
powerpaint_v2/pipeline_PowerPaint_Brushnet_CA.py
ADDED
@@ -0,0 +1,1494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from diffusers import StableDiffusionMixin
|
9 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
10 |
+
|
11 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
12 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
13 |
+
from diffusers.models import AutoencoderKL, ImageProjection
|
14 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
15 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
16 |
+
from diffusers.utils import (
|
17 |
+
USE_PEFT_BACKEND,
|
18 |
+
deprecate,
|
19 |
+
logging,
|
20 |
+
replace_example_docstring,
|
21 |
+
scale_lora_layers,
|
22 |
+
unscale_lora_layers,
|
23 |
+
)
|
24 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
25 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
26 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
27 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
28 |
+
|
29 |
+
from .BrushNet_CA import BrushNetModel
|
30 |
+
from .unet_2d_condition import UNet2DConditionModel
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
EXAMPLE_DOC_STRING = """
|
35 |
+
Examples:
|
36 |
+
```py
|
37 |
+
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
|
38 |
+
from diffusers.utils import load_image
|
39 |
+
import torch
|
40 |
+
import cv2
|
41 |
+
import numpy as np
|
42 |
+
from PIL import Image
|
43 |
+
|
44 |
+
base_model_path = "runwayml/stable-diffusion-v1-5"
|
45 |
+
brushnet_path = "ckpt_path"
|
46 |
+
|
47 |
+
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16)
|
48 |
+
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
|
49 |
+
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False
|
50 |
+
)
|
51 |
+
|
52 |
+
# speed up diffusion process with faster scheduler and memory optimization
|
53 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
54 |
+
# remove following line if xformers is not installed or when using Torch 2.0.
|
55 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
56 |
+
# memory optimization.
|
57 |
+
pipe.enable_model_cpu_offload()
|
58 |
+
|
59 |
+
image_path="examples/brushnet/src/test_image.jpg"
|
60 |
+
mask_path="examples/brushnet/src/test_mask.jpg"
|
61 |
+
caption="A cake on the table."
|
62 |
+
|
63 |
+
init_image = cv2.imread(image_path)
|
64 |
+
mask_image = 1.*(cv2.imread(mask_path).sum(-1)>255)[:,:,np.newaxis]
|
65 |
+
init_image = init_image * (1-mask_image)
|
66 |
+
|
67 |
+
init_image = Image.fromarray(init_image.astype(np.uint8)).convert("RGB")
|
68 |
+
mask_image = Image.fromarray(mask_image.astype(np.uint8).repeat(3,-1)*255).convert("RGB")
|
69 |
+
|
70 |
+
generator = torch.Generator("cuda").manual_seed(1234)
|
71 |
+
|
72 |
+
image = pipe(
|
73 |
+
caption,
|
74 |
+
init_image,
|
75 |
+
mask_image,
|
76 |
+
num_inference_steps=50,
|
77 |
+
generator=generator,
|
78 |
+
paintingnet_conditioning_scale=1.0
|
79 |
+
).images[0]
|
80 |
+
image.save("output.png")
|
81 |
+
```
|
82 |
+
"""
|
83 |
+
|
84 |
+
|
85 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
86 |
+
def retrieve_timesteps(
|
87 |
+
scheduler,
|
88 |
+
num_inference_steps: Optional[int] = None,
|
89 |
+
device: Optional[Union[str, torch.device]] = None,
|
90 |
+
timesteps: Optional[List[int]] = None,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
"""
|
94 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
95 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
scheduler (`SchedulerMixin`):
|
99 |
+
The scheduler to get timesteps from.
|
100 |
+
num_inference_steps (`int`):
|
101 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
102 |
+
`timesteps` must be `None`.
|
103 |
+
device (`str` or `torch.device`, *optional*):
|
104 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
105 |
+
timesteps (`List[int]`, *optional*):
|
106 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
107 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
108 |
+
must be `None`.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
112 |
+
second element is the number of inference steps.
|
113 |
+
"""
|
114 |
+
if timesteps is not None:
|
115 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
116 |
+
if not accepts_timesteps:
|
117 |
+
raise ValueError(
|
118 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
119 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
120 |
+
)
|
121 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
122 |
+
timesteps = scheduler.timesteps
|
123 |
+
num_inference_steps = len(timesteps)
|
124 |
+
else:
|
125 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
126 |
+
timesteps = scheduler.timesteps
|
127 |
+
return timesteps, num_inference_steps
|
128 |
+
|
129 |
+
|
130 |
+
class StableDiffusionPowerPaintBrushNetPipeline(
|
131 |
+
DiffusionPipeline,
|
132 |
+
StableDiffusionMixin,
|
133 |
+
TextualInversionLoaderMixin,
|
134 |
+
LoraLoaderMixin,
|
135 |
+
IPAdapterMixin,
|
136 |
+
FromSingleFileMixin,
|
137 |
+
):
|
138 |
+
r"""
|
139 |
+
Pipeline for text-to-image generation using Stable Diffusion with BrushNet guidance.
|
140 |
+
|
141 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
142 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
143 |
+
|
144 |
+
The pipeline also inherits the following loading methods:
|
145 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
146 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
147 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
148 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
149 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
150 |
+
|
151 |
+
Args:
|
152 |
+
vae ([`AutoencoderKL`]):
|
153 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
154 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
155 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
156 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
157 |
+
A `CLIPTokenizer` to tokenize text.
|
158 |
+
unet ([`UNet2DConditionModel`]):
|
159 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
160 |
+
brushnet ([`BrushNetModel`]`):
|
161 |
+
Provides additional conditioning to the `unet` during the denoising process.
|
162 |
+
scheduler ([`SchedulerMixin`]):
|
163 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
164 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
165 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
166 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
167 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
168 |
+
about a model's potential harms.
|
169 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
170 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
171 |
+
"""
|
172 |
+
|
173 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
174 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
175 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
176 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
177 |
+
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
vae: AutoencoderKL,
|
181 |
+
text_encoder: CLIPTextModel,
|
182 |
+
text_encoder_brushnet: CLIPTextModel,
|
183 |
+
tokenizer: CLIPTokenizer,
|
184 |
+
unet: UNet2DConditionModel,
|
185 |
+
brushnet: BrushNetModel,
|
186 |
+
scheduler: KarrasDiffusionSchedulers,
|
187 |
+
safety_checker: StableDiffusionSafetyChecker,
|
188 |
+
feature_extractor: CLIPImageProcessor,
|
189 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
190 |
+
requires_safety_checker: bool = True,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
|
194 |
+
if safety_checker is None and requires_safety_checker:
|
195 |
+
logger.warning(
|
196 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
197 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
198 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
199 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
200 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
201 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
202 |
+
)
|
203 |
+
|
204 |
+
if safety_checker is not None and feature_extractor is None:
|
205 |
+
raise ValueError(
|
206 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
207 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
208 |
+
)
|
209 |
+
|
210 |
+
self.register_modules(
|
211 |
+
vae=vae,
|
212 |
+
text_encoder=text_encoder,
|
213 |
+
text_encoder_brushnet=text_encoder_brushnet,
|
214 |
+
tokenizer=tokenizer,
|
215 |
+
unet=unet,
|
216 |
+
brushnet=brushnet,
|
217 |
+
scheduler=scheduler,
|
218 |
+
safety_checker=safety_checker,
|
219 |
+
feature_extractor=feature_extractor,
|
220 |
+
image_encoder=image_encoder,
|
221 |
+
)
|
222 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
223 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
224 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
225 |
+
|
226 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
227 |
+
def _encode_prompt(
|
228 |
+
self,
|
229 |
+
promptA,
|
230 |
+
promptB,
|
231 |
+
t,
|
232 |
+
device,
|
233 |
+
num_images_per_prompt,
|
234 |
+
do_classifier_free_guidance,
|
235 |
+
negative_promptA=None,
|
236 |
+
negative_promptB=None,
|
237 |
+
t_nag=None,
|
238 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
239 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
240 |
+
lora_scale: Optional[float] = None,
|
241 |
+
):
|
242 |
+
r"""
|
243 |
+
Encodes the prompt into text encoder hidden states.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
prompt (`str` or `List[str]`, *optional*):
|
247 |
+
prompt to be encoded
|
248 |
+
device: (`torch.device`):
|
249 |
+
torch device
|
250 |
+
num_images_per_prompt (`int`):
|
251 |
+
number of images that should be generated per prompt
|
252 |
+
do_classifier_free_guidance (`bool`):
|
253 |
+
whether to use classifier free guidance or not
|
254 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
255 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
256 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
257 |
+
less than `1`).
|
258 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
259 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
260 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
261 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
262 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
263 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
264 |
+
argument.
|
265 |
+
lora_scale (`float`, *optional*):
|
266 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
267 |
+
"""
|
268 |
+
# set lora scale so that monkey patched LoRA
|
269 |
+
# function of text encoder can correctly access it
|
270 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
271 |
+
self._lora_scale = lora_scale
|
272 |
+
|
273 |
+
prompt = promptA
|
274 |
+
negative_prompt = negative_promptA
|
275 |
+
|
276 |
+
if promptA is not None and isinstance(promptA, str):
|
277 |
+
batch_size = 1
|
278 |
+
elif promptA is not None and isinstance(promptA, list):
|
279 |
+
batch_size = len(promptA)
|
280 |
+
else:
|
281 |
+
batch_size = prompt_embeds.shape[0]
|
282 |
+
|
283 |
+
if prompt_embeds is None:
|
284 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
285 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
286 |
+
promptA = self.maybe_convert_prompt(promptA, self.tokenizer)
|
287 |
+
|
288 |
+
text_inputsA = self.tokenizer(
|
289 |
+
promptA,
|
290 |
+
padding="max_length",
|
291 |
+
max_length=self.tokenizer.model_max_length,
|
292 |
+
truncation=True,
|
293 |
+
return_tensors="pt",
|
294 |
+
)
|
295 |
+
text_inputsB = self.tokenizer(
|
296 |
+
promptB,
|
297 |
+
padding="max_length",
|
298 |
+
max_length=self.tokenizer.model_max_length,
|
299 |
+
truncation=True,
|
300 |
+
return_tensors="pt",
|
301 |
+
)
|
302 |
+
text_input_idsA = text_inputsA.input_ids
|
303 |
+
text_input_idsB = text_inputsB.input_ids
|
304 |
+
untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids
|
305 |
+
|
306 |
+
if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal(
|
307 |
+
text_input_idsA, untruncated_ids
|
308 |
+
):
|
309 |
+
removed_text = self.tokenizer.batch_decode(
|
310 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
311 |
+
)
|
312 |
+
logger.warning(
|
313 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
314 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
315 |
+
)
|
316 |
+
|
317 |
+
if hasattr(self.text_encoder_brushnet.config,
|
318 |
+
"use_attention_mask") and self.text_encoder_brushnet.config.use_attention_mask:
|
319 |
+
attention_mask = text_inputsA.attention_mask.to(device)
|
320 |
+
else:
|
321 |
+
attention_mask = None
|
322 |
+
|
323 |
+
# print("text_input_idsA: ",text_input_idsA)
|
324 |
+
# print("text_input_idsB: ",text_input_idsB)
|
325 |
+
# print('t: ',t)
|
326 |
+
|
327 |
+
prompt_embedsA = self.text_encoder_brushnet(
|
328 |
+
text_input_idsA.to(device),
|
329 |
+
attention_mask=attention_mask,
|
330 |
+
)
|
331 |
+
prompt_embedsA = prompt_embedsA[0]
|
332 |
+
|
333 |
+
prompt_embedsB = self.text_encoder_brushnet(
|
334 |
+
text_input_idsB.to(device),
|
335 |
+
attention_mask=attention_mask,
|
336 |
+
)
|
337 |
+
prompt_embedsB = prompt_embedsB[0]
|
338 |
+
prompt_embeds = prompt_embedsA * (t) + (1 - t) * prompt_embedsB
|
339 |
+
# print("prompt_embeds: ",prompt_embeds)
|
340 |
+
|
341 |
+
if self.text_encoder_brushnet is not None:
|
342 |
+
prompt_embeds_dtype = self.text_encoder_brushnet.dtype
|
343 |
+
elif self.unet is not None:
|
344 |
+
prompt_embeds_dtype = self.unet.dtype
|
345 |
+
else:
|
346 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
347 |
+
|
348 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
349 |
+
|
350 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
351 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
352 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
353 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
354 |
+
|
355 |
+
# get unconditional embeddings for classifier free guidance
|
356 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
357 |
+
uncond_tokensA: List[str]
|
358 |
+
uncond_tokensB: List[str]
|
359 |
+
if negative_prompt is None:
|
360 |
+
uncond_tokensA = [""] * batch_size
|
361 |
+
uncond_tokensB = [""] * batch_size
|
362 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
363 |
+
raise TypeError(
|
364 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
365 |
+
f" {type(prompt)}."
|
366 |
+
)
|
367 |
+
elif isinstance(negative_prompt, str):
|
368 |
+
uncond_tokensA = [negative_promptA]
|
369 |
+
uncond_tokensB = [negative_promptB]
|
370 |
+
elif batch_size != len(negative_prompt):
|
371 |
+
raise ValueError(
|
372 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
373 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
374 |
+
" the batch size of `prompt`."
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
uncond_tokensA = negative_promptA
|
378 |
+
uncond_tokensB = negative_promptB
|
379 |
+
|
380 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
381 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
382 |
+
uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer)
|
383 |
+
uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer)
|
384 |
+
|
385 |
+
max_length = prompt_embeds.shape[1]
|
386 |
+
uncond_inputA = self.tokenizer(
|
387 |
+
uncond_tokensA,
|
388 |
+
padding="max_length",
|
389 |
+
max_length=max_length,
|
390 |
+
truncation=True,
|
391 |
+
return_tensors="pt",
|
392 |
+
)
|
393 |
+
uncond_inputB = self.tokenizer(
|
394 |
+
uncond_tokensB,
|
395 |
+
padding="max_length",
|
396 |
+
max_length=max_length,
|
397 |
+
truncation=True,
|
398 |
+
return_tensors="pt",
|
399 |
+
)
|
400 |
+
|
401 |
+
if hasattr(self.text_encoder_brushnet.config,
|
402 |
+
"use_attention_mask") and self.text_encoder_brushnet.config.use_attention_mask:
|
403 |
+
attention_mask = uncond_inputA.attention_mask.to(device)
|
404 |
+
else:
|
405 |
+
attention_mask = None
|
406 |
+
|
407 |
+
negative_prompt_embedsA = self.text_encoder_brushnet(
|
408 |
+
uncond_inputA.input_ids.to(device),
|
409 |
+
attention_mask=attention_mask,
|
410 |
+
)
|
411 |
+
negative_prompt_embedsB = self.text_encoder_brushnet(
|
412 |
+
uncond_inputB.input_ids.to(device),
|
413 |
+
attention_mask=attention_mask,
|
414 |
+
)
|
415 |
+
negative_prompt_embeds = negative_prompt_embedsA[0] * (t_nag) + (1 - t_nag) * negative_prompt_embedsB[0]
|
416 |
+
|
417 |
+
# negative_prompt_embeds = negative_prompt_embeds[0]
|
418 |
+
|
419 |
+
if do_classifier_free_guidance:
|
420 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
421 |
+
seq_len = negative_prompt_embeds.shape[1]
|
422 |
+
|
423 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
424 |
+
|
425 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
426 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
427 |
+
|
428 |
+
# For classifier free guidance, we need to do two forward passes.
|
429 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
430 |
+
# to avoid doing two forward passes
|
431 |
+
# print("prompt_embeds: ",prompt_embeds)
|
432 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
433 |
+
|
434 |
+
return prompt_embeds
|
435 |
+
|
436 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
437 |
+
def encode_prompt(
|
438 |
+
self,
|
439 |
+
prompt,
|
440 |
+
device,
|
441 |
+
num_images_per_prompt,
|
442 |
+
do_classifier_free_guidance,
|
443 |
+
negative_prompt=None,
|
444 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
445 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
446 |
+
lora_scale: Optional[float] = None,
|
447 |
+
clip_skip: Optional[int] = None,
|
448 |
+
):
|
449 |
+
r"""
|
450 |
+
Encodes the prompt into text encoder hidden states.
|
451 |
+
|
452 |
+
Args:
|
453 |
+
prompt (`str` or `List[str]`, *optional*):
|
454 |
+
prompt to be encoded
|
455 |
+
device: (`torch.device`):
|
456 |
+
torch device
|
457 |
+
num_images_per_prompt (`int`):
|
458 |
+
number of images that should be generated per prompt
|
459 |
+
do_classifier_free_guidance (`bool`):
|
460 |
+
whether to use classifier free guidance or not
|
461 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
462 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
463 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
464 |
+
less than `1`).
|
465 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
466 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
467 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
468 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
469 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
470 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
471 |
+
argument.
|
472 |
+
lora_scale (`float`, *optional*):
|
473 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
474 |
+
clip_skip (`int`, *optional*):
|
475 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
476 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
477 |
+
"""
|
478 |
+
# set lora scale so that monkey patched LoRA
|
479 |
+
# function of text encoder can correctly access it
|
480 |
+
# print('1 ',prompt,negative_prompt)
|
481 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
482 |
+
self._lora_scale = lora_scale
|
483 |
+
|
484 |
+
# dynamically adjust the LoRA scale
|
485 |
+
if not USE_PEFT_BACKEND:
|
486 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
487 |
+
else:
|
488 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
489 |
+
# print('2 ',prompt,negative_prompt)
|
490 |
+
if prompt is not None and isinstance(prompt, str):
|
491 |
+
batch_size = 1
|
492 |
+
elif prompt is not None and isinstance(prompt, list):
|
493 |
+
batch_size = len(prompt)
|
494 |
+
else:
|
495 |
+
batch_size = prompt_embeds.shape[0]
|
496 |
+
# print('3 ',prompt,negative_prompt)
|
497 |
+
if prompt_embeds is None:
|
498 |
+
# textual inversion: process multi-vector tokens if necessary
|
499 |
+
# print('4 ',prompt,negative_prompt)
|
500 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
501 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
502 |
+
|
503 |
+
# print('5 ',prompt,negative_prompt)
|
504 |
+
|
505 |
+
text_inputs = self.tokenizer(
|
506 |
+
prompt,
|
507 |
+
padding="max_length",
|
508 |
+
max_length=self.tokenizer.model_max_length,
|
509 |
+
truncation=True,
|
510 |
+
return_tensors="pt",
|
511 |
+
)
|
512 |
+
text_input_ids = text_inputs.input_ids
|
513 |
+
# print(prompt, text_input_ids)
|
514 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
515 |
+
|
516 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
517 |
+
text_input_ids, untruncated_ids
|
518 |
+
):
|
519 |
+
removed_text = self.tokenizer.batch_decode(
|
520 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
521 |
+
)
|
522 |
+
logger.warning(
|
523 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
524 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
525 |
+
)
|
526 |
+
|
527 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
528 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
529 |
+
else:
|
530 |
+
attention_mask = None
|
531 |
+
|
532 |
+
if clip_skip is None:
|
533 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
534 |
+
prompt_embeds = prompt_embeds[0]
|
535 |
+
else:
|
536 |
+
prompt_embeds = self.text_encoder(
|
537 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
538 |
+
)
|
539 |
+
# Access the `hidden_states` first, that contains a tuple of
|
540 |
+
# all the hidden states from the encoder layers. Then index into
|
541 |
+
# the tuple to access the hidden states from the desired layer.
|
542 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
543 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
544 |
+
# representations. The `last_hidden_states` that we typically use for
|
545 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
546 |
+
# layer.
|
547 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
548 |
+
|
549 |
+
if self.text_encoder is not None:
|
550 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
551 |
+
elif self.unet is not None:
|
552 |
+
prompt_embeds_dtype = self.unet.dtype
|
553 |
+
else:
|
554 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
555 |
+
|
556 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
557 |
+
|
558 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
559 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
560 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
561 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
562 |
+
|
563 |
+
# get unconditional embeddings for classifier free guidance
|
564 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
565 |
+
uncond_tokens: List[str]
|
566 |
+
if negative_prompt is None:
|
567 |
+
uncond_tokens = [""] * batch_size
|
568 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
569 |
+
raise TypeError(
|
570 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
571 |
+
f" {type(prompt)}."
|
572 |
+
)
|
573 |
+
elif isinstance(negative_prompt, str):
|
574 |
+
uncond_tokens = [negative_prompt]
|
575 |
+
elif batch_size != len(negative_prompt):
|
576 |
+
raise ValueError(
|
577 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
578 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
579 |
+
" the batch size of `prompt`."
|
580 |
+
)
|
581 |
+
else:
|
582 |
+
uncond_tokens = negative_prompt
|
583 |
+
|
584 |
+
# textual inversion: process multi-vector tokens if necessary
|
585 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
586 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
587 |
+
|
588 |
+
max_length = prompt_embeds.shape[1]
|
589 |
+
uncond_input = self.tokenizer(
|
590 |
+
uncond_tokens,
|
591 |
+
padding="max_length",
|
592 |
+
max_length=max_length,
|
593 |
+
truncation=True,
|
594 |
+
return_tensors="pt",
|
595 |
+
)
|
596 |
+
# print("neg: ", uncond_input.input_ids)
|
597 |
+
|
598 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
599 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
600 |
+
else:
|
601 |
+
attention_mask = None
|
602 |
+
|
603 |
+
negative_prompt_embeds = self.text_encoder(
|
604 |
+
uncond_input.input_ids.to(device),
|
605 |
+
attention_mask=attention_mask,
|
606 |
+
)
|
607 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
608 |
+
|
609 |
+
if do_classifier_free_guidance:
|
610 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
611 |
+
seq_len = negative_prompt_embeds.shape[1]
|
612 |
+
|
613 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
614 |
+
|
615 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
616 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
617 |
+
|
618 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
619 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
620 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
621 |
+
|
622 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
623 |
+
|
624 |
+
return prompt_embeds
|
625 |
+
|
626 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
627 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
628 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
629 |
+
|
630 |
+
if not isinstance(image, torch.Tensor):
|
631 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
632 |
+
|
633 |
+
image = image.to(device=device, dtype=dtype)
|
634 |
+
if output_hidden_states:
|
635 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
636 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
637 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
638 |
+
torch.zeros_like(image), output_hidden_states=True
|
639 |
+
).hidden_states[-2]
|
640 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
641 |
+
num_images_per_prompt, dim=0
|
642 |
+
)
|
643 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
644 |
+
else:
|
645 |
+
image_embeds = self.image_encoder(image).image_embeds
|
646 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
647 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
648 |
+
|
649 |
+
return image_embeds, uncond_image_embeds
|
650 |
+
|
651 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
652 |
+
def prepare_ip_adapter_image_embeds(
|
653 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
654 |
+
):
|
655 |
+
if ip_adapter_image_embeds is None:
|
656 |
+
if not isinstance(ip_adapter_image, list):
|
657 |
+
ip_adapter_image = [ip_adapter_image]
|
658 |
+
|
659 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
660 |
+
raise ValueError(
|
661 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
662 |
+
)
|
663 |
+
|
664 |
+
image_embeds = []
|
665 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
666 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
667 |
+
):
|
668 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
669 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
670 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
671 |
+
)
|
672 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
673 |
+
single_negative_image_embeds = torch.stack(
|
674 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
675 |
+
)
|
676 |
+
|
677 |
+
if do_classifier_free_guidance:
|
678 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
679 |
+
single_image_embeds = single_image_embeds.to(device)
|
680 |
+
|
681 |
+
image_embeds.append(single_image_embeds)
|
682 |
+
else:
|
683 |
+
repeat_dims = [1]
|
684 |
+
image_embeds = []
|
685 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
686 |
+
if do_classifier_free_guidance:
|
687 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
688 |
+
single_image_embeds = single_image_embeds.repeat(
|
689 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
690 |
+
)
|
691 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
692 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
693 |
+
)
|
694 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
695 |
+
else:
|
696 |
+
single_image_embeds = single_image_embeds.repeat(
|
697 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
698 |
+
)
|
699 |
+
image_embeds.append(single_image_embeds)
|
700 |
+
|
701 |
+
return image_embeds
|
702 |
+
|
703 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
704 |
+
def run_safety_checker(self, image, device, dtype):
|
705 |
+
if self.safety_checker is None:
|
706 |
+
has_nsfw_concept = None
|
707 |
+
else:
|
708 |
+
if torch.is_tensor(image):
|
709 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
710 |
+
else:
|
711 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
712 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
713 |
+
image, has_nsfw_concept = self.safety_checker(
|
714 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
715 |
+
)
|
716 |
+
return image, has_nsfw_concept
|
717 |
+
|
718 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
719 |
+
def decode_latents(self, latents):
|
720 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
721 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
722 |
+
|
723 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
724 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
725 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
726 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
727 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
728 |
+
return image
|
729 |
+
|
730 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
731 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
732 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
733 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
734 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
735 |
+
# and should be between [0, 1]
|
736 |
+
|
737 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
738 |
+
extra_step_kwargs = {}
|
739 |
+
if accepts_eta:
|
740 |
+
extra_step_kwargs["eta"] = eta
|
741 |
+
|
742 |
+
# check if the scheduler accepts generator
|
743 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
744 |
+
if accepts_generator:
|
745 |
+
extra_step_kwargs["generator"] = generator
|
746 |
+
return extra_step_kwargs
|
747 |
+
|
748 |
+
def check_inputs(
|
749 |
+
self,
|
750 |
+
prompt,
|
751 |
+
image,
|
752 |
+
mask,
|
753 |
+
callback_steps,
|
754 |
+
negative_prompt=None,
|
755 |
+
prompt_embeds=None,
|
756 |
+
negative_prompt_embeds=None,
|
757 |
+
ip_adapter_image=None,
|
758 |
+
ip_adapter_image_embeds=None,
|
759 |
+
brushnet_conditioning_scale=1.0,
|
760 |
+
control_guidance_start=0.0,
|
761 |
+
control_guidance_end=1.0,
|
762 |
+
callback_on_step_end_tensor_inputs=None,
|
763 |
+
):
|
764 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
765 |
+
raise ValueError(
|
766 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
767 |
+
f" {type(callback_steps)}."
|
768 |
+
)
|
769 |
+
|
770 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
771 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
772 |
+
):
|
773 |
+
raise ValueError(
|
774 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
775 |
+
)
|
776 |
+
|
777 |
+
if prompt is not None and prompt_embeds is not None:
|
778 |
+
raise ValueError(
|
779 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
780 |
+
" only forward one of the two."
|
781 |
+
)
|
782 |
+
elif prompt is None and prompt_embeds is None:
|
783 |
+
raise ValueError(
|
784 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
785 |
+
)
|
786 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
787 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
788 |
+
|
789 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
790 |
+
raise ValueError(
|
791 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
792 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
793 |
+
)
|
794 |
+
|
795 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
796 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
797 |
+
raise ValueError(
|
798 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
799 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
800 |
+
f" {negative_prompt_embeds.shape}."
|
801 |
+
)
|
802 |
+
|
803 |
+
# Check `image`
|
804 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
805 |
+
self.brushnet, torch._dynamo.eval_frame.OptimizedModule
|
806 |
+
)
|
807 |
+
if (
|
808 |
+
isinstance(self.brushnet, BrushNetModel)
|
809 |
+
or is_compiled
|
810 |
+
and isinstance(self.brushnet._orig_mod, BrushNetModel)
|
811 |
+
):
|
812 |
+
self.check_image(image, mask, prompt, prompt_embeds)
|
813 |
+
else:
|
814 |
+
assert False
|
815 |
+
|
816 |
+
# Check `brushnet_conditioning_scale`
|
817 |
+
if (
|
818 |
+
isinstance(self.brushnet, BrushNetModel)
|
819 |
+
or is_compiled
|
820 |
+
and isinstance(self.brushnet._orig_mod, BrushNetModel)
|
821 |
+
):
|
822 |
+
if not isinstance(brushnet_conditioning_scale, float):
|
823 |
+
raise TypeError("For single brushnet: `brushnet_conditioning_scale` must be type `float`.")
|
824 |
+
else:
|
825 |
+
assert False
|
826 |
+
|
827 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
828 |
+
control_guidance_start = [control_guidance_start]
|
829 |
+
|
830 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
831 |
+
control_guidance_end = [control_guidance_end]
|
832 |
+
|
833 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
834 |
+
raise ValueError(
|
835 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
836 |
+
)
|
837 |
+
|
838 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
839 |
+
if start >= end:
|
840 |
+
raise ValueError(
|
841 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
842 |
+
)
|
843 |
+
if start < 0.0:
|
844 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
845 |
+
if end > 1.0:
|
846 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
847 |
+
|
848 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
849 |
+
raise ValueError(
|
850 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
851 |
+
)
|
852 |
+
|
853 |
+
if ip_adapter_image_embeds is not None:
|
854 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
855 |
+
raise ValueError(
|
856 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
857 |
+
)
|
858 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
859 |
+
raise ValueError(
|
860 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
861 |
+
)
|
862 |
+
|
863 |
+
def check_image(self, image, mask, prompt, prompt_embeds):
|
864 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
865 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
866 |
+
image_is_np = isinstance(image, np.ndarray)
|
867 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
868 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
869 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
870 |
+
|
871 |
+
if (
|
872 |
+
not image_is_pil
|
873 |
+
and not image_is_tensor
|
874 |
+
and not image_is_np
|
875 |
+
and not image_is_pil_list
|
876 |
+
and not image_is_tensor_list
|
877 |
+
and not image_is_np_list
|
878 |
+
):
|
879 |
+
raise TypeError(
|
880 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
881 |
+
)
|
882 |
+
|
883 |
+
mask_is_pil = isinstance(mask, PIL.Image.Image)
|
884 |
+
mask_is_tensor = isinstance(mask, torch.Tensor)
|
885 |
+
mask_is_np = isinstance(mask, np.ndarray)
|
886 |
+
mask_is_pil_list = isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image)
|
887 |
+
mask_is_tensor_list = isinstance(mask, list) and isinstance(mask[0], torch.Tensor)
|
888 |
+
mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray)
|
889 |
+
|
890 |
+
if (
|
891 |
+
not mask_is_pil
|
892 |
+
and not mask_is_tensor
|
893 |
+
and not mask_is_np
|
894 |
+
and not mask_is_pil_list
|
895 |
+
and not mask_is_tensor_list
|
896 |
+
and not mask_is_np_list
|
897 |
+
):
|
898 |
+
raise TypeError(
|
899 |
+
f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}"
|
900 |
+
)
|
901 |
+
|
902 |
+
if image_is_pil:
|
903 |
+
image_batch_size = 1
|
904 |
+
else:
|
905 |
+
image_batch_size = len(image)
|
906 |
+
|
907 |
+
if prompt is not None and isinstance(prompt, str):
|
908 |
+
prompt_batch_size = 1
|
909 |
+
elif prompt is not None and isinstance(prompt, list):
|
910 |
+
prompt_batch_size = len(prompt)
|
911 |
+
elif prompt_embeds is not None:
|
912 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
913 |
+
|
914 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
915 |
+
raise ValueError(
|
916 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
917 |
+
)
|
918 |
+
|
919 |
+
def prepare_image(
|
920 |
+
self,
|
921 |
+
image,
|
922 |
+
width,
|
923 |
+
height,
|
924 |
+
batch_size,
|
925 |
+
num_images_per_prompt,
|
926 |
+
device,
|
927 |
+
dtype,
|
928 |
+
do_classifier_free_guidance=False,
|
929 |
+
guess_mode=False,
|
930 |
+
):
|
931 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
932 |
+
image_batch_size = image.shape[0]
|
933 |
+
|
934 |
+
if image_batch_size == 1:
|
935 |
+
repeat_by = batch_size
|
936 |
+
else:
|
937 |
+
# image batch size is the same as prompt batch size
|
938 |
+
repeat_by = num_images_per_prompt
|
939 |
+
|
940 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
941 |
+
|
942 |
+
image = image.to(device=device, dtype=dtype)
|
943 |
+
|
944 |
+
if do_classifier_free_guidance and not guess_mode:
|
945 |
+
image = torch.cat([image] * 2)
|
946 |
+
|
947 |
+
return image.to(device=device, dtype=dtype)
|
948 |
+
|
949 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
950 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
951 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
952 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
953 |
+
raise ValueError(
|
954 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
955 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
956 |
+
)
|
957 |
+
|
958 |
+
if latents is None:
|
959 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
960 |
+
else:
|
961 |
+
noise = latents.to(device)
|
962 |
+
|
963 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
964 |
+
latents = noise * self.scheduler.init_noise_sigma
|
965 |
+
return latents, noise
|
966 |
+
|
967 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
968 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
969 |
+
"""
|
970 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
971 |
+
|
972 |
+
Args:
|
973 |
+
timesteps (`torch.Tensor`):
|
974 |
+
generate embedding vectors at these timesteps
|
975 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
976 |
+
dimension of the embeddings to generate
|
977 |
+
dtype:
|
978 |
+
data type of the generated embeddings
|
979 |
+
|
980 |
+
Returns:
|
981 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
982 |
+
"""
|
983 |
+
assert len(w.shape) == 1
|
984 |
+
w = w * 1000.0
|
985 |
+
|
986 |
+
half_dim = embedding_dim // 2
|
987 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
988 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
989 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
990 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
991 |
+
if embedding_dim % 2 == 1: # zero pad
|
992 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
993 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
994 |
+
return emb
|
995 |
+
|
996 |
+
@property
|
997 |
+
def guidance_scale(self):
|
998 |
+
return self._guidance_scale
|
999 |
+
|
1000 |
+
@property
|
1001 |
+
def clip_skip(self):
|
1002 |
+
return self._clip_skip
|
1003 |
+
|
1004 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1005 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1006 |
+
# corresponds to doing no classifier free guidance.
|
1007 |
+
@property
|
1008 |
+
def do_classifier_free_guidance(self):
|
1009 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1010 |
+
|
1011 |
+
@property
|
1012 |
+
def cross_attention_kwargs(self):
|
1013 |
+
return self._cross_attention_kwargs
|
1014 |
+
|
1015 |
+
@property
|
1016 |
+
def num_timesteps(self):
|
1017 |
+
return self._num_timesteps
|
1018 |
+
|
1019 |
+
@torch.no_grad()
|
1020 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1021 |
+
def __call__(
|
1022 |
+
self,
|
1023 |
+
promptA: Union[str, List[str]] = None,
|
1024 |
+
promptB: Union[str, List[str]] = None,
|
1025 |
+
promptU: Union[str, List[str]] = None,
|
1026 |
+
tradoff: float = 1.0,
|
1027 |
+
tradoff_nag: float = 1.0,
|
1028 |
+
image: PipelineImageInput = None,
|
1029 |
+
mask: PipelineImageInput = None,
|
1030 |
+
height: Optional[int] = None,
|
1031 |
+
width: Optional[int] = None,
|
1032 |
+
num_inference_steps: int = 50,
|
1033 |
+
timesteps: List[int] = None,
|
1034 |
+
guidance_scale: float = 7.5,
|
1035 |
+
negative_promptA: Optional[Union[str, List[str]]] = None,
|
1036 |
+
negative_promptB: Optional[Union[str, List[str]]] = None,
|
1037 |
+
negative_promptU: Optional[Union[str, List[str]]] = None,
|
1038 |
+
num_images_per_prompt: Optional[int] = 1,
|
1039 |
+
eta: float = 0.0,
|
1040 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1041 |
+
latents: Optional[torch.FloatTensor] = None,
|
1042 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1043 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1044 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1045 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1046 |
+
output_type: Optional[str] = "pil",
|
1047 |
+
return_dict: bool = True,
|
1048 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1049 |
+
brushnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
1050 |
+
guess_mode: bool = False,
|
1051 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
1052 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
1053 |
+
clip_skip: Optional[int] = None,
|
1054 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1055 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1056 |
+
**kwargs,
|
1057 |
+
):
|
1058 |
+
r"""
|
1059 |
+
The call function to the pipeline for generation.
|
1060 |
+
|
1061 |
+
Args:
|
1062 |
+
prompt (`str` or `List[str]`, *optional*):
|
1063 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1064 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
1065 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
1066 |
+
The BrushNet input condition to provide guidance to the `unet` for generation. If the type is
|
1067 |
+
specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be
|
1068 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
1069 |
+
and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in
|
1070 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
1071 |
+
input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet,
|
1072 |
+
each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets,
|
1073 |
+
where a list of image lists can be passed to batch for each prompt and each BrushNet.
|
1074 |
+
mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
1075 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
1076 |
+
The BrushNet input condition to provide guidance to the `unet` for generation. If the type is
|
1077 |
+
specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be
|
1078 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
1079 |
+
and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in
|
1080 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
1081 |
+
input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet,
|
1082 |
+
each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets,
|
1083 |
+
where a list of image lists can be passed to batch for each prompt and each BrushNet.
|
1084 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1085 |
+
The height in pixels of the generated image.
|
1086 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1087 |
+
The width in pixels of the generated image.
|
1088 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1089 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1090 |
+
expense of slower inference.
|
1091 |
+
timesteps (`List[int]`, *optional*):
|
1092 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1093 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1094 |
+
passed will be used. Must be in descending order.
|
1095 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1096 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1097 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1098 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1099 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1100 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1101 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1102 |
+
The number of images to generate per prompt.
|
1103 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1104 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1105 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1106 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1107 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1108 |
+
generation deterministic.
|
1109 |
+
latents (`torch.FloatTensor`, *optional*):
|
1110 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1111 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1112 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1113 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1114 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1115 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1116 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1117 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1118 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1119 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1120 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1121 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
1122 |
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
1123 |
+
if `do_classifier_free_guidance` is set to `True`.
|
1124 |
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1125 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1126 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1127 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1128 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1129 |
+
plain tuple.
|
1130 |
+
callback (`Callable`, *optional*):
|
1131 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1132 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1133 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1134 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1135 |
+
every step.
|
1136 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1137 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1138 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1139 |
+
brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1140 |
+
The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added
|
1141 |
+
to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set
|
1142 |
+
the corresponding scale as a list.
|
1143 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1144 |
+
The BrushNet encoder tries to recognize the content of the input image even if you remove all
|
1145 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
1146 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1147 |
+
The percentage of total steps at which the BrushNet starts applying.
|
1148 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1149 |
+
The percentage of total steps at which the BrushNet stops applying.
|
1150 |
+
clip_skip (`int`, *optional*):
|
1151 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1152 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1153 |
+
callback_on_step_end (`Callable`, *optional*):
|
1154 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1155 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1156 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1157 |
+
`callback_on_step_end_tensor_inputs`.
|
1158 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1159 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1160 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1161 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1162 |
+
|
1163 |
+
Examples:
|
1164 |
+
|
1165 |
+
Returns:
|
1166 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1167 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1168 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1169 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1170 |
+
"not-safe-for-work" (nsfw) content.
|
1171 |
+
"""
|
1172 |
+
|
1173 |
+
callback = kwargs.pop("callback", None)
|
1174 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1175 |
+
|
1176 |
+
if callback is not None:
|
1177 |
+
deprecate(
|
1178 |
+
"callback",
|
1179 |
+
"1.0.0",
|
1180 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1181 |
+
)
|
1182 |
+
if callback_steps is not None:
|
1183 |
+
deprecate(
|
1184 |
+
"callback_steps",
|
1185 |
+
"1.0.0",
|
1186 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
brushnet = self.brushnet._orig_mod if is_compiled_module(self.brushnet) else self.brushnet
|
1190 |
+
|
1191 |
+
# align format for control guidance
|
1192 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1193 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1194 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1195 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1196 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1197 |
+
control_guidance_start, control_guidance_end = (
|
1198 |
+
[control_guidance_start],
|
1199 |
+
[control_guidance_end],
|
1200 |
+
)
|
1201 |
+
|
1202 |
+
# 1. Check inputs. Raise error if not correct
|
1203 |
+
prompt = promptA
|
1204 |
+
negative_prompt = negative_promptA
|
1205 |
+
self.check_inputs(
|
1206 |
+
prompt,
|
1207 |
+
image,
|
1208 |
+
mask,
|
1209 |
+
callback_steps,
|
1210 |
+
negative_prompt,
|
1211 |
+
prompt_embeds,
|
1212 |
+
negative_prompt_embeds,
|
1213 |
+
ip_adapter_image,
|
1214 |
+
ip_adapter_image_embeds,
|
1215 |
+
brushnet_conditioning_scale,
|
1216 |
+
control_guidance_start,
|
1217 |
+
control_guidance_end,
|
1218 |
+
callback_on_step_end_tensor_inputs,
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
self._guidance_scale = guidance_scale
|
1222 |
+
self._clip_skip = clip_skip
|
1223 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1224 |
+
|
1225 |
+
# 2. Define call parameters
|
1226 |
+
if prompt is not None and isinstance(prompt, str):
|
1227 |
+
batch_size = 1
|
1228 |
+
elif prompt is not None and isinstance(prompt, list):
|
1229 |
+
batch_size = len(prompt)
|
1230 |
+
else:
|
1231 |
+
batch_size = prompt_embeds.shape[0]
|
1232 |
+
|
1233 |
+
device = self._execution_device
|
1234 |
+
|
1235 |
+
global_pool_conditions = (
|
1236 |
+
brushnet.config.global_pool_conditions
|
1237 |
+
if isinstance(brushnet, BrushNetModel)
|
1238 |
+
else brushnet.nets[0].config.global_pool_conditions
|
1239 |
+
)
|
1240 |
+
guess_mode = guess_mode or global_pool_conditions
|
1241 |
+
|
1242 |
+
# 3. Encode input prompt
|
1243 |
+
text_encoder_lora_scale = (
|
1244 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
prompt_embeds = self._encode_prompt(
|
1248 |
+
promptA,
|
1249 |
+
promptB,
|
1250 |
+
tradoff,
|
1251 |
+
device,
|
1252 |
+
num_images_per_prompt,
|
1253 |
+
self.do_classifier_free_guidance,
|
1254 |
+
negative_promptA,
|
1255 |
+
negative_promptB,
|
1256 |
+
tradoff_nag,
|
1257 |
+
prompt_embeds=prompt_embeds,
|
1258 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1259 |
+
lora_scale=text_encoder_lora_scale,
|
1260 |
+
)
|
1261 |
+
prompt_embedsU = None
|
1262 |
+
negative_prompt_embedsU = None
|
1263 |
+
prompt_embedsU = self.encode_prompt(
|
1264 |
+
promptU,
|
1265 |
+
device,
|
1266 |
+
num_images_per_prompt,
|
1267 |
+
self.do_classifier_free_guidance,
|
1268 |
+
negative_promptU,
|
1269 |
+
prompt_embeds=prompt_embedsU,
|
1270 |
+
negative_prompt_embeds=negative_prompt_embedsU,
|
1271 |
+
lora_scale=text_encoder_lora_scale,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1275 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1276 |
+
ip_adapter_image,
|
1277 |
+
ip_adapter_image_embeds,
|
1278 |
+
device,
|
1279 |
+
batch_size * num_images_per_prompt,
|
1280 |
+
self.do_classifier_free_guidance,
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
# 4. Prepare image
|
1284 |
+
if isinstance(brushnet, BrushNetModel):
|
1285 |
+
image = self.prepare_image(
|
1286 |
+
image=image,
|
1287 |
+
width=width,
|
1288 |
+
height=height,
|
1289 |
+
batch_size=batch_size * num_images_per_prompt,
|
1290 |
+
num_images_per_prompt=num_images_per_prompt,
|
1291 |
+
device=device,
|
1292 |
+
dtype=brushnet.dtype,
|
1293 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1294 |
+
guess_mode=guess_mode,
|
1295 |
+
)
|
1296 |
+
original_mask = self.prepare_image(
|
1297 |
+
image=mask,
|
1298 |
+
width=width,
|
1299 |
+
height=height,
|
1300 |
+
batch_size=batch_size * num_images_per_prompt,
|
1301 |
+
num_images_per_prompt=num_images_per_prompt,
|
1302 |
+
device=device,
|
1303 |
+
dtype=brushnet.dtype,
|
1304 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1305 |
+
guess_mode=guess_mode,
|
1306 |
+
)
|
1307 |
+
original_mask = (original_mask.sum(1)[:, None, :, :] < 0).to(image.dtype)
|
1308 |
+
height, width = image.shape[-2:]
|
1309 |
+
else:
|
1310 |
+
assert False
|
1311 |
+
|
1312 |
+
# 5. Prepare timesteps
|
1313 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1314 |
+
self._num_timesteps = len(timesteps)
|
1315 |
+
|
1316 |
+
# 6. Prepare latent variables
|
1317 |
+
num_channels_latents = self.unet.config.in_channels
|
1318 |
+
latents, noise = self.prepare_latents(
|
1319 |
+
batch_size * num_images_per_prompt,
|
1320 |
+
num_channels_latents,
|
1321 |
+
height,
|
1322 |
+
width,
|
1323 |
+
prompt_embeds.dtype,
|
1324 |
+
device,
|
1325 |
+
generator,
|
1326 |
+
latents,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
# 6.1 prepare condition latents
|
1330 |
+
# mask_i = transforms.ToPILImage()(image[0:1,:,:,:].squeeze(0))
|
1331 |
+
# mask_i.save('_mask.png')
|
1332 |
+
# print(brushnet.dtype)
|
1333 |
+
conditioning_latents = self.vae.encode(
|
1334 |
+
image.to(device=device, dtype=brushnet.dtype)).latent_dist.sample() * self.vae.config.scaling_factor
|
1335 |
+
mask = torch.nn.functional.interpolate(
|
1336 |
+
original_mask,
|
1337 |
+
size=(
|
1338 |
+
conditioning_latents.shape[-2],
|
1339 |
+
conditioning_latents.shape[-1]
|
1340 |
+
)
|
1341 |
+
)
|
1342 |
+
conditioning_latents = torch.concat([conditioning_latents, mask], 1)
|
1343 |
+
# image = self.vae.decode(conditioning_latents[:1,:4,:,:] / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
|
1344 |
+
# from torchvision import transforms
|
1345 |
+
# mask_i = transforms.ToPILImage()(image[0:1,:,:,:].squeeze(0)/2+0.5)
|
1346 |
+
# mask_i.save(str(timesteps[0]) +'_C.png')
|
1347 |
+
|
1348 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
1349 |
+
timestep_cond = None
|
1350 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1351 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1352 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1353 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1354 |
+
).to(device=device, dtype=latents.dtype)
|
1355 |
+
|
1356 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1357 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1358 |
+
|
1359 |
+
# 7.1 Add image embeds for IP-Adapter
|
1360 |
+
added_cond_kwargs = (
|
1361 |
+
{"image_embeds": image_embeds}
|
1362 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
1363 |
+
else None
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
# 7.2 Create tensor stating which brushnets to keep
|
1367 |
+
brushnet_keep = []
|
1368 |
+
for i in range(len(timesteps)):
|
1369 |
+
keeps = [
|
1370 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1371 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1372 |
+
]
|
1373 |
+
brushnet_keep.append(keeps[0] if isinstance(brushnet, BrushNetModel) else keeps)
|
1374 |
+
|
1375 |
+
# 8. Denoising loop
|
1376 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1377 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
1378 |
+
is_brushnet_compiled = is_compiled_module(self.brushnet)
|
1379 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1380 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1381 |
+
for i, t in enumerate(timesteps):
|
1382 |
+
# Relevant thread:
|
1383 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1384 |
+
if (is_unet_compiled and is_brushnet_compiled) and is_torch_higher_equal_2_1:
|
1385 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1386 |
+
# expand the latents if we are doing classifier free guidance
|
1387 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1388 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1389 |
+
|
1390 |
+
# brushnet(s) inference
|
1391 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1392 |
+
# Infer BrushNet only for the conditional batch.
|
1393 |
+
control_model_input = latents
|
1394 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1395 |
+
brushnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1396 |
+
else:
|
1397 |
+
control_model_input = latent_model_input
|
1398 |
+
brushnet_prompt_embeds = prompt_embeds
|
1399 |
+
|
1400 |
+
if isinstance(brushnet_keep[i], list):
|
1401 |
+
cond_scale = [c * s for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])]
|
1402 |
+
else:
|
1403 |
+
brushnet_cond_scale = brushnet_conditioning_scale
|
1404 |
+
if isinstance(brushnet_cond_scale, list):
|
1405 |
+
brushnet_cond_scale = brushnet_cond_scale[0]
|
1406 |
+
cond_scale = brushnet_cond_scale * brushnet_keep[i]
|
1407 |
+
|
1408 |
+
down_block_res_samples, mid_block_res_sample, up_block_res_samples = self.brushnet(
|
1409 |
+
control_model_input,
|
1410 |
+
t,
|
1411 |
+
encoder_hidden_states=brushnet_prompt_embeds,
|
1412 |
+
brushnet_cond=conditioning_latents,
|
1413 |
+
conditioning_scale=cond_scale,
|
1414 |
+
guess_mode=guess_mode,
|
1415 |
+
return_dict=False,
|
1416 |
+
)
|
1417 |
+
|
1418 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1419 |
+
# Infered BrushNet only for the conditional batch.
|
1420 |
+
# To apply the output of BrushNet to both the unconditional and conditional batches,
|
1421 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1422 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1423 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1424 |
+
up_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in up_block_res_samples]
|
1425 |
+
|
1426 |
+
# predict the noise residual
|
1427 |
+
noise_pred = self.unet(
|
1428 |
+
latent_model_input,
|
1429 |
+
t,
|
1430 |
+
encoder_hidden_states=prompt_embedsU,
|
1431 |
+
timestep_cond=timestep_cond,
|
1432 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1433 |
+
down_block_add_samples=down_block_res_samples,
|
1434 |
+
mid_block_add_sample=mid_block_res_sample,
|
1435 |
+
up_block_add_samples=up_block_res_samples,
|
1436 |
+
added_cond_kwargs=added_cond_kwargs,
|
1437 |
+
return_dict=False,
|
1438 |
+
)[0]
|
1439 |
+
|
1440 |
+
# perform guidance
|
1441 |
+
if self.do_classifier_free_guidance:
|
1442 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1443 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1444 |
+
|
1445 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1446 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1447 |
+
|
1448 |
+
if callback_on_step_end is not None:
|
1449 |
+
callback_kwargs = {}
|
1450 |
+
for k in callback_on_step_end_tensor_inputs:
|
1451 |
+
callback_kwargs[k] = locals()[k]
|
1452 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1453 |
+
|
1454 |
+
latents = callback_outputs.pop("latents", latents)
|
1455 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1456 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1457 |
+
|
1458 |
+
# call the callback, if provided
|
1459 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1460 |
+
progress_bar.update()
|
1461 |
+
if callback is not None and i % callback_steps == 0:
|
1462 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1463 |
+
callback(step_idx, t, latents)
|
1464 |
+
|
1465 |
+
# If we do sequential model offloading, let's offload unet and brushnet
|
1466 |
+
# manually for max memory savings
|
1467 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1468 |
+
self.unet.to("cpu")
|
1469 |
+
self.brushnet.to("cpu")
|
1470 |
+
torch.cuda.empty_cache()
|
1471 |
+
|
1472 |
+
if not output_type == "latent":
|
1473 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1474 |
+
0
|
1475 |
+
]
|
1476 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1477 |
+
else:
|
1478 |
+
image = latents
|
1479 |
+
has_nsfw_concept = None
|
1480 |
+
|
1481 |
+
if has_nsfw_concept is None:
|
1482 |
+
do_denormalize = [True] * image.shape[0]
|
1483 |
+
else:
|
1484 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1485 |
+
|
1486 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1487 |
+
|
1488 |
+
# Offload all models
|
1489 |
+
self.maybe_free_model_hooks()
|
1490 |
+
|
1491 |
+
if not return_dict:
|
1492 |
+
return (image, has_nsfw_concept)
|
1493 |
+
|
1494 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
powerpaint_v2/power_paint_tokenizer.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import copy
|
4 |
+
import random
|
5 |
+
from typing import Any, List, Optional, Union
|
6 |
+
from transformers import CLIPTokenizer
|
7 |
+
|
8 |
+
|
9 |
+
class PowerPaintTokenizer:
|
10 |
+
def __init__(self, tokenizer: CLIPTokenizer):
|
11 |
+
self.wrapped = tokenizer
|
12 |
+
self.token_map = {}
|
13 |
+
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"]
|
14 |
+
num_vec_per_token = 10
|
15 |
+
for placeholder_token in placeholder_tokens:
|
16 |
+
output = []
|
17 |
+
for i in range(num_vec_per_token):
|
18 |
+
ith_token = placeholder_token + f"_{i}"
|
19 |
+
output.append(ith_token)
|
20 |
+
self.token_map[placeholder_token] = output
|
21 |
+
|
22 |
+
def __getattr__(self, name: str) -> Any:
|
23 |
+
if name == "wrapped":
|
24 |
+
return super().__getattr__("wrapped")
|
25 |
+
|
26 |
+
try:
|
27 |
+
return getattr(self.wrapped, name)
|
28 |
+
except AttributeError:
|
29 |
+
try:
|
30 |
+
return super().__getattr__(name)
|
31 |
+
except AttributeError:
|
32 |
+
raise AttributeError(
|
33 |
+
"'name' cannot be found in both "
|
34 |
+
f"'{self.__class__.__name__}' and "
|
35 |
+
f"'{self.__class__.__name__}.tokenizer'."
|
36 |
+
)
|
37 |
+
|
38 |
+
def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
|
39 |
+
"""Attempt to add tokens to the tokenizer.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
tokens (Union[str, List[str]]): The tokens to be added.
|
43 |
+
"""
|
44 |
+
num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
|
45 |
+
assert num_added_tokens != 0, (
|
46 |
+
f"The tokenizer already contains the token {tokens}. Please pass "
|
47 |
+
"a different `placeholder_token` that is not already in the "
|
48 |
+
"tokenizer."
|
49 |
+
)
|
50 |
+
|
51 |
+
def get_token_info(self, token: str) -> dict:
|
52 |
+
"""Get the information of a token, including its start and end index in
|
53 |
+
the current tokenizer.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
token (str): The token to be queried.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
dict: The information of the token, including its start and end
|
60 |
+
index in current tokenizer.
|
61 |
+
"""
|
62 |
+
token_ids = self.__call__(token).input_ids
|
63 |
+
start, end = token_ids[1], token_ids[-2] + 1
|
64 |
+
return {"name": token, "start": start, "end": end}
|
65 |
+
|
66 |
+
def add_placeholder_token(
|
67 |
+
self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs
|
68 |
+
):
|
69 |
+
"""Add placeholder tokens to the tokenizer.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
placeholder_token (str): The placeholder token to be added.
|
73 |
+
num_vec_per_token (int, optional): The number of vectors of
|
74 |
+
the added placeholder token.
|
75 |
+
*args, **kwargs: The arguments for `self.wrapped.add_tokens`.
|
76 |
+
"""
|
77 |
+
output = []
|
78 |
+
if num_vec_per_token == 1:
|
79 |
+
self.try_adding_tokens(placeholder_token, *args, **kwargs)
|
80 |
+
output.append(placeholder_token)
|
81 |
+
else:
|
82 |
+
output = []
|
83 |
+
for i in range(num_vec_per_token):
|
84 |
+
ith_token = placeholder_token + f"_{i}"
|
85 |
+
self.try_adding_tokens(ith_token, *args, **kwargs)
|
86 |
+
output.append(ith_token)
|
87 |
+
|
88 |
+
for token in self.token_map:
|
89 |
+
if token in placeholder_token:
|
90 |
+
raise ValueError(
|
91 |
+
f"The tokenizer already has placeholder token {token} "
|
92 |
+
f"that can get confused with {placeholder_token} "
|
93 |
+
"keep placeholder tokens independent"
|
94 |
+
)
|
95 |
+
self.token_map[placeholder_token] = output
|
96 |
+
|
97 |
+
def replace_placeholder_tokens_in_text(
|
98 |
+
self,
|
99 |
+
text: Union[str, List[str]],
|
100 |
+
vector_shuffle: bool = False,
|
101 |
+
prop_tokens_to_load: float = 1.0,
|
102 |
+
) -> Union[str, List[str]]:
|
103 |
+
"""Replace the keywords in text with placeholder tokens. This function
|
104 |
+
will be called in `self.__call__` and `self.encode`.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
text (Union[str, List[str]]): The text to be processed.
|
108 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
109 |
+
Defaults to False.
|
110 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
111 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
Union[str, List[str]]: The processed text.
|
115 |
+
"""
|
116 |
+
if isinstance(text, list):
|
117 |
+
output = []
|
118 |
+
for i in range(len(text)):
|
119 |
+
output.append(
|
120 |
+
self.replace_placeholder_tokens_in_text(
|
121 |
+
text[i], vector_shuffle=vector_shuffle
|
122 |
+
)
|
123 |
+
)
|
124 |
+
return output
|
125 |
+
|
126 |
+
for placeholder_token in self.token_map:
|
127 |
+
if placeholder_token in text:
|
128 |
+
tokens = self.token_map[placeholder_token]
|
129 |
+
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
|
130 |
+
if vector_shuffle:
|
131 |
+
tokens = copy.copy(tokens)
|
132 |
+
random.shuffle(tokens)
|
133 |
+
text = text.replace(placeholder_token, " ".join(tokens))
|
134 |
+
return text
|
135 |
+
|
136 |
+
def replace_text_with_placeholder_tokens(
|
137 |
+
self, text: Union[str, List[str]]
|
138 |
+
) -> Union[str, List[str]]:
|
139 |
+
"""Replace the placeholder tokens in text with the original keywords.
|
140 |
+
This function will be called in `self.decode`.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
text (Union[str, List[str]]): The text to be processed.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
Union[str, List[str]]: The processed text.
|
147 |
+
"""
|
148 |
+
if isinstance(text, list):
|
149 |
+
output = []
|
150 |
+
for i in range(len(text)):
|
151 |
+
output.append(self.replace_text_with_placeholder_tokens(text[i]))
|
152 |
+
return output
|
153 |
+
|
154 |
+
for placeholder_token, tokens in self.token_map.items():
|
155 |
+
merged_tokens = " ".join(tokens)
|
156 |
+
if merged_tokens in text:
|
157 |
+
text = text.replace(merged_tokens, placeholder_token)
|
158 |
+
return text
|
159 |
+
|
160 |
+
def __call__(
|
161 |
+
self,
|
162 |
+
text: Union[str, List[str]],
|
163 |
+
*args,
|
164 |
+
vector_shuffle: bool = False,
|
165 |
+
prop_tokens_to_load: float = 1.0,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
"""The call function of the wrapper.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
text (Union[str, List[str]]): The text to be tokenized.
|
172 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
173 |
+
Defaults to False.
|
174 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
175 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
|
176 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
177 |
+
"""
|
178 |
+
replaced_text = self.replace_placeholder_tokens_in_text(
|
179 |
+
text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
|
180 |
+
)
|
181 |
+
|
182 |
+
return self.wrapped.__call__(replaced_text, *args, **kwargs)
|
183 |
+
|
184 |
+
def encode(self, text: Union[str, List[str]], *args, **kwargs):
|
185 |
+
"""Encode the passed text to token index.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
text (Union[str, List[str]]): The text to be encode.
|
189 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
190 |
+
"""
|
191 |
+
replaced_text = self.replace_placeholder_tokens_in_text(text)
|
192 |
+
return self.wrapped(replaced_text, *args, **kwargs)
|
193 |
+
|
194 |
+
def decode(
|
195 |
+
self, token_ids, return_raw: bool = False, *args, **kwargs
|
196 |
+
) -> Union[str, List[str]]:
|
197 |
+
"""Decode the token index to text.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
token_ids: The token index to be decoded.
|
201 |
+
return_raw: Whether keep the placeholder token in the text.
|
202 |
+
Defaults to False.
|
203 |
+
*args, **kwargs: The arguments for `self.wrapped.decode`.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Union[str, List[str]]: The decoded text.
|
207 |
+
"""
|
208 |
+
text = self.wrapped.decode(token_ids, *args, **kwargs)
|
209 |
+
if return_raw:
|
210 |
+
return text
|
211 |
+
replaced_text = self.replace_text_with_placeholder_tokens(text)
|
212 |
+
return replaced_text
|
213 |
+
|
214 |
+
|
215 |
+
class EmbeddingLayerWithFixes(nn.Module):
|
216 |
+
"""The revised embedding layer to support external embeddings. This design
|
217 |
+
of this class is inspired by https://github.com/AUTOMATIC1111/stable-
|
218 |
+
diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
|
219 |
+
jack.py#L224 # noqa.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
wrapped (nn.Emebdding): The embedding layer to be wrapped.
|
223 |
+
external_embeddings (Union[dict, List[dict]], optional): The external
|
224 |
+
embeddings added to this layer. Defaults to None.
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
wrapped: nn.Embedding,
|
230 |
+
external_embeddings: Optional[Union[dict, List[dict]]] = None,
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
self.wrapped = wrapped
|
234 |
+
self.num_embeddings = wrapped.weight.shape[0]
|
235 |
+
|
236 |
+
self.external_embeddings = []
|
237 |
+
if external_embeddings:
|
238 |
+
self.add_embeddings(external_embeddings)
|
239 |
+
|
240 |
+
self.trainable_embeddings = nn.ParameterDict()
|
241 |
+
|
242 |
+
@property
|
243 |
+
def weight(self):
|
244 |
+
"""Get the weight of wrapped embedding layer."""
|
245 |
+
return self.wrapped.weight
|
246 |
+
|
247 |
+
def check_duplicate_names(self, embeddings: List[dict]):
|
248 |
+
"""Check whether duplicate names exist in list of 'external
|
249 |
+
embeddings'.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
embeddings (List[dict]): A list of embedding to be check.
|
253 |
+
"""
|
254 |
+
names = [emb["name"] for emb in embeddings]
|
255 |
+
assert len(names) == len(set(names)), (
|
256 |
+
"Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
|
257 |
+
)
|
258 |
+
|
259 |
+
def check_ids_overlap(self, embeddings):
|
260 |
+
"""Check whether overlap exist in token ids of 'external_embeddings'.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
embeddings (List[dict]): A list of embedding to be check.
|
264 |
+
"""
|
265 |
+
ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
|
266 |
+
ids_range.sort() # sort by 'start'
|
267 |
+
# check if 'end' has overlapping
|
268 |
+
for idx in range(len(ids_range) - 1):
|
269 |
+
name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
|
270 |
+
assert ids_range[idx][1] <= ids_range[idx + 1][0], (
|
271 |
+
f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
|
272 |
+
)
|
273 |
+
|
274 |
+
def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
|
275 |
+
"""Add external embeddings to this layer.
|
276 |
+
|
277 |
+
Use case:
|
278 |
+
|
279 |
+
>>> 1. Add token to tokenizer and get the token id.
|
280 |
+
>>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
|
281 |
+
>>> # 'how much' in kiswahili
|
282 |
+
>>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
|
283 |
+
>>>
|
284 |
+
>>> 2. Add external embeddings to the model.
|
285 |
+
>>> new_embedding = {
|
286 |
+
>>> 'name': 'ngapi', # 'how much' in kiswahili
|
287 |
+
>>> 'embedding': torch.ones(1, 15) * 4,
|
288 |
+
>>> 'start': tokenizer.get_token_info('kwaheri')['start'],
|
289 |
+
>>> 'end': tokenizer.get_token_info('kwaheri')['end'],
|
290 |
+
>>> 'trainable': False # if True, will registry as a parameter
|
291 |
+
>>> }
|
292 |
+
>>> embedding_layer = nn.Embedding(10, 15)
|
293 |
+
>>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
|
294 |
+
>>> embedding_layer_wrapper.add_embeddings(new_embedding)
|
295 |
+
>>>
|
296 |
+
>>> 3. Forward tokenizer and embedding layer!
|
297 |
+
>>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
|
298 |
+
>>> input_ids = tokenizer(
|
299 |
+
>>> input_text, padding='max_length', truncation=True,
|
300 |
+
>>> return_tensors='pt')['input_ids']
|
301 |
+
>>> out_feat = embedding_layer_wrapper(input_ids)
|
302 |
+
>>>
|
303 |
+
>>> 4. Let's validate the result!
|
304 |
+
>>> assert (out_feat[0, 3: 7] == 2.3).all()
|
305 |
+
>>> assert (out_feat[2, 5: 9] == 2.3).all()
|
306 |
+
|
307 |
+
Args:
|
308 |
+
embeddings (Union[dict, list[dict]]): The external embeddings to
|
309 |
+
be added. Each dict must contain the following 4 fields: 'name'
|
310 |
+
(the name of this embedding), 'embedding' (the embedding
|
311 |
+
tensor), 'start' (the start token id of this embedding), 'end'
|
312 |
+
(the end token id of this embedding). For example:
|
313 |
+
`{name: NAME, start: START, end: END, embedding: torch.Tensor}`
|
314 |
+
"""
|
315 |
+
if isinstance(embeddings, dict):
|
316 |
+
embeddings = [embeddings]
|
317 |
+
|
318 |
+
self.external_embeddings += embeddings
|
319 |
+
self.check_duplicate_names(self.external_embeddings)
|
320 |
+
self.check_ids_overlap(self.external_embeddings)
|
321 |
+
|
322 |
+
# set for trainable
|
323 |
+
added_trainable_emb_info = []
|
324 |
+
for embedding in embeddings:
|
325 |
+
trainable = embedding.get("trainable", False)
|
326 |
+
if trainable:
|
327 |
+
name = embedding["name"]
|
328 |
+
embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
|
329 |
+
self.trainable_embeddings[name] = embedding["embedding"]
|
330 |
+
added_trainable_emb_info.append(name)
|
331 |
+
|
332 |
+
added_emb_info = [emb["name"] for emb in embeddings]
|
333 |
+
added_emb_info = ", ".join(added_emb_info)
|
334 |
+
print(f"Successfully add external embeddings: {added_emb_info}.", "current")
|
335 |
+
|
336 |
+
if added_trainable_emb_info:
|
337 |
+
added_trainable_emb_info = ", ".join(added_trainable_emb_info)
|
338 |
+
print(
|
339 |
+
"Successfully add trainable external embeddings: "
|
340 |
+
f"{added_trainable_emb_info}",
|
341 |
+
"current",
|
342 |
+
)
|
343 |
+
|
344 |
+
def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
345 |
+
"""Replace external input ids to 0.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
input_ids (torch.Tensor): The input ids to be replaced.
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
torch.Tensor: The replaced input ids.
|
352 |
+
"""
|
353 |
+
input_ids_fwd = input_ids.clone()
|
354 |
+
input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
|
355 |
+
return input_ids_fwd
|
356 |
+
|
357 |
+
def replace_embeddings(
|
358 |
+
self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
|
359 |
+
) -> torch.Tensor:
|
360 |
+
"""Replace external embedding to the embedding layer. Noted that, in
|
361 |
+
this function we use `torch.cat` to avoid inplace modification.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
input_ids (torch.Tensor): The original token ids. Shape like
|
365 |
+
[LENGTH, ].
|
366 |
+
embedding (torch.Tensor): The embedding of token ids after
|
367 |
+
`replace_input_ids` function.
|
368 |
+
external_embedding (dict): The external embedding to be replaced.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
torch.Tensor: The replaced embedding.
|
372 |
+
"""
|
373 |
+
new_embedding = []
|
374 |
+
|
375 |
+
name = external_embedding["name"]
|
376 |
+
start = external_embedding["start"]
|
377 |
+
end = external_embedding["end"]
|
378 |
+
target_ids_to_replace = [i for i in range(start, end)]
|
379 |
+
ext_emb = external_embedding["embedding"]
|
380 |
+
|
381 |
+
# do not need to replace
|
382 |
+
if not (input_ids == start).any():
|
383 |
+
return embedding
|
384 |
+
|
385 |
+
# start replace
|
386 |
+
s_idx, e_idx = 0, 0
|
387 |
+
while e_idx < len(input_ids):
|
388 |
+
if input_ids[e_idx] == start:
|
389 |
+
if e_idx != 0:
|
390 |
+
# add embedding do not need to replace
|
391 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
392 |
+
|
393 |
+
# check if the next embedding need to replace is valid
|
394 |
+
actually_ids_to_replace = [
|
395 |
+
int(i) for i in input_ids[e_idx : e_idx + end - start]
|
396 |
+
]
|
397 |
+
assert actually_ids_to_replace == target_ids_to_replace, (
|
398 |
+
f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
|
399 |
+
f"Expect '{target_ids_to_replace}' for embedding "
|
400 |
+
f"'{name}' but found '{actually_ids_to_replace}'."
|
401 |
+
)
|
402 |
+
|
403 |
+
new_embedding.append(ext_emb)
|
404 |
+
|
405 |
+
s_idx = e_idx + end - start
|
406 |
+
e_idx = s_idx + 1
|
407 |
+
else:
|
408 |
+
e_idx += 1
|
409 |
+
|
410 |
+
if e_idx == len(input_ids):
|
411 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
412 |
+
|
413 |
+
return torch.cat(new_embedding, dim=0)
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None
|
417 |
+
):
|
418 |
+
"""The forward function.
|
419 |
+
|
420 |
+
Args:
|
421 |
+
input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
|
422 |
+
[LENGTH, ].
|
423 |
+
external_embeddings (Optional[List[dict]]): The external
|
424 |
+
embeddings. If not passed, only `self.external_embeddings`
|
425 |
+
will be used. Defaults to None.
|
426 |
+
|
427 |
+
input_ids: shape like [bz, LENGTH] or [LENGTH].
|
428 |
+
"""
|
429 |
+
assert input_ids.ndim in [1, 2]
|
430 |
+
if input_ids.ndim == 1:
|
431 |
+
input_ids = input_ids.unsqueeze(0)
|
432 |
+
|
433 |
+
if external_embeddings is None and not self.external_embeddings:
|
434 |
+
return self.wrapped(input_ids)
|
435 |
+
|
436 |
+
input_ids_fwd = self.replace_input_ids(input_ids)
|
437 |
+
inputs_embeds = self.wrapped(input_ids_fwd)
|
438 |
+
|
439 |
+
vecs = []
|
440 |
+
|
441 |
+
if external_embeddings is None:
|
442 |
+
external_embeddings = []
|
443 |
+
elif isinstance(external_embeddings, dict):
|
444 |
+
external_embeddings = [external_embeddings]
|
445 |
+
embeddings = self.external_embeddings + external_embeddings
|
446 |
+
|
447 |
+
for input_id, embedding in zip(input_ids, inputs_embeds):
|
448 |
+
new_embedding = embedding
|
449 |
+
for external_embedding in embeddings:
|
450 |
+
new_embedding = self.replace_embeddings(
|
451 |
+
input_id, new_embedding, external_embedding
|
452 |
+
)
|
453 |
+
vecs.append(new_embedding)
|
454 |
+
|
455 |
+
return torch.stack(vecs)
|
456 |
+
|
457 |
+
|
458 |
+
def add_tokens(
|
459 |
+
tokenizer,
|
460 |
+
text_encoder,
|
461 |
+
placeholder_tokens: list,
|
462 |
+
initialize_tokens: list = None,
|
463 |
+
num_vectors_per_token: int = 1,
|
464 |
+
):
|
465 |
+
"""Add token for training.
|
466 |
+
|
467 |
+
# TODO: support add tokens as dict, then we can load pretrained tokens.
|
468 |
+
"""
|
469 |
+
if initialize_tokens is not None:
|
470 |
+
assert len(initialize_tokens) == len(
|
471 |
+
placeholder_tokens
|
472 |
+
), "placeholder_token should be the same length as initialize_token"
|
473 |
+
for ii in range(len(placeholder_tokens)):
|
474 |
+
tokenizer.add_placeholder_token(
|
475 |
+
placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token
|
476 |
+
)
|
477 |
+
|
478 |
+
# text_encoder.set_embedding_layer()
|
479 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
480 |
+
text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(
|
481 |
+
embedding_layer
|
482 |
+
)
|
483 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
484 |
+
|
485 |
+
assert embedding_layer is not None, (
|
486 |
+
"Do not support get embedding layer for current text encoder. "
|
487 |
+
"Please check your configuration."
|
488 |
+
)
|
489 |
+
initialize_embedding = []
|
490 |
+
if initialize_tokens is not None:
|
491 |
+
for ii in range(len(placeholder_tokens)):
|
492 |
+
init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
|
493 |
+
temp_embedding = embedding_layer.weight[init_id]
|
494 |
+
initialize_embedding.append(
|
495 |
+
temp_embedding[None, ...].repeat(num_vectors_per_token, 1)
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
for ii in range(len(placeholder_tokens)):
|
499 |
+
init_id = tokenizer("a").input_ids[1]
|
500 |
+
temp_embedding = embedding_layer.weight[init_id]
|
501 |
+
len_emb = temp_embedding.shape[0]
|
502 |
+
init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
|
503 |
+
initialize_embedding.append(init_weight)
|
504 |
+
|
505 |
+
# initialize_embedding = torch.cat(initialize_embedding,dim=0)
|
506 |
+
|
507 |
+
token_info_all = []
|
508 |
+
for ii in range(len(placeholder_tokens)):
|
509 |
+
token_info = tokenizer.get_token_info(placeholder_tokens[ii])
|
510 |
+
token_info["embedding"] = initialize_embedding[ii]
|
511 |
+
token_info["trainable"] = True
|
512 |
+
token_info_all.append(token_info)
|
513 |
+
embedding_layer.add_embeddings(token_info_all)
|
powerpaint_v2/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
powerpaint_v2/unet_2d_condition.py
ADDED
@@ -0,0 +1,1353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
Attention,
|
29 |
+
AttentionProcessor,
|
30 |
+
AttnAddedKVProcessor,
|
31 |
+
AttnProcessor,
|
32 |
+
)
|
33 |
+
from diffusers.models.embeddings import (
|
34 |
+
GaussianFourierProjection,
|
35 |
+
GLIGENTextBoundingboxProjection,
|
36 |
+
ImageHintTimeEmbedding,
|
37 |
+
ImageProjection,
|
38 |
+
ImageTimeEmbedding,
|
39 |
+
TextImageProjection,
|
40 |
+
TextImageTimeEmbedding,
|
41 |
+
TextTimeEmbedding,
|
42 |
+
TimestepEmbedding,
|
43 |
+
Timesteps,
|
44 |
+
)
|
45 |
+
from diffusers.models.modeling_utils import ModelMixin
|
46 |
+
from .unet_2d_blocks import (
|
47 |
+
get_down_block,
|
48 |
+
get_mid_block,
|
49 |
+
get_up_block,
|
50 |
+
)
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class UNet2DConditionOutput(BaseOutput):
|
57 |
+
"""
|
58 |
+
The output of [`UNet2DConditionModel`].
|
59 |
+
|
60 |
+
Args:
|
61 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
62 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
63 |
+
"""
|
64 |
+
|
65 |
+
sample: torch.FloatTensor = None
|
66 |
+
|
67 |
+
|
68 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
69 |
+
r"""
|
70 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
71 |
+
shaped output.
|
72 |
+
|
73 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
74 |
+
for all models (such as downloading or saving).
|
75 |
+
|
76 |
+
Parameters:
|
77 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
78 |
+
Height and width of input/output sample.
|
79 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
80 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
81 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
82 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to flip the sin to cos in the time embedding.
|
84 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
85 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
86 |
+
The tuple of downsample blocks to use.
|
87 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
88 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
89 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
90 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
91 |
+
The tuple of upsample blocks to use.
|
92 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
93 |
+
Whether to include self-attention in the basic transformer blocks, see
|
94 |
+
[`~models.attention.BasicTransformerBlock`].
|
95 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
96 |
+
The tuple of output channels for each block.
|
97 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
98 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
99 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
100 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
101 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
102 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
103 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
104 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
105 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
106 |
+
The dimension of the cross attention features.
|
107 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
108 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
109 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
110 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
111 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
112 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
113 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
114 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
115 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
116 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
117 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
118 |
+
dimension to `cross_attention_dim`.
|
119 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
120 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
121 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
122 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
123 |
+
num_attention_heads (`int`, *optional*):
|
124 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
125 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
126 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
127 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
128 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
129 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
130 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
131 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
132 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
133 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
134 |
+
Dimension for the timestep embeddings.
|
135 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
136 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
137 |
+
class conditioning with `class_embed_type` equal to `None`.
|
138 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
139 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
140 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
141 |
+
An optional override for the dimension of the projected time embedding.
|
142 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
143 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
144 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
145 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
146 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
147 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
148 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
149 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
150 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
151 |
+
*optional*): The dimension of the `class_labels` input when
|
152 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
153 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
154 |
+
embeddings with the class embeddings.
|
155 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
156 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
157 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
158 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
159 |
+
otherwise.
|
160 |
+
"""
|
161 |
+
|
162 |
+
_supports_gradient_checkpointing = True
|
163 |
+
|
164 |
+
@register_to_config
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
sample_size: Optional[int] = None,
|
168 |
+
in_channels: int = 4,
|
169 |
+
out_channels: int = 4,
|
170 |
+
center_input_sample: bool = False,
|
171 |
+
flip_sin_to_cos: bool = True,
|
172 |
+
freq_shift: int = 0,
|
173 |
+
down_block_types: Tuple[str] = (
|
174 |
+
"CrossAttnDownBlock2D",
|
175 |
+
"CrossAttnDownBlock2D",
|
176 |
+
"CrossAttnDownBlock2D",
|
177 |
+
"DownBlock2D",
|
178 |
+
),
|
179 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
180 |
+
up_block_types: Tuple[str] = (
|
181 |
+
"UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
182 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
183 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
184 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
185 |
+
downsample_padding: int = 1,
|
186 |
+
mid_block_scale_factor: float = 1,
|
187 |
+
dropout: float = 0.0,
|
188 |
+
act_fn: str = "silu",
|
189 |
+
norm_num_groups: Optional[int] = 32,
|
190 |
+
norm_eps: float = 1e-5,
|
191 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
192 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
193 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
194 |
+
encoder_hid_dim: Optional[int] = None,
|
195 |
+
encoder_hid_dim_type: Optional[str] = None,
|
196 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
197 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
198 |
+
dual_cross_attention: bool = False,
|
199 |
+
use_linear_projection: bool = False,
|
200 |
+
class_embed_type: Optional[str] = None,
|
201 |
+
addition_embed_type: Optional[str] = None,
|
202 |
+
addition_time_embed_dim: Optional[int] = None,
|
203 |
+
num_class_embeds: Optional[int] = None,
|
204 |
+
upcast_attention: bool = False,
|
205 |
+
resnet_time_scale_shift: str = "default",
|
206 |
+
resnet_skip_time_act: bool = False,
|
207 |
+
resnet_out_scale_factor: float = 1.0,
|
208 |
+
time_embedding_type: str = "positional",
|
209 |
+
time_embedding_dim: Optional[int] = None,
|
210 |
+
time_embedding_act_fn: Optional[str] = None,
|
211 |
+
timestep_post_act: Optional[str] = None,
|
212 |
+
time_cond_proj_dim: Optional[int] = None,
|
213 |
+
conv_in_kernel: int = 3,
|
214 |
+
conv_out_kernel: int = 3,
|
215 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
216 |
+
attention_type: str = "default",
|
217 |
+
class_embeddings_concat: bool = False,
|
218 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
219 |
+
cross_attention_norm: Optional[str] = None,
|
220 |
+
addition_embed_type_num_heads: int = 64,
|
221 |
+
):
|
222 |
+
super().__init__()
|
223 |
+
|
224 |
+
self.sample_size = sample_size
|
225 |
+
|
226 |
+
if num_attention_heads is not None:
|
227 |
+
raise ValueError(
|
228 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
229 |
+
)
|
230 |
+
|
231 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
232 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
233 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
234 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
235 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
236 |
+
# which is why we correct for the naming here.
|
237 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
238 |
+
|
239 |
+
# Check inputs
|
240 |
+
self._check_config(
|
241 |
+
down_block_types=down_block_types,
|
242 |
+
up_block_types=up_block_types,
|
243 |
+
only_cross_attention=only_cross_attention,
|
244 |
+
block_out_channels=block_out_channels,
|
245 |
+
layers_per_block=layers_per_block,
|
246 |
+
cross_attention_dim=cross_attention_dim,
|
247 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
248 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
249 |
+
attention_head_dim=attention_head_dim,
|
250 |
+
num_attention_heads=num_attention_heads,
|
251 |
+
)
|
252 |
+
|
253 |
+
# input
|
254 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
255 |
+
self.conv_in = nn.Conv2d(
|
256 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
257 |
+
)
|
258 |
+
|
259 |
+
# time
|
260 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
261 |
+
time_embedding_type,
|
262 |
+
block_out_channels=block_out_channels,
|
263 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
264 |
+
freq_shift=freq_shift,
|
265 |
+
time_embedding_dim=time_embedding_dim,
|
266 |
+
)
|
267 |
+
|
268 |
+
self.time_embedding = TimestepEmbedding(
|
269 |
+
timestep_input_dim,
|
270 |
+
time_embed_dim,
|
271 |
+
act_fn=act_fn,
|
272 |
+
post_act_fn=timestep_post_act,
|
273 |
+
cond_proj_dim=time_cond_proj_dim,
|
274 |
+
)
|
275 |
+
|
276 |
+
self._set_encoder_hid_proj(
|
277 |
+
encoder_hid_dim_type,
|
278 |
+
cross_attention_dim=cross_attention_dim,
|
279 |
+
encoder_hid_dim=encoder_hid_dim,
|
280 |
+
)
|
281 |
+
|
282 |
+
# class embedding
|
283 |
+
self._set_class_embedding(
|
284 |
+
class_embed_type,
|
285 |
+
act_fn=act_fn,
|
286 |
+
num_class_embeds=num_class_embeds,
|
287 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
288 |
+
time_embed_dim=time_embed_dim,
|
289 |
+
timestep_input_dim=timestep_input_dim,
|
290 |
+
)
|
291 |
+
|
292 |
+
self._set_add_embedding(
|
293 |
+
addition_embed_type,
|
294 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
295 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
296 |
+
cross_attention_dim=cross_attention_dim,
|
297 |
+
encoder_hid_dim=encoder_hid_dim,
|
298 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
299 |
+
freq_shift=freq_shift,
|
300 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
301 |
+
time_embed_dim=time_embed_dim,
|
302 |
+
)
|
303 |
+
|
304 |
+
if time_embedding_act_fn is None:
|
305 |
+
self.time_embed_act = None
|
306 |
+
else:
|
307 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
308 |
+
|
309 |
+
self.down_blocks = nn.ModuleList([])
|
310 |
+
self.up_blocks = nn.ModuleList([])
|
311 |
+
|
312 |
+
if isinstance(only_cross_attention, bool):
|
313 |
+
if mid_block_only_cross_attention is None:
|
314 |
+
mid_block_only_cross_attention = only_cross_attention
|
315 |
+
|
316 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
317 |
+
|
318 |
+
if mid_block_only_cross_attention is None:
|
319 |
+
mid_block_only_cross_attention = False
|
320 |
+
|
321 |
+
if isinstance(num_attention_heads, int):
|
322 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
323 |
+
|
324 |
+
if isinstance(attention_head_dim, int):
|
325 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
326 |
+
|
327 |
+
if isinstance(cross_attention_dim, int):
|
328 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
329 |
+
|
330 |
+
if isinstance(layers_per_block, int):
|
331 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
332 |
+
|
333 |
+
if isinstance(transformer_layers_per_block, int):
|
334 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
335 |
+
|
336 |
+
if class_embeddings_concat:
|
337 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
338 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
339 |
+
# regular time embeddings
|
340 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
341 |
+
else:
|
342 |
+
blocks_time_embed_dim = time_embed_dim
|
343 |
+
|
344 |
+
# down
|
345 |
+
output_channel = block_out_channels[0]
|
346 |
+
for i, down_block_type in enumerate(down_block_types):
|
347 |
+
input_channel = output_channel
|
348 |
+
output_channel = block_out_channels[i]
|
349 |
+
is_final_block = i == len(block_out_channels) - 1
|
350 |
+
|
351 |
+
down_block = get_down_block(
|
352 |
+
down_block_type,
|
353 |
+
num_layers=layers_per_block[i],
|
354 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
355 |
+
in_channels=input_channel,
|
356 |
+
out_channels=output_channel,
|
357 |
+
temb_channels=blocks_time_embed_dim,
|
358 |
+
add_downsample=not is_final_block,
|
359 |
+
resnet_eps=norm_eps,
|
360 |
+
resnet_act_fn=act_fn,
|
361 |
+
resnet_groups=norm_num_groups,
|
362 |
+
cross_attention_dim=cross_attention_dim[i],
|
363 |
+
num_attention_heads=num_attention_heads[i],
|
364 |
+
downsample_padding=downsample_padding,
|
365 |
+
dual_cross_attention=dual_cross_attention,
|
366 |
+
use_linear_projection=use_linear_projection,
|
367 |
+
only_cross_attention=only_cross_attention[i],
|
368 |
+
upcast_attention=upcast_attention,
|
369 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
370 |
+
attention_type=attention_type,
|
371 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
372 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
373 |
+
cross_attention_norm=cross_attention_norm,
|
374 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
375 |
+
dropout=dropout,
|
376 |
+
)
|
377 |
+
self.down_blocks.append(down_block)
|
378 |
+
|
379 |
+
# mid
|
380 |
+
self.mid_block = get_mid_block(
|
381 |
+
mid_block_type,
|
382 |
+
temb_channels=blocks_time_embed_dim,
|
383 |
+
in_channels=block_out_channels[-1],
|
384 |
+
resnet_eps=norm_eps,
|
385 |
+
resnet_act_fn=act_fn,
|
386 |
+
resnet_groups=norm_num_groups,
|
387 |
+
output_scale_factor=mid_block_scale_factor,
|
388 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
389 |
+
num_attention_heads=num_attention_heads[-1],
|
390 |
+
cross_attention_dim=cross_attention_dim[-1],
|
391 |
+
dual_cross_attention=dual_cross_attention,
|
392 |
+
use_linear_projection=use_linear_projection,
|
393 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
394 |
+
upcast_attention=upcast_attention,
|
395 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
396 |
+
attention_type=attention_type,
|
397 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
398 |
+
cross_attention_norm=cross_attention_norm,
|
399 |
+
attention_head_dim=attention_head_dim[-1],
|
400 |
+
dropout=dropout,
|
401 |
+
)
|
402 |
+
|
403 |
+
# count how many layers upsample the images
|
404 |
+
self.num_upsamplers = 0
|
405 |
+
|
406 |
+
# up
|
407 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
408 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
409 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
410 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
411 |
+
reversed_transformer_layers_per_block = (
|
412 |
+
list(reversed(transformer_layers_per_block))
|
413 |
+
if reverse_transformer_layers_per_block is None
|
414 |
+
else reverse_transformer_layers_per_block
|
415 |
+
)
|
416 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
417 |
+
|
418 |
+
output_channel = reversed_block_out_channels[0]
|
419 |
+
for i, up_block_type in enumerate(up_block_types):
|
420 |
+
is_final_block = i == len(block_out_channels) - 1
|
421 |
+
|
422 |
+
prev_output_channel = output_channel
|
423 |
+
output_channel = reversed_block_out_channels[i]
|
424 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
425 |
+
|
426 |
+
# add upsample block for all BUT final layer
|
427 |
+
if not is_final_block:
|
428 |
+
add_upsample = True
|
429 |
+
self.num_upsamplers += 1
|
430 |
+
else:
|
431 |
+
add_upsample = False
|
432 |
+
|
433 |
+
up_block = get_up_block(
|
434 |
+
up_block_type,
|
435 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
436 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
437 |
+
in_channels=input_channel,
|
438 |
+
out_channels=output_channel,
|
439 |
+
prev_output_channel=prev_output_channel,
|
440 |
+
temb_channels=blocks_time_embed_dim,
|
441 |
+
add_upsample=add_upsample,
|
442 |
+
resnet_eps=norm_eps,
|
443 |
+
resnet_act_fn=act_fn,
|
444 |
+
resolution_idx=i,
|
445 |
+
resnet_groups=norm_num_groups,
|
446 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
447 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
448 |
+
dual_cross_attention=dual_cross_attention,
|
449 |
+
use_linear_projection=use_linear_projection,
|
450 |
+
only_cross_attention=only_cross_attention[i],
|
451 |
+
upcast_attention=upcast_attention,
|
452 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
453 |
+
attention_type=attention_type,
|
454 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
455 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
456 |
+
cross_attention_norm=cross_attention_norm,
|
457 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
458 |
+
dropout=dropout,
|
459 |
+
)
|
460 |
+
self.up_blocks.append(up_block)
|
461 |
+
prev_output_channel = output_channel
|
462 |
+
|
463 |
+
# out
|
464 |
+
if norm_num_groups is not None:
|
465 |
+
self.conv_norm_out = nn.GroupNorm(
|
466 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
467 |
+
)
|
468 |
+
|
469 |
+
self.conv_act = get_activation(act_fn)
|
470 |
+
|
471 |
+
else:
|
472 |
+
self.conv_norm_out = None
|
473 |
+
self.conv_act = None
|
474 |
+
|
475 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
476 |
+
self.conv_out = nn.Conv2d(
|
477 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
478 |
+
)
|
479 |
+
|
480 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
481 |
+
|
482 |
+
def _check_config(
|
483 |
+
self,
|
484 |
+
down_block_types: Tuple[str],
|
485 |
+
up_block_types: Tuple[str],
|
486 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
487 |
+
block_out_channels: Tuple[int],
|
488 |
+
layers_per_block: Union[int, Tuple[int]],
|
489 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
490 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
491 |
+
reverse_transformer_layers_per_block: bool,
|
492 |
+
attention_head_dim: int,
|
493 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
494 |
+
):
|
495 |
+
if len(down_block_types) != len(up_block_types):
|
496 |
+
raise ValueError(
|
497 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
498 |
+
)
|
499 |
+
|
500 |
+
if len(block_out_channels) != len(down_block_types):
|
501 |
+
raise ValueError(
|
502 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
503 |
+
)
|
504 |
+
|
505 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
506 |
+
raise ValueError(
|
507 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
508 |
+
)
|
509 |
+
|
510 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
511 |
+
raise ValueError(
|
512 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
513 |
+
)
|
514 |
+
|
515 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
516 |
+
raise ValueError(
|
517 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
518 |
+
)
|
519 |
+
|
520 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
521 |
+
raise ValueError(
|
522 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
523 |
+
)
|
524 |
+
|
525 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
526 |
+
raise ValueError(
|
527 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
528 |
+
)
|
529 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
530 |
+
for layer_number_per_block in transformer_layers_per_block:
|
531 |
+
if isinstance(layer_number_per_block, list):
|
532 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
533 |
+
|
534 |
+
def _set_time_proj(
|
535 |
+
self,
|
536 |
+
time_embedding_type: str,
|
537 |
+
block_out_channels: int,
|
538 |
+
flip_sin_to_cos: bool,
|
539 |
+
freq_shift: float,
|
540 |
+
time_embedding_dim: int,
|
541 |
+
) -> Tuple[int, int]:
|
542 |
+
if time_embedding_type == "fourier":
|
543 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
544 |
+
if time_embed_dim % 2 != 0:
|
545 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
546 |
+
self.time_proj = GaussianFourierProjection(
|
547 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
548 |
+
)
|
549 |
+
timestep_input_dim = time_embed_dim
|
550 |
+
elif time_embedding_type == "positional":
|
551 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
552 |
+
|
553 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
554 |
+
timestep_input_dim = block_out_channels[0]
|
555 |
+
else:
|
556 |
+
raise ValueError(
|
557 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
558 |
+
)
|
559 |
+
|
560 |
+
return time_embed_dim, timestep_input_dim
|
561 |
+
|
562 |
+
def _set_encoder_hid_proj(
|
563 |
+
self,
|
564 |
+
encoder_hid_dim_type: Optional[str],
|
565 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
566 |
+
encoder_hid_dim: Optional[int],
|
567 |
+
):
|
568 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
569 |
+
encoder_hid_dim_type = "text_proj"
|
570 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
571 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
572 |
+
|
573 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
574 |
+
raise ValueError(
|
575 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
576 |
+
)
|
577 |
+
|
578 |
+
if encoder_hid_dim_type == "text_proj":
|
579 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
580 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
581 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
582 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
583 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
584 |
+
self.encoder_hid_proj = TextImageProjection(
|
585 |
+
text_embed_dim=encoder_hid_dim,
|
586 |
+
image_embed_dim=cross_attention_dim,
|
587 |
+
cross_attention_dim=cross_attention_dim,
|
588 |
+
)
|
589 |
+
elif encoder_hid_dim_type == "image_proj":
|
590 |
+
# Kandinsky 2.2
|
591 |
+
self.encoder_hid_proj = ImageProjection(
|
592 |
+
image_embed_dim=encoder_hid_dim,
|
593 |
+
cross_attention_dim=cross_attention_dim,
|
594 |
+
)
|
595 |
+
elif encoder_hid_dim_type is not None:
|
596 |
+
raise ValueError(
|
597 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
598 |
+
)
|
599 |
+
else:
|
600 |
+
self.encoder_hid_proj = None
|
601 |
+
|
602 |
+
def _set_class_embedding(
|
603 |
+
self,
|
604 |
+
class_embed_type: Optional[str],
|
605 |
+
act_fn: str,
|
606 |
+
num_class_embeds: Optional[int],
|
607 |
+
projection_class_embeddings_input_dim: Optional[int],
|
608 |
+
time_embed_dim: int,
|
609 |
+
timestep_input_dim: int,
|
610 |
+
):
|
611 |
+
if class_embed_type is None and num_class_embeds is not None:
|
612 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
613 |
+
elif class_embed_type == "timestep":
|
614 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
615 |
+
elif class_embed_type == "identity":
|
616 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
617 |
+
elif class_embed_type == "projection":
|
618 |
+
if projection_class_embeddings_input_dim is None:
|
619 |
+
raise ValueError(
|
620 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
621 |
+
)
|
622 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
623 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
624 |
+
# 2. it projects from an arbitrary input dimension.
|
625 |
+
#
|
626 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
627 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
628 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
629 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
630 |
+
elif class_embed_type == "simple_projection":
|
631 |
+
if projection_class_embeddings_input_dim is None:
|
632 |
+
raise ValueError(
|
633 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
634 |
+
)
|
635 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
636 |
+
else:
|
637 |
+
self.class_embedding = None
|
638 |
+
|
639 |
+
def _set_add_embedding(
|
640 |
+
self,
|
641 |
+
addition_embed_type: str,
|
642 |
+
addition_embed_type_num_heads: int,
|
643 |
+
addition_time_embed_dim: Optional[int],
|
644 |
+
flip_sin_to_cos: bool,
|
645 |
+
freq_shift: float,
|
646 |
+
cross_attention_dim: Optional[int],
|
647 |
+
encoder_hid_dim: Optional[int],
|
648 |
+
projection_class_embeddings_input_dim: Optional[int],
|
649 |
+
time_embed_dim: int,
|
650 |
+
):
|
651 |
+
if addition_embed_type == "text":
|
652 |
+
if encoder_hid_dim is not None:
|
653 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
654 |
+
else:
|
655 |
+
text_time_embedding_from_dim = cross_attention_dim
|
656 |
+
|
657 |
+
self.add_embedding = TextTimeEmbedding(
|
658 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
659 |
+
)
|
660 |
+
elif addition_embed_type == "text_image":
|
661 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
662 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
663 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
664 |
+
self.add_embedding = TextImageTimeEmbedding(
|
665 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
666 |
+
)
|
667 |
+
elif addition_embed_type == "text_time":
|
668 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
669 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
670 |
+
elif addition_embed_type == "image":
|
671 |
+
# Kandinsky 2.2
|
672 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
673 |
+
elif addition_embed_type == "image_hint":
|
674 |
+
# Kandinsky 2.2 ControlNet
|
675 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
676 |
+
elif addition_embed_type is not None:
|
677 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
678 |
+
|
679 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
680 |
+
if attention_type in ["gated", "gated-text-image"]:
|
681 |
+
positive_len = 768
|
682 |
+
if isinstance(cross_attention_dim, int):
|
683 |
+
positive_len = cross_attention_dim
|
684 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
685 |
+
positive_len = cross_attention_dim[0]
|
686 |
+
|
687 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
688 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
689 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
690 |
+
)
|
691 |
+
|
692 |
+
@property
|
693 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
694 |
+
r"""
|
695 |
+
Returns:
|
696 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
697 |
+
indexed by its weight name.
|
698 |
+
"""
|
699 |
+
# set recursively
|
700 |
+
processors = {}
|
701 |
+
|
702 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
703 |
+
if hasattr(module, "get_processor"):
|
704 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
705 |
+
|
706 |
+
for sub_name, child in module.named_children():
|
707 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
708 |
+
|
709 |
+
return processors
|
710 |
+
|
711 |
+
for name, module in self.named_children():
|
712 |
+
fn_recursive_add_processors(name, module, processors)
|
713 |
+
|
714 |
+
return processors
|
715 |
+
|
716 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
717 |
+
r"""
|
718 |
+
Sets the attention processor to use to compute attention.
|
719 |
+
|
720 |
+
Parameters:
|
721 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
722 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
723 |
+
for **all** `Attention` layers.
|
724 |
+
|
725 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
726 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
727 |
+
|
728 |
+
"""
|
729 |
+
count = len(self.attn_processors.keys())
|
730 |
+
|
731 |
+
if isinstance(processor, dict) and len(processor) != count:
|
732 |
+
raise ValueError(
|
733 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
734 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
735 |
+
)
|
736 |
+
|
737 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
738 |
+
if hasattr(module, "set_processor"):
|
739 |
+
if not isinstance(processor, dict):
|
740 |
+
module.set_processor(processor)
|
741 |
+
else:
|
742 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
743 |
+
|
744 |
+
for sub_name, child in module.named_children():
|
745 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
746 |
+
|
747 |
+
for name, module in self.named_children():
|
748 |
+
fn_recursive_attn_processor(name, module, processor)
|
749 |
+
|
750 |
+
def set_default_attn_processor(self):
|
751 |
+
"""
|
752 |
+
Disables custom attention processors and sets the default attention implementation.
|
753 |
+
"""
|
754 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
755 |
+
processor = AttnAddedKVProcessor()
|
756 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
757 |
+
processor = AttnProcessor()
|
758 |
+
else:
|
759 |
+
raise ValueError(
|
760 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
761 |
+
)
|
762 |
+
|
763 |
+
self.set_attn_processor(processor)
|
764 |
+
|
765 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
766 |
+
r"""
|
767 |
+
Enable sliced attention computation.
|
768 |
+
|
769 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
770 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
771 |
+
|
772 |
+
Args:
|
773 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
774 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
775 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
776 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
777 |
+
must be a multiple of `slice_size`.
|
778 |
+
"""
|
779 |
+
sliceable_head_dims = []
|
780 |
+
|
781 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
782 |
+
if hasattr(module, "set_attention_slice"):
|
783 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
784 |
+
|
785 |
+
for child in module.children():
|
786 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
787 |
+
|
788 |
+
# retrieve number of attention layers
|
789 |
+
for module in self.children():
|
790 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
791 |
+
|
792 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
793 |
+
|
794 |
+
if slice_size == "auto":
|
795 |
+
# half the attention head size is usually a good trade-off between
|
796 |
+
# speed and memory
|
797 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
798 |
+
elif slice_size == "max":
|
799 |
+
# make smallest slice possible
|
800 |
+
slice_size = num_sliceable_layers * [1]
|
801 |
+
|
802 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
803 |
+
|
804 |
+
if len(slice_size) != len(sliceable_head_dims):
|
805 |
+
raise ValueError(
|
806 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
807 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
808 |
+
)
|
809 |
+
|
810 |
+
for i in range(len(slice_size)):
|
811 |
+
size = slice_size[i]
|
812 |
+
dim = sliceable_head_dims[i]
|
813 |
+
if size is not None and size > dim:
|
814 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
815 |
+
|
816 |
+
# Recursively walk through all the children.
|
817 |
+
# Any children which exposes the set_attention_slice method
|
818 |
+
# gets the message
|
819 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
820 |
+
if hasattr(module, "set_attention_slice"):
|
821 |
+
module.set_attention_slice(slice_size.pop())
|
822 |
+
|
823 |
+
for child in module.children():
|
824 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
825 |
+
|
826 |
+
reversed_slice_size = list(reversed(slice_size))
|
827 |
+
for module in self.children():
|
828 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
829 |
+
|
830 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
831 |
+
if hasattr(module, "gradient_checkpointing"):
|
832 |
+
module.gradient_checkpointing = value
|
833 |
+
|
834 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
835 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
836 |
+
|
837 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
838 |
+
|
839 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
840 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
841 |
+
|
842 |
+
Args:
|
843 |
+
s1 (`float`):
|
844 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
845 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
846 |
+
s2 (`float`):
|
847 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
848 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
849 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
850 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
851 |
+
"""
|
852 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
853 |
+
setattr(upsample_block, "s1", s1)
|
854 |
+
setattr(upsample_block, "s2", s2)
|
855 |
+
setattr(upsample_block, "b1", b1)
|
856 |
+
setattr(upsample_block, "b2", b2)
|
857 |
+
|
858 |
+
def disable_freeu(self):
|
859 |
+
"""Disables the FreeU mechanism."""
|
860 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
861 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
862 |
+
for k in freeu_keys:
|
863 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
864 |
+
setattr(upsample_block, k, None)
|
865 |
+
|
866 |
+
def fuse_qkv_projections(self):
|
867 |
+
"""
|
868 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
869 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
870 |
+
|
871 |
+
<Tip warning={true}>
|
872 |
+
|
873 |
+
This API is 🧪 experimental.
|
874 |
+
|
875 |
+
</Tip>
|
876 |
+
"""
|
877 |
+
self.original_attn_processors = None
|
878 |
+
|
879 |
+
for _, attn_processor in self.attn_processors.items():
|
880 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
881 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
882 |
+
|
883 |
+
self.original_attn_processors = self.attn_processors
|
884 |
+
|
885 |
+
for module in self.modules():
|
886 |
+
if isinstance(module, Attention):
|
887 |
+
module.fuse_projections(fuse=True)
|
888 |
+
|
889 |
+
def unfuse_qkv_projections(self):
|
890 |
+
"""Disables the fused QKV projection if enabled.
|
891 |
+
|
892 |
+
<Tip warning={true}>
|
893 |
+
|
894 |
+
This API is 🧪 experimental.
|
895 |
+
|
896 |
+
</Tip>
|
897 |
+
|
898 |
+
"""
|
899 |
+
if self.original_attn_processors is not None:
|
900 |
+
self.set_attn_processor(self.original_attn_processors)
|
901 |
+
|
902 |
+
def unload_lora(self):
|
903 |
+
"""Unloads LoRA weights."""
|
904 |
+
deprecate(
|
905 |
+
"unload_lora",
|
906 |
+
"0.28.0",
|
907 |
+
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
|
908 |
+
)
|
909 |
+
for module in self.modules():
|
910 |
+
if hasattr(module, "set_lora_layer"):
|
911 |
+
module.set_lora_layer(None)
|
912 |
+
|
913 |
+
def get_time_embed(
|
914 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
915 |
+
) -> Optional[torch.Tensor]:
|
916 |
+
timesteps = timestep
|
917 |
+
if not torch.is_tensor(timesteps):
|
918 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
919 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
920 |
+
is_mps = sample.device.type == "mps"
|
921 |
+
if isinstance(timestep, float):
|
922 |
+
dtype = torch.float32 if is_mps else torch.float64
|
923 |
+
else:
|
924 |
+
dtype = torch.int32 if is_mps else torch.int64
|
925 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
926 |
+
elif len(timesteps.shape) == 0:
|
927 |
+
timesteps = timesteps[None].to(sample.device)
|
928 |
+
|
929 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
930 |
+
timesteps = timesteps.expand(sample.shape[0])
|
931 |
+
|
932 |
+
t_emb = self.time_proj(timesteps)
|
933 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
934 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
935 |
+
# there might be better ways to encapsulate this.
|
936 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
937 |
+
return t_emb
|
938 |
+
|
939 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
940 |
+
class_emb = None
|
941 |
+
if self.class_embedding is not None:
|
942 |
+
if class_labels is None:
|
943 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
944 |
+
|
945 |
+
if self.config.class_embed_type == "timestep":
|
946 |
+
class_labels = self.time_proj(class_labels)
|
947 |
+
|
948 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
949 |
+
# there might be better ways to encapsulate this.
|
950 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
951 |
+
|
952 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
953 |
+
return class_emb
|
954 |
+
|
955 |
+
def get_aug_embed(
|
956 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
957 |
+
) -> Optional[torch.Tensor]:
|
958 |
+
aug_emb = None
|
959 |
+
if self.config.addition_embed_type == "text":
|
960 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
961 |
+
elif self.config.addition_embed_type == "text_image":
|
962 |
+
# Kandinsky 2.1 - style
|
963 |
+
if "image_embeds" not in added_cond_kwargs:
|
964 |
+
raise ValueError(
|
965 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
966 |
+
)
|
967 |
+
|
968 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
969 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
970 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
971 |
+
elif self.config.addition_embed_type == "text_time":
|
972 |
+
# SDXL - style
|
973 |
+
if "text_embeds" not in added_cond_kwargs:
|
974 |
+
raise ValueError(
|
975 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
976 |
+
)
|
977 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
978 |
+
if "time_ids" not in added_cond_kwargs:
|
979 |
+
raise ValueError(
|
980 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
981 |
+
)
|
982 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
983 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
984 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
985 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
986 |
+
add_embeds = add_embeds.to(emb.dtype)
|
987 |
+
aug_emb = self.add_embedding(add_embeds)
|
988 |
+
elif self.config.addition_embed_type == "image":
|
989 |
+
# Kandinsky 2.2 - style
|
990 |
+
if "image_embeds" not in added_cond_kwargs:
|
991 |
+
raise ValueError(
|
992 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
993 |
+
)
|
994 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
995 |
+
aug_emb = self.add_embedding(image_embs)
|
996 |
+
elif self.config.addition_embed_type == "image_hint":
|
997 |
+
# Kandinsky 2.2 - style
|
998 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
999 |
+
raise ValueError(
|
1000 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1001 |
+
)
|
1002 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1003 |
+
hint = added_cond_kwargs.get("hint")
|
1004 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1005 |
+
return aug_emb
|
1006 |
+
|
1007 |
+
def process_encoder_hidden_states(
|
1008 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1009 |
+
) -> torch.Tensor:
|
1010 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1011 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1012 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1013 |
+
# Kadinsky 2.1 - style
|
1014 |
+
if "image_embeds" not in added_cond_kwargs:
|
1015 |
+
raise ValueError(
|
1016 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1020 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1021 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1022 |
+
# Kandinsky 2.2 - style
|
1023 |
+
if "image_embeds" not in added_cond_kwargs:
|
1024 |
+
raise ValueError(
|
1025 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1026 |
+
)
|
1027 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1028 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1029 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1030 |
+
if "image_embeds" not in added_cond_kwargs:
|
1031 |
+
raise ValueError(
|
1032 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1033 |
+
)
|
1034 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1035 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1036 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1037 |
+
return encoder_hidden_states
|
1038 |
+
|
1039 |
+
def forward(
|
1040 |
+
self,
|
1041 |
+
sample: torch.FloatTensor,
|
1042 |
+
timestep: Union[torch.Tensor, float, int],
|
1043 |
+
encoder_hidden_states: torch.Tensor,
|
1044 |
+
class_labels: Optional[torch.Tensor] = None,
|
1045 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1046 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1047 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1048 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1049 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1050 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1051 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1052 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1053 |
+
return_dict: bool = True,
|
1054 |
+
down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
1055 |
+
mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
|
1056 |
+
up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
1057 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1058 |
+
r"""
|
1059 |
+
The [`UNet2DConditionModel`] forward method.
|
1060 |
+
|
1061 |
+
Args:
|
1062 |
+
sample (`torch.FloatTensor`):
|
1063 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1064 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1065 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
1066 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1067 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1068 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1069 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1070 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1071 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1072 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1073 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1074 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1075 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1076 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1077 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1078 |
+
`self.processor` in
|
1079 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1080 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1081 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1082 |
+
are passed along to the UNet blocks.
|
1083 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1084 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1085 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1086 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1087 |
+
encoder_attention_mask (`torch.Tensor`):
|
1088 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1089 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1090 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1091 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1092 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1093 |
+
tuple.
|
1094 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1095 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
1096 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1097 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
1098 |
+
are passed along to the UNet blocks.
|
1099 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1100 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
1101 |
+
example from ControlNet side model(s)
|
1102 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
1103 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
1104 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1105 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1106 |
+
|
1107 |
+
Returns:
|
1108 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1109 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
1110 |
+
a `tuple` is returned where the first element is the sample tensor.
|
1111 |
+
"""
|
1112 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1113 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1114 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1115 |
+
# on the fly if necessary.
|
1116 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
1117 |
+
|
1118 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1119 |
+
forward_upsample_size = False
|
1120 |
+
upsample_size = None
|
1121 |
+
|
1122 |
+
for dim in sample.shape[-2:]:
|
1123 |
+
if dim % default_overall_up_factor != 0:
|
1124 |
+
# Forward upsample size to force interpolation output size.
|
1125 |
+
forward_upsample_size = True
|
1126 |
+
break
|
1127 |
+
|
1128 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1129 |
+
# expects mask of shape:
|
1130 |
+
# [batch, key_tokens]
|
1131 |
+
# adds singleton query_tokens dimension:
|
1132 |
+
# [batch, 1, key_tokens]
|
1133 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1134 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1135 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1136 |
+
if attention_mask is not None:
|
1137 |
+
# assume that mask is expressed as:
|
1138 |
+
# (1 = keep, 0 = discard)
|
1139 |
+
# convert mask into a bias that can be added to attention scores:
|
1140 |
+
# (keep = +0, discard = -10000.0)
|
1141 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1142 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1143 |
+
|
1144 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1145 |
+
if encoder_attention_mask is not None:
|
1146 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1147 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1148 |
+
|
1149 |
+
# 0. center input if necessary
|
1150 |
+
if self.config.center_input_sample:
|
1151 |
+
sample = 2 * sample - 1.0
|
1152 |
+
|
1153 |
+
# 1. time
|
1154 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1155 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1156 |
+
aug_emb = None
|
1157 |
+
|
1158 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1159 |
+
if class_emb is not None:
|
1160 |
+
if self.config.class_embeddings_concat:
|
1161 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1162 |
+
else:
|
1163 |
+
emb = emb + class_emb
|
1164 |
+
|
1165 |
+
aug_emb = self.get_aug_embed(
|
1166 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1167 |
+
)
|
1168 |
+
if self.config.addition_embed_type == "image_hint":
|
1169 |
+
aug_emb, hint = aug_emb
|
1170 |
+
sample = torch.cat([sample, hint], dim=1)
|
1171 |
+
|
1172 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1173 |
+
|
1174 |
+
if self.time_embed_act is not None:
|
1175 |
+
emb = self.time_embed_act(emb)
|
1176 |
+
|
1177 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1178 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
# 2. pre-process
|
1182 |
+
sample = self.conv_in(sample)
|
1183 |
+
|
1184 |
+
# 2.5 GLIGEN position net
|
1185 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1186 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1187 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1188 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1189 |
+
|
1190 |
+
# 3. down
|
1191 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1192 |
+
if USE_PEFT_BACKEND:
|
1193 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1194 |
+
scale_lora_layers(self, lora_scale)
|
1195 |
+
|
1196 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1197 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1198 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1199 |
+
# maintain backward compatibility for legacy usage, where
|
1200 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1201 |
+
# but can only use one or the other
|
1202 |
+
is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None
|
1203 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1204 |
+
deprecate(
|
1205 |
+
"T2I should not use down_block_additional_residuals",
|
1206 |
+
"1.3.0",
|
1207 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1208 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1209 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1210 |
+
standard_warn=False,
|
1211 |
+
)
|
1212 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1213 |
+
is_adapter = True
|
1214 |
+
|
1215 |
+
down_block_res_samples = (sample,)
|
1216 |
+
|
1217 |
+
if is_brushnet:
|
1218 |
+
sample = sample + down_block_add_samples.pop(0)
|
1219 |
+
|
1220 |
+
for downsample_block in self.down_blocks:
|
1221 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1222 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1223 |
+
additional_residuals = {}
|
1224 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1225 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1226 |
+
|
1227 |
+
if is_brushnet and len(down_block_add_samples) > 0:
|
1228 |
+
additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
|
1229 |
+
for _ in range(
|
1230 |
+
len(downsample_block.resnets) + (downsample_block.downsamplers != None))]
|
1231 |
+
|
1232 |
+
sample, res_samples = downsample_block(
|
1233 |
+
hidden_states=sample,
|
1234 |
+
temb=emb,
|
1235 |
+
encoder_hidden_states=encoder_hidden_states,
|
1236 |
+
attention_mask=attention_mask,
|
1237 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1238 |
+
encoder_attention_mask=encoder_attention_mask,
|
1239 |
+
**additional_residuals,
|
1240 |
+
)
|
1241 |
+
else:
|
1242 |
+
additional_residuals = {}
|
1243 |
+
if is_brushnet and len(down_block_add_samples) > 0:
|
1244 |
+
additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0)
|
1245 |
+
for _ in range(
|
1246 |
+
len(downsample_block.resnets) + (downsample_block.downsamplers != None))]
|
1247 |
+
|
1248 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale,
|
1249 |
+
**additional_residuals)
|
1250 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1251 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1252 |
+
|
1253 |
+
down_block_res_samples += res_samples
|
1254 |
+
|
1255 |
+
if is_controlnet:
|
1256 |
+
new_down_block_res_samples = ()
|
1257 |
+
|
1258 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1259 |
+
down_block_res_samples, down_block_additional_residuals
|
1260 |
+
):
|
1261 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1262 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1263 |
+
|
1264 |
+
down_block_res_samples = new_down_block_res_samples
|
1265 |
+
|
1266 |
+
# 4. mid
|
1267 |
+
if self.mid_block is not None:
|
1268 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1269 |
+
sample = self.mid_block(
|
1270 |
+
sample,
|
1271 |
+
emb,
|
1272 |
+
encoder_hidden_states=encoder_hidden_states,
|
1273 |
+
attention_mask=attention_mask,
|
1274 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1275 |
+
encoder_attention_mask=encoder_attention_mask,
|
1276 |
+
)
|
1277 |
+
else:
|
1278 |
+
sample = self.mid_block(sample, emb)
|
1279 |
+
|
1280 |
+
# To support T2I-Adapter-XL
|
1281 |
+
if (
|
1282 |
+
is_adapter
|
1283 |
+
and len(down_intrablock_additional_residuals) > 0
|
1284 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1285 |
+
):
|
1286 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1287 |
+
|
1288 |
+
if is_controlnet:
|
1289 |
+
sample = sample + mid_block_additional_residual
|
1290 |
+
|
1291 |
+
if is_brushnet:
|
1292 |
+
sample = sample + mid_block_add_sample
|
1293 |
+
|
1294 |
+
# 5. up
|
1295 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1296 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1297 |
+
|
1298 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
1299 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1300 |
+
|
1301 |
+
# if we have not reached the final block and need to forward the
|
1302 |
+
# upsample size, we do it here
|
1303 |
+
if not is_final_block and forward_upsample_size:
|
1304 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1305 |
+
|
1306 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1307 |
+
additional_residuals = {}
|
1308 |
+
if is_brushnet and len(up_block_add_samples) > 0:
|
1309 |
+
additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
|
1310 |
+
for _ in range(
|
1311 |
+
len(upsample_block.resnets) + (upsample_block.upsamplers != None))]
|
1312 |
+
|
1313 |
+
sample = upsample_block(
|
1314 |
+
hidden_states=sample,
|
1315 |
+
temb=emb,
|
1316 |
+
res_hidden_states_tuple=res_samples,
|
1317 |
+
encoder_hidden_states=encoder_hidden_states,
|
1318 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1319 |
+
upsample_size=upsample_size,
|
1320 |
+
attention_mask=attention_mask,
|
1321 |
+
encoder_attention_mask=encoder_attention_mask,
|
1322 |
+
**additional_residuals,
|
1323 |
+
)
|
1324 |
+
else:
|
1325 |
+
additional_residuals = {}
|
1326 |
+
if is_brushnet and len(up_block_add_samples) > 0:
|
1327 |
+
additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0)
|
1328 |
+
for _ in range(
|
1329 |
+
len(upsample_block.resnets) + (upsample_block.upsamplers != None))]
|
1330 |
+
|
1331 |
+
sample = upsample_block(
|
1332 |
+
hidden_states=sample,
|
1333 |
+
temb=emb,
|
1334 |
+
res_hidden_states_tuple=res_samples,
|
1335 |
+
upsample_size=upsample_size,
|
1336 |
+
scale=lora_scale,
|
1337 |
+
**additional_residuals,
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
# 6. post-process
|
1341 |
+
if self.conv_norm_out:
|
1342 |
+
sample = self.conv_norm_out(sample)
|
1343 |
+
sample = self.conv_act(sample)
|
1344 |
+
sample = self.conv_out(sample)
|
1345 |
+
|
1346 |
+
if USE_PEFT_BACKEND:
|
1347 |
+
# remove `lora_scale` from each PEFT layer
|
1348 |
+
unscale_lora_layers(self, lora_scale)
|
1349 |
+
|
1350 |
+
if not return_dict:
|
1351 |
+
return (sample,)
|
1352 |
+
|
1353 |
+
return UNet2DConditionOutput(sample=sample)
|
shape-guided_result.png
ADDED
text_encoder_brushnet/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runwayml/stable-diffusion-v1-5",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.38.2",
|
24 |
+
"vocab_size": 49438
|
25 |
+
}
|
text_encoder_brushnet/model.fp16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d683c8f067a24a6acee712806f3b5e9b1d7cbdb6a38ba4cbe121b9c39fba3012
|
3 |
+
size 246190232
|
text_encoder_brushnet/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51b58244429ca454caa7eeae1d7f89ffd5a57c348676b30d7ff5c7e2b7388820
|
3 |
+
size 492357328
|
tokenizer/added_tokens.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"P_ctxt_0": 49408,
|
3 |
+
"P_ctxt_1": 49409,
|
4 |
+
"P_ctxt_2": 49410,
|
5 |
+
"P_ctxt_3": 49411,
|
6 |
+
"P_ctxt_4": 49412,
|
7 |
+
"P_ctxt_5": 49413,
|
8 |
+
"P_ctxt_6": 49414,
|
9 |
+
"P_ctxt_7": 49415,
|
10 |
+
"P_ctxt_8": 49416,
|
11 |
+
"P_ctxt_9": 49417,
|
12 |
+
"P_obj_0": 49428,
|
13 |
+
"P_obj_1": 49429,
|
14 |
+
"P_obj_2": 49430,
|
15 |
+
"P_obj_3": 49431,
|
16 |
+
"P_obj_4": 49432,
|
17 |
+
"P_obj_5": 49433,
|
18 |
+
"P_obj_6": 49434,
|
19 |
+
"P_obj_7": 49435,
|
20 |
+
"P_obj_8": 49436,
|
21 |
+
"P_obj_9": 49437,
|
22 |
+
"P_shape_0": 49418,
|
23 |
+
"P_shape_1": 49419,
|
24 |
+
"P_shape_2": 49420,
|
25 |
+
"P_shape_3": 49421,
|
26 |
+
"P_shape_4": 49422,
|
27 |
+
"P_shape_5": 49423,
|
28 |
+
"P_shape_6": 49424,
|
29 |
+
"P_shape_7": 49425,
|
30 |
+
"P_shape_8": 49426,
|
31 |
+
"P_shape_9": 49427
|
32 |
+
}
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49408": {
|
21 |
+
"content": "P_ctxt_0",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"49409": {
|
29 |
+
"content": "P_ctxt_1",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"49410": {
|
37 |
+
"content": "P_ctxt_2",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"49411": {
|
45 |
+
"content": "P_ctxt_3",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"49412": {
|
53 |
+
"content": "P_ctxt_4",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"49413": {
|
61 |
+
"content": "P_ctxt_5",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"49414": {
|
69 |
+
"content": "P_ctxt_6",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"49415": {
|
77 |
+
"content": "P_ctxt_7",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"49416": {
|
85 |
+
"content": "P_ctxt_8",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"49417": {
|
93 |
+
"content": "P_ctxt_9",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"49418": {
|
101 |
+
"content": "P_shape_0",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"49419": {
|
109 |
+
"content": "P_shape_1",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"49420": {
|
117 |
+
"content": "P_shape_2",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"49421": {
|
125 |
+
"content": "P_shape_3",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"49422": {
|
133 |
+
"content": "P_shape_4",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"49423": {
|
141 |
+
"content": "P_shape_5",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"49424": {
|
149 |
+
"content": "P_shape_6",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"49425": {
|
157 |
+
"content": "P_shape_7",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"49426": {
|
165 |
+
"content": "P_shape_8",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"49427": {
|
173 |
+
"content": "P_shape_9",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"49428": {
|
181 |
+
"content": "P_obj_0",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"49429": {
|
189 |
+
"content": "P_obj_1",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"49430": {
|
197 |
+
"content": "P_obj_2",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"49431": {
|
205 |
+
"content": "P_obj_3",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"49432": {
|
213 |
+
"content": "P_obj_4",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"49433": {
|
221 |
+
"content": "P_obj_5",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"49434": {
|
229 |
+
"content": "P_obj_6",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"49435": {
|
237 |
+
"content": "P_obj_7",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"49436": {
|
245 |
+
"content": "P_obj_8",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"49437": {
|
253 |
+
"content": "P_obj_9",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"bos_token": "<|startoftext|>",
|
262 |
+
"clean_up_tokenization_spaces": true,
|
263 |
+
"do_lower_case": true,
|
264 |
+
"eos_token": "<|endoftext|>",
|
265 |
+
"errors": "replace",
|
266 |
+
"model_max_length": 77,
|
267 |
+
"pad_token": "<|endoftext|>",
|
268 |
+
"tokenizer_class": "CLIPTokenizer",
|
269 |
+
"unk_token": "<|endoftext|>"
|
270 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|