Santyyy commited on
Commit
5391ca6
·
verified ·
1 Parent(s): 23d0d3c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2544 -0
README.md ADDED
@@ -0,0 +1,2544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llmrails/ember-v1
3
+ language: en
4
+ license: mit
5
+ tags:
6
+ - mteb
7
+ - sentence-transformers
8
+ - feature-extraction
9
+ - sentence-similarity
10
+ - transformers
11
+ - llama-cpp
12
+ - gguf-my-repo
13
+ model-index:
14
+ - name: ember_v1
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ type: mteb/amazon_counterfactual
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 76.05970149253731
27
+ - type: ap
28
+ value: 38.76045348512767
29
+ - type: f1
30
+ value: 69.8824007294685
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ name: MTEB AmazonPolarityClassification
35
+ type: mteb/amazon_polarity
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 91.977
42
+ - type: ap
43
+ value: 88.63507587170176
44
+ - type: f1
45
+ value: 91.9524133311038
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ type: mteb/amazon_reviews_multi
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 47.938
57
+ - type: f1
58
+ value: 47.58273047536129
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ name: MTEB ArguAna
63
+ type: arguana
64
+ config: default
65
+ split: test
66
+ revision: None
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 41.252
70
+ - type: map_at_10
71
+ value: 56.567
72
+ - type: map_at_100
73
+ value: 57.07600000000001
74
+ - type: map_at_1000
75
+ value: 57.08
76
+ - type: map_at_3
77
+ value: 52.394
78
+ - type: map_at_5
79
+ value: 55.055
80
+ - type: mrr_at_1
81
+ value: 42.39
82
+ - type: mrr_at_10
83
+ value: 57.001999999999995
84
+ - type: mrr_at_100
85
+ value: 57.531
86
+ - type: mrr_at_1000
87
+ value: 57.535000000000004
88
+ - type: mrr_at_3
89
+ value: 52.845
90
+ - type: mrr_at_5
91
+ value: 55.47299999999999
92
+ - type: ndcg_at_1
93
+ value: 41.252
94
+ - type: ndcg_at_10
95
+ value: 64.563
96
+ - type: ndcg_at_100
97
+ value: 66.667
98
+ - type: ndcg_at_1000
99
+ value: 66.77
100
+ - type: ndcg_at_3
101
+ value: 56.120000000000005
102
+ - type: ndcg_at_5
103
+ value: 60.889
104
+ - type: precision_at_1
105
+ value: 41.252
106
+ - type: precision_at_10
107
+ value: 8.982999999999999
108
+ - type: precision_at_100
109
+ value: 0.989
110
+ - type: precision_at_1000
111
+ value: 0.1
112
+ - type: precision_at_3
113
+ value: 22.309
114
+ - type: precision_at_5
115
+ value: 15.690000000000001
116
+ - type: recall_at_1
117
+ value: 41.252
118
+ - type: recall_at_10
119
+ value: 89.82900000000001
120
+ - type: recall_at_100
121
+ value: 98.86200000000001
122
+ - type: recall_at_1000
123
+ value: 99.644
124
+ - type: recall_at_3
125
+ value: 66.927
126
+ - type: recall_at_5
127
+ value: 78.45
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ name: MTEB ArxivClusteringP2P
132
+ type: mteb/arxiv-clustering-p2p
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 48.5799968717232
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ name: MTEB ArxivClusteringS2S
143
+ type: mteb/arxiv-clustering-s2s
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 43.142844164856136
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ name: MTEB AskUbuntuDupQuestions
154
+ type: mteb/askubuntudupquestions-reranking
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 64.45997990276463
161
+ - type: mrr
162
+ value: 77.85560392208592
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ name: MTEB BIOSSES
167
+ type: mteb/biosses-sts
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 86.38299310075898
174
+ - type: cos_sim_spearman
175
+ value: 85.81038898286454
176
+ - type: euclidean_pearson
177
+ value: 84.28002556389774
178
+ - type: euclidean_spearman
179
+ value: 85.80315990248238
180
+ - type: manhattan_pearson
181
+ value: 83.9755390675032
182
+ - type: manhattan_spearman
183
+ value: 85.30435335611396
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ name: MTEB Banking77Classification
188
+ type: mteb/banking77
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 87.89935064935065
195
+ - type: f1
196
+ value: 87.87886687103833
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ name: MTEB BiorxivClusteringP2P
201
+ type: mteb/biorxiv-clustering-p2p
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 38.84335510371379
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ name: MTEB BiorxivClusteringS2S
212
+ type: mteb/biorxiv-clustering-s2s
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 36.377963093857005
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ type: BeIR/cqadupstack
224
+ config: default
225
+ split: test
226
+ revision: None
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 32.557
230
+ - type: map_at_10
231
+ value: 44.501000000000005
232
+ - type: map_at_100
233
+ value: 46.11
234
+ - type: map_at_1000
235
+ value: 46.232
236
+ - type: map_at_3
237
+ value: 40.711000000000006
238
+ - type: map_at_5
239
+ value: 42.937
240
+ - type: mrr_at_1
241
+ value: 40.916000000000004
242
+ - type: mrr_at_10
243
+ value: 51.317
244
+ - type: mrr_at_100
245
+ value: 52.003
246
+ - type: mrr_at_1000
247
+ value: 52.044999999999995
248
+ - type: mrr_at_3
249
+ value: 48.569
250
+ - type: mrr_at_5
251
+ value: 50.322
252
+ - type: ndcg_at_1
253
+ value: 40.916000000000004
254
+ - type: ndcg_at_10
255
+ value: 51.353
256
+ - type: ndcg_at_100
257
+ value: 56.762
258
+ - type: ndcg_at_1000
259
+ value: 58.555
260
+ - type: ndcg_at_3
261
+ value: 46.064
262
+ - type: ndcg_at_5
263
+ value: 48.677
264
+ - type: precision_at_1
265
+ value: 40.916000000000004
266
+ - type: precision_at_10
267
+ value: 9.927999999999999
268
+ - type: precision_at_100
269
+ value: 1.592
270
+ - type: precision_at_1000
271
+ value: 0.20600000000000002
272
+ - type: precision_at_3
273
+ value: 22.078999999999997
274
+ - type: precision_at_5
275
+ value: 16.08
276
+ - type: recall_at_1
277
+ value: 32.557
278
+ - type: recall_at_10
279
+ value: 63.942
280
+ - type: recall_at_100
281
+ value: 86.436
282
+ - type: recall_at_1000
283
+ value: 97.547
284
+ - type: recall_at_3
285
+ value: 48.367
286
+ - type: recall_at_5
287
+ value: 55.818
288
+ - type: map_at_1
289
+ value: 32.106
290
+ - type: map_at_10
291
+ value: 42.55
292
+ - type: map_at_100
293
+ value: 43.818
294
+ - type: map_at_1000
295
+ value: 43.952999999999996
296
+ - type: map_at_3
297
+ value: 39.421
298
+ - type: map_at_5
299
+ value: 41.276
300
+ - type: mrr_at_1
301
+ value: 39.936
302
+ - type: mrr_at_10
303
+ value: 48.484
304
+ - type: mrr_at_100
305
+ value: 49.123
306
+ - type: mrr_at_1000
307
+ value: 49.163000000000004
308
+ - type: mrr_at_3
309
+ value: 46.221000000000004
310
+ - type: mrr_at_5
311
+ value: 47.603
312
+ - type: ndcg_at_1
313
+ value: 39.936
314
+ - type: ndcg_at_10
315
+ value: 48.25
316
+ - type: ndcg_at_100
317
+ value: 52.674
318
+ - type: ndcg_at_1000
319
+ value: 54.638
320
+ - type: ndcg_at_3
321
+ value: 44.05
322
+ - type: ndcg_at_5
323
+ value: 46.125
324
+ - type: precision_at_1
325
+ value: 39.936
326
+ - type: precision_at_10
327
+ value: 9.096
328
+ - type: precision_at_100
329
+ value: 1.473
330
+ - type: precision_at_1000
331
+ value: 0.19499999999999998
332
+ - type: precision_at_3
333
+ value: 21.295
334
+ - type: precision_at_5
335
+ value: 15.121
336
+ - type: recall_at_1
337
+ value: 32.106
338
+ - type: recall_at_10
339
+ value: 58.107
340
+ - type: recall_at_100
341
+ value: 76.873
342
+ - type: recall_at_1000
343
+ value: 89.079
344
+ - type: recall_at_3
345
+ value: 45.505
346
+ - type: recall_at_5
347
+ value: 51.479
348
+ - type: map_at_1
349
+ value: 41.513
350
+ - type: map_at_10
351
+ value: 54.571999999999996
352
+ - type: map_at_100
353
+ value: 55.579
354
+ - type: map_at_1000
355
+ value: 55.626
356
+ - type: map_at_3
357
+ value: 51.127
358
+ - type: map_at_5
359
+ value: 53.151
360
+ - type: mrr_at_1
361
+ value: 47.398
362
+ - type: mrr_at_10
363
+ value: 57.82000000000001
364
+ - type: mrr_at_100
365
+ value: 58.457
366
+ - type: mrr_at_1000
367
+ value: 58.479000000000006
368
+ - type: mrr_at_3
369
+ value: 55.32899999999999
370
+ - type: mrr_at_5
371
+ value: 56.89999999999999
372
+ - type: ndcg_at_1
373
+ value: 47.398
374
+ - type: ndcg_at_10
375
+ value: 60.599000000000004
376
+ - type: ndcg_at_100
377
+ value: 64.366
378
+ - type: ndcg_at_1000
379
+ value: 65.333
380
+ - type: ndcg_at_3
381
+ value: 54.98
382
+ - type: ndcg_at_5
383
+ value: 57.874
384
+ - type: precision_at_1
385
+ value: 47.398
386
+ - type: precision_at_10
387
+ value: 9.806
388
+ - type: precision_at_100
389
+ value: 1.2590000000000001
390
+ - type: precision_at_1000
391
+ value: 0.13799999999999998
392
+ - type: precision_at_3
393
+ value: 24.619
394
+ - type: precision_at_5
395
+ value: 16.878
396
+ - type: recall_at_1
397
+ value: 41.513
398
+ - type: recall_at_10
399
+ value: 74.91799999999999
400
+ - type: recall_at_100
401
+ value: 90.96
402
+ - type: recall_at_1000
403
+ value: 97.923
404
+ - type: recall_at_3
405
+ value: 60.013000000000005
406
+ - type: recall_at_5
407
+ value: 67.245
408
+ - type: map_at_1
409
+ value: 26.319
410
+ - type: map_at_10
411
+ value: 35.766999999999996
412
+ - type: map_at_100
413
+ value: 36.765
414
+ - type: map_at_1000
415
+ value: 36.829
416
+ - type: map_at_3
417
+ value: 32.888
418
+ - type: map_at_5
419
+ value: 34.538999999999994
420
+ - type: mrr_at_1
421
+ value: 28.249000000000002
422
+ - type: mrr_at_10
423
+ value: 37.766
424
+ - type: mrr_at_100
425
+ value: 38.62
426
+ - type: mrr_at_1000
427
+ value: 38.667
428
+ - type: mrr_at_3
429
+ value: 35.009
430
+ - type: mrr_at_5
431
+ value: 36.608000000000004
432
+ - type: ndcg_at_1
433
+ value: 28.249000000000002
434
+ - type: ndcg_at_10
435
+ value: 41.215
436
+ - type: ndcg_at_100
437
+ value: 46.274
438
+ - type: ndcg_at_1000
439
+ value: 48.007
440
+ - type: ndcg_at_3
441
+ value: 35.557
442
+ - type: ndcg_at_5
443
+ value: 38.344
444
+ - type: precision_at_1
445
+ value: 28.249000000000002
446
+ - type: precision_at_10
447
+ value: 6.429
448
+ - type: precision_at_100
449
+ value: 0.9480000000000001
450
+ - type: precision_at_1000
451
+ value: 0.11399999999999999
452
+ - type: precision_at_3
453
+ value: 15.179
454
+ - type: precision_at_5
455
+ value: 10.734
456
+ - type: recall_at_1
457
+ value: 26.319
458
+ - type: recall_at_10
459
+ value: 56.157999999999994
460
+ - type: recall_at_100
461
+ value: 79.65
462
+ - type: recall_at_1000
463
+ value: 92.73
464
+ - type: recall_at_3
465
+ value: 40.738
466
+ - type: recall_at_5
467
+ value: 47.418
468
+ - type: map_at_1
469
+ value: 18.485
470
+ - type: map_at_10
471
+ value: 27.400999999999996
472
+ - type: map_at_100
473
+ value: 28.665000000000003
474
+ - type: map_at_1000
475
+ value: 28.79
476
+ - type: map_at_3
477
+ value: 24.634
478
+ - type: map_at_5
479
+ value: 26.313
480
+ - type: mrr_at_1
481
+ value: 23.134
482
+ - type: mrr_at_10
483
+ value: 32.332
484
+ - type: mrr_at_100
485
+ value: 33.318
486
+ - type: mrr_at_1000
487
+ value: 33.384
488
+ - type: mrr_at_3
489
+ value: 29.664
490
+ - type: mrr_at_5
491
+ value: 31.262
492
+ - type: ndcg_at_1
493
+ value: 23.134
494
+ - type: ndcg_at_10
495
+ value: 33.016
496
+ - type: ndcg_at_100
497
+ value: 38.763
498
+ - type: ndcg_at_1000
499
+ value: 41.619
500
+ - type: ndcg_at_3
501
+ value: 28.017999999999997
502
+ - type: ndcg_at_5
503
+ value: 30.576999999999998
504
+ - type: precision_at_1
505
+ value: 23.134
506
+ - type: precision_at_10
507
+ value: 6.069999999999999
508
+ - type: precision_at_100
509
+ value: 1.027
510
+ - type: precision_at_1000
511
+ value: 0.14200000000000002
512
+ - type: precision_at_3
513
+ value: 13.599
514
+ - type: precision_at_5
515
+ value: 9.975000000000001
516
+ - type: recall_at_1
517
+ value: 18.485
518
+ - type: recall_at_10
519
+ value: 45.39
520
+ - type: recall_at_100
521
+ value: 69.876
522
+ - type: recall_at_1000
523
+ value: 90.023
524
+ - type: recall_at_3
525
+ value: 31.587
526
+ - type: recall_at_5
527
+ value: 38.164
528
+ - type: map_at_1
529
+ value: 30.676
530
+ - type: map_at_10
531
+ value: 41.785
532
+ - type: map_at_100
533
+ value: 43.169000000000004
534
+ - type: map_at_1000
535
+ value: 43.272
536
+ - type: map_at_3
537
+ value: 38.462
538
+ - type: map_at_5
539
+ value: 40.32
540
+ - type: mrr_at_1
541
+ value: 37.729
542
+ - type: mrr_at_10
543
+ value: 47.433
544
+ - type: mrr_at_100
545
+ value: 48.303000000000004
546
+ - type: mrr_at_1000
547
+ value: 48.337
548
+ - type: mrr_at_3
549
+ value: 45.011
550
+ - type: mrr_at_5
551
+ value: 46.455
552
+ - type: ndcg_at_1
553
+ value: 37.729
554
+ - type: ndcg_at_10
555
+ value: 47.921
556
+ - type: ndcg_at_100
557
+ value: 53.477
558
+ - type: ndcg_at_1000
559
+ value: 55.300000000000004
560
+ - type: ndcg_at_3
561
+ value: 42.695
562
+ - type: ndcg_at_5
563
+ value: 45.175
564
+ - type: precision_at_1
565
+ value: 37.729
566
+ - type: precision_at_10
567
+ value: 8.652999999999999
568
+ - type: precision_at_100
569
+ value: 1.336
570
+ - type: precision_at_1000
571
+ value: 0.168
572
+ - type: precision_at_3
573
+ value: 20.18
574
+ - type: precision_at_5
575
+ value: 14.302000000000001
576
+ - type: recall_at_1
577
+ value: 30.676
578
+ - type: recall_at_10
579
+ value: 60.441
580
+ - type: recall_at_100
581
+ value: 83.37
582
+ - type: recall_at_1000
583
+ value: 95.092
584
+ - type: recall_at_3
585
+ value: 45.964
586
+ - type: recall_at_5
587
+ value: 52.319
588
+ - type: map_at_1
589
+ value: 24.978
590
+ - type: map_at_10
591
+ value: 35.926
592
+ - type: map_at_100
593
+ value: 37.341
594
+ - type: map_at_1000
595
+ value: 37.445
596
+ - type: map_at_3
597
+ value: 32.748
598
+ - type: map_at_5
599
+ value: 34.207
600
+ - type: mrr_at_1
601
+ value: 31.163999999999998
602
+ - type: mrr_at_10
603
+ value: 41.394
604
+ - type: mrr_at_100
605
+ value: 42.321
606
+ - type: mrr_at_1000
607
+ value: 42.368
608
+ - type: mrr_at_3
609
+ value: 38.964999999999996
610
+ - type: mrr_at_5
611
+ value: 40.135
612
+ - type: ndcg_at_1
613
+ value: 31.163999999999998
614
+ - type: ndcg_at_10
615
+ value: 42.191
616
+ - type: ndcg_at_100
617
+ value: 48.083999999999996
618
+ - type: ndcg_at_1000
619
+ value: 50.21
620
+ - type: ndcg_at_3
621
+ value: 36.979
622
+ - type: ndcg_at_5
623
+ value: 38.823
624
+ - type: precision_at_1
625
+ value: 31.163999999999998
626
+ - type: precision_at_10
627
+ value: 7.968
628
+ - type: precision_at_100
629
+ value: 1.2550000000000001
630
+ - type: precision_at_1000
631
+ value: 0.16199999999999998
632
+ - type: precision_at_3
633
+ value: 18.075
634
+ - type: precision_at_5
635
+ value: 12.626000000000001
636
+ - type: recall_at_1
637
+ value: 24.978
638
+ - type: recall_at_10
639
+ value: 55.410000000000004
640
+ - type: recall_at_100
641
+ value: 80.562
642
+ - type: recall_at_1000
643
+ value: 94.77600000000001
644
+ - type: recall_at_3
645
+ value: 40.359
646
+ - type: recall_at_5
647
+ value: 45.577
648
+ - type: map_at_1
649
+ value: 26.812166666666666
650
+ - type: map_at_10
651
+ value: 36.706916666666665
652
+ - type: map_at_100
653
+ value: 37.94016666666666
654
+ - type: map_at_1000
655
+ value: 38.05358333333333
656
+ - type: map_at_3
657
+ value: 33.72408333333334
658
+ - type: map_at_5
659
+ value: 35.36508333333333
660
+ - type: mrr_at_1
661
+ value: 31.91516666666667
662
+ - type: mrr_at_10
663
+ value: 41.09716666666666
664
+ - type: mrr_at_100
665
+ value: 41.931916666666666
666
+ - type: mrr_at_1000
667
+ value: 41.98458333333333
668
+ - type: mrr_at_3
669
+ value: 38.60183333333333
670
+ - type: mrr_at_5
671
+ value: 40.031916666666675
672
+ - type: ndcg_at_1
673
+ value: 31.91516666666667
674
+ - type: ndcg_at_10
675
+ value: 42.38725
676
+ - type: ndcg_at_100
677
+ value: 47.56291666666667
678
+ - type: ndcg_at_1000
679
+ value: 49.716499999999996
680
+ - type: ndcg_at_3
681
+ value: 37.36491666666667
682
+ - type: ndcg_at_5
683
+ value: 39.692166666666665
684
+ - type: precision_at_1
685
+ value: 31.91516666666667
686
+ - type: precision_at_10
687
+ value: 7.476749999999999
688
+ - type: precision_at_100
689
+ value: 1.1869166666666668
690
+ - type: precision_at_1000
691
+ value: 0.157
692
+ - type: precision_at_3
693
+ value: 17.275249999999996
694
+ - type: precision_at_5
695
+ value: 12.25825
696
+ - type: recall_at_1
697
+ value: 26.812166666666666
698
+ - type: recall_at_10
699
+ value: 54.82933333333333
700
+ - type: recall_at_100
701
+ value: 77.36508333333333
702
+ - type: recall_at_1000
703
+ value: 92.13366666666667
704
+ - type: recall_at_3
705
+ value: 40.83508333333334
706
+ - type: recall_at_5
707
+ value: 46.85083333333334
708
+ - type: map_at_1
709
+ value: 25.352999999999998
710
+ - type: map_at_10
711
+ value: 33.025999999999996
712
+ - type: map_at_100
713
+ value: 33.882
714
+ - type: map_at_1000
715
+ value: 33.983999999999995
716
+ - type: map_at_3
717
+ value: 30.995
718
+ - type: map_at_5
719
+ value: 32.113
720
+ - type: mrr_at_1
721
+ value: 28.834
722
+ - type: mrr_at_10
723
+ value: 36.14
724
+ - type: mrr_at_100
725
+ value: 36.815
726
+ - type: mrr_at_1000
727
+ value: 36.893
728
+ - type: mrr_at_3
729
+ value: 34.305
730
+ - type: mrr_at_5
731
+ value: 35.263
732
+ - type: ndcg_at_1
733
+ value: 28.834
734
+ - type: ndcg_at_10
735
+ value: 37.26
736
+ - type: ndcg_at_100
737
+ value: 41.723
738
+ - type: ndcg_at_1000
739
+ value: 44.314
740
+ - type: ndcg_at_3
741
+ value: 33.584
742
+ - type: ndcg_at_5
743
+ value: 35.302
744
+ - type: precision_at_1
745
+ value: 28.834
746
+ - type: precision_at_10
747
+ value: 5.736
748
+ - type: precision_at_100
749
+ value: 0.876
750
+ - type: precision_at_1000
751
+ value: 0.117
752
+ - type: precision_at_3
753
+ value: 14.468
754
+ - type: precision_at_5
755
+ value: 9.847
756
+ - type: recall_at_1
757
+ value: 25.352999999999998
758
+ - type: recall_at_10
759
+ value: 47.155
760
+ - type: recall_at_100
761
+ value: 68.024
762
+ - type: recall_at_1000
763
+ value: 87.26899999999999
764
+ - type: recall_at_3
765
+ value: 37.074
766
+ - type: recall_at_5
767
+ value: 41.352
768
+ - type: map_at_1
769
+ value: 17.845
770
+ - type: map_at_10
771
+ value: 25.556
772
+ - type: map_at_100
773
+ value: 26.787
774
+ - type: map_at_1000
775
+ value: 26.913999999999998
776
+ - type: map_at_3
777
+ value: 23.075000000000003
778
+ - type: map_at_5
779
+ value: 24.308
780
+ - type: mrr_at_1
781
+ value: 21.714
782
+ - type: mrr_at_10
783
+ value: 29.543999999999997
784
+ - type: mrr_at_100
785
+ value: 30.543
786
+ - type: mrr_at_1000
787
+ value: 30.618000000000002
788
+ - type: mrr_at_3
789
+ value: 27.174
790
+ - type: mrr_at_5
791
+ value: 28.409000000000002
792
+ - type: ndcg_at_1
793
+ value: 21.714
794
+ - type: ndcg_at_10
795
+ value: 30.562
796
+ - type: ndcg_at_100
797
+ value: 36.27
798
+ - type: ndcg_at_1000
799
+ value: 39.033
800
+ - type: ndcg_at_3
801
+ value: 26.006
802
+ - type: ndcg_at_5
803
+ value: 27.843
804
+ - type: precision_at_1
805
+ value: 21.714
806
+ - type: precision_at_10
807
+ value: 5.657
808
+ - type: precision_at_100
809
+ value: 1
810
+ - type: precision_at_1000
811
+ value: 0.14100000000000001
812
+ - type: precision_at_3
813
+ value: 12.4
814
+ - type: precision_at_5
815
+ value: 8.863999999999999
816
+ - type: recall_at_1
817
+ value: 17.845
818
+ - type: recall_at_10
819
+ value: 41.72
820
+ - type: recall_at_100
821
+ value: 67.06400000000001
822
+ - type: recall_at_1000
823
+ value: 86.515
824
+ - type: recall_at_3
825
+ value: 28.78
826
+ - type: recall_at_5
827
+ value: 33.629999999999995
828
+ - type: map_at_1
829
+ value: 26.695
830
+ - type: map_at_10
831
+ value: 36.205999999999996
832
+ - type: map_at_100
833
+ value: 37.346000000000004
834
+ - type: map_at_1000
835
+ value: 37.447
836
+ - type: map_at_3
837
+ value: 32.84
838
+ - type: map_at_5
839
+ value: 34.733000000000004
840
+ - type: mrr_at_1
841
+ value: 31.343
842
+ - type: mrr_at_10
843
+ value: 40.335
844
+ - type: mrr_at_100
845
+ value: 41.162
846
+ - type: mrr_at_1000
847
+ value: 41.221000000000004
848
+ - type: mrr_at_3
849
+ value: 37.329
850
+ - type: mrr_at_5
851
+ value: 39.068999999999996
852
+ - type: ndcg_at_1
853
+ value: 31.343
854
+ - type: ndcg_at_10
855
+ value: 41.996
856
+ - type: ndcg_at_100
857
+ value: 47.096
858
+ - type: ndcg_at_1000
859
+ value: 49.4
860
+ - type: ndcg_at_3
861
+ value: 35.902
862
+ - type: ndcg_at_5
863
+ value: 38.848
864
+ - type: precision_at_1
865
+ value: 31.343
866
+ - type: precision_at_10
867
+ value: 7.146
868
+ - type: precision_at_100
869
+ value: 1.098
870
+ - type: precision_at_1000
871
+ value: 0.14100000000000001
872
+ - type: precision_at_3
873
+ value: 16.014
874
+ - type: precision_at_5
875
+ value: 11.735
876
+ - type: recall_at_1
877
+ value: 26.695
878
+ - type: recall_at_10
879
+ value: 55.525000000000006
880
+ - type: recall_at_100
881
+ value: 77.376
882
+ - type: recall_at_1000
883
+ value: 93.476
884
+ - type: recall_at_3
885
+ value: 39.439
886
+ - type: recall_at_5
887
+ value: 46.501
888
+ - type: map_at_1
889
+ value: 24.196
890
+ - type: map_at_10
891
+ value: 33.516
892
+ - type: map_at_100
893
+ value: 35.202
894
+ - type: map_at_1000
895
+ value: 35.426
896
+ - type: map_at_3
897
+ value: 30.561
898
+ - type: map_at_5
899
+ value: 31.961000000000002
900
+ - type: mrr_at_1
901
+ value: 29.644
902
+ - type: mrr_at_10
903
+ value: 38.769
904
+ - type: mrr_at_100
905
+ value: 39.843
906
+ - type: mrr_at_1000
907
+ value: 39.888
908
+ - type: mrr_at_3
909
+ value: 36.132999999999996
910
+ - type: mrr_at_5
911
+ value: 37.467
912
+ - type: ndcg_at_1
913
+ value: 29.644
914
+ - type: ndcg_at_10
915
+ value: 39.584
916
+ - type: ndcg_at_100
917
+ value: 45.964
918
+ - type: ndcg_at_1000
919
+ value: 48.27
920
+ - type: ndcg_at_3
921
+ value: 34.577999999999996
922
+ - type: ndcg_at_5
923
+ value: 36.498000000000005
924
+ - type: precision_at_1
925
+ value: 29.644
926
+ - type: precision_at_10
927
+ value: 7.668
928
+ - type: precision_at_100
929
+ value: 1.545
930
+ - type: precision_at_1000
931
+ value: 0.242
932
+ - type: precision_at_3
933
+ value: 16.271
934
+ - type: precision_at_5
935
+ value: 11.620999999999999
936
+ - type: recall_at_1
937
+ value: 24.196
938
+ - type: recall_at_10
939
+ value: 51.171
940
+ - type: recall_at_100
941
+ value: 79.212
942
+ - type: recall_at_1000
943
+ value: 92.976
944
+ - type: recall_at_3
945
+ value: 36.797999999999995
946
+ - type: recall_at_5
947
+ value: 42.006
948
+ - type: map_at_1
949
+ value: 21.023
950
+ - type: map_at_10
951
+ value: 29.677
952
+ - type: map_at_100
953
+ value: 30.618000000000002
954
+ - type: map_at_1000
955
+ value: 30.725
956
+ - type: map_at_3
957
+ value: 27.227
958
+ - type: map_at_5
959
+ value: 28.523
960
+ - type: mrr_at_1
961
+ value: 22.921
962
+ - type: mrr_at_10
963
+ value: 31.832
964
+ - type: mrr_at_100
965
+ value: 32.675
966
+ - type: mrr_at_1000
967
+ value: 32.751999999999995
968
+ - type: mrr_at_3
969
+ value: 29.513
970
+ - type: mrr_at_5
971
+ value: 30.89
972
+ - type: ndcg_at_1
973
+ value: 22.921
974
+ - type: ndcg_at_10
975
+ value: 34.699999999999996
976
+ - type: ndcg_at_100
977
+ value: 39.302
978
+ - type: ndcg_at_1000
979
+ value: 41.919000000000004
980
+ - type: ndcg_at_3
981
+ value: 29.965999999999998
982
+ - type: ndcg_at_5
983
+ value: 32.22
984
+ - type: precision_at_1
985
+ value: 22.921
986
+ - type: precision_at_10
987
+ value: 5.564
988
+ - type: precision_at_100
989
+ value: 0.8340000000000001
990
+ - type: precision_at_1000
991
+ value: 0.11800000000000001
992
+ - type: precision_at_3
993
+ value: 13.123999999999999
994
+ - type: precision_at_5
995
+ value: 9.316
996
+ - type: recall_at_1
997
+ value: 21.023
998
+ - type: recall_at_10
999
+ value: 48.015
1000
+ - type: recall_at_100
1001
+ value: 68.978
1002
+ - type: recall_at_1000
1003
+ value: 88.198
1004
+ - type: recall_at_3
1005
+ value: 35.397
1006
+ - type: recall_at_5
1007
+ value: 40.701
1008
+ - task:
1009
+ type: Retrieval
1010
+ dataset:
1011
+ name: MTEB ClimateFEVER
1012
+ type: climate-fever
1013
+ config: default
1014
+ split: test
1015
+ revision: None
1016
+ metrics:
1017
+ - type: map_at_1
1018
+ value: 11.198
1019
+ - type: map_at_10
1020
+ value: 19.336000000000002
1021
+ - type: map_at_100
1022
+ value: 21.382
1023
+ - type: map_at_1000
1024
+ value: 21.581
1025
+ - type: map_at_3
1026
+ value: 15.992
1027
+ - type: map_at_5
1028
+ value: 17.613
1029
+ - type: mrr_at_1
1030
+ value: 25.080999999999996
1031
+ - type: mrr_at_10
1032
+ value: 36.032
1033
+ - type: mrr_at_100
1034
+ value: 37.1
1035
+ - type: mrr_at_1000
1036
+ value: 37.145
1037
+ - type: mrr_at_3
1038
+ value: 32.595
1039
+ - type: mrr_at_5
1040
+ value: 34.553
1041
+ - type: ndcg_at_1
1042
+ value: 25.080999999999996
1043
+ - type: ndcg_at_10
1044
+ value: 27.290999999999997
1045
+ - type: ndcg_at_100
1046
+ value: 35.31
1047
+ - type: ndcg_at_1000
1048
+ value: 38.885
1049
+ - type: ndcg_at_3
1050
+ value: 21.895999999999997
1051
+ - type: ndcg_at_5
1052
+ value: 23.669999999999998
1053
+ - type: precision_at_1
1054
+ value: 25.080999999999996
1055
+ - type: precision_at_10
1056
+ value: 8.645
1057
+ - type: precision_at_100
1058
+ value: 1.7209999999999999
1059
+ - type: precision_at_1000
1060
+ value: 0.23900000000000002
1061
+ - type: precision_at_3
1062
+ value: 16.287
1063
+ - type: precision_at_5
1064
+ value: 12.625
1065
+ - type: recall_at_1
1066
+ value: 11.198
1067
+ - type: recall_at_10
1068
+ value: 33.355000000000004
1069
+ - type: recall_at_100
1070
+ value: 60.912
1071
+ - type: recall_at_1000
1072
+ value: 80.89
1073
+ - type: recall_at_3
1074
+ value: 20.055
1075
+ - type: recall_at_5
1076
+ value: 25.14
1077
+ - task:
1078
+ type: Retrieval
1079
+ dataset:
1080
+ name: MTEB DBPedia
1081
+ type: dbpedia-entity
1082
+ config: default
1083
+ split: test
1084
+ revision: None
1085
+ metrics:
1086
+ - type: map_at_1
1087
+ value: 9.228
1088
+ - type: map_at_10
1089
+ value: 20.018
1090
+ - type: map_at_100
1091
+ value: 28.388999999999996
1092
+ - type: map_at_1000
1093
+ value: 30.073
1094
+ - type: map_at_3
1095
+ value: 14.366999999999999
1096
+ - type: map_at_5
1097
+ value: 16.705000000000002
1098
+ - type: mrr_at_1
1099
+ value: 69
1100
+ - type: mrr_at_10
1101
+ value: 77.058
1102
+ - type: mrr_at_100
1103
+ value: 77.374
1104
+ - type: mrr_at_1000
1105
+ value: 77.384
1106
+ - type: mrr_at_3
1107
+ value: 75.708
1108
+ - type: mrr_at_5
1109
+ value: 76.608
1110
+ - type: ndcg_at_1
1111
+ value: 57.49999999999999
1112
+ - type: ndcg_at_10
1113
+ value: 41.792
1114
+ - type: ndcg_at_100
1115
+ value: 47.374
1116
+ - type: ndcg_at_1000
1117
+ value: 55.13
1118
+ - type: ndcg_at_3
1119
+ value: 46.353
1120
+ - type: ndcg_at_5
1121
+ value: 43.702000000000005
1122
+ - type: precision_at_1
1123
+ value: 69
1124
+ - type: precision_at_10
1125
+ value: 32.85
1126
+ - type: precision_at_100
1127
+ value: 10.708
1128
+ - type: precision_at_1000
1129
+ value: 2.024
1130
+ - type: precision_at_3
1131
+ value: 49.5
1132
+ - type: precision_at_5
1133
+ value: 42.05
1134
+ - type: recall_at_1
1135
+ value: 9.228
1136
+ - type: recall_at_10
1137
+ value: 25.635
1138
+ - type: recall_at_100
1139
+ value: 54.894
1140
+ - type: recall_at_1000
1141
+ value: 79.38
1142
+ - type: recall_at_3
1143
+ value: 15.68
1144
+ - type: recall_at_5
1145
+ value: 19.142
1146
+ - task:
1147
+ type: Classification
1148
+ dataset:
1149
+ name: MTEB EmotionClassification
1150
+ type: mteb/emotion
1151
+ config: default
1152
+ split: test
1153
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1154
+ metrics:
1155
+ - type: accuracy
1156
+ value: 52.035
1157
+ - type: f1
1158
+ value: 46.85325505614071
1159
+ - task:
1160
+ type: Retrieval
1161
+ dataset:
1162
+ name: MTEB FEVER
1163
+ type: fever
1164
+ config: default
1165
+ split: test
1166
+ revision: None
1167
+ metrics:
1168
+ - type: map_at_1
1169
+ value: 70.132
1170
+ - type: map_at_10
1171
+ value: 79.527
1172
+ - type: map_at_100
1173
+ value: 79.81200000000001
1174
+ - type: map_at_1000
1175
+ value: 79.828
1176
+ - type: map_at_3
1177
+ value: 78.191
1178
+ - type: map_at_5
1179
+ value: 79.092
1180
+ - type: mrr_at_1
1181
+ value: 75.563
1182
+ - type: mrr_at_10
1183
+ value: 83.80199999999999
1184
+ - type: mrr_at_100
1185
+ value: 83.93
1186
+ - type: mrr_at_1000
1187
+ value: 83.933
1188
+ - type: mrr_at_3
1189
+ value: 82.818
1190
+ - type: mrr_at_5
1191
+ value: 83.505
1192
+ - type: ndcg_at_1
1193
+ value: 75.563
1194
+ - type: ndcg_at_10
1195
+ value: 83.692
1196
+ - type: ndcg_at_100
1197
+ value: 84.706
1198
+ - type: ndcg_at_1000
1199
+ value: 85.001
1200
+ - type: ndcg_at_3
1201
+ value: 81.51
1202
+ - type: ndcg_at_5
1203
+ value: 82.832
1204
+ - type: precision_at_1
1205
+ value: 75.563
1206
+ - type: precision_at_10
1207
+ value: 10.245
1208
+ - type: precision_at_100
1209
+ value: 1.0959999999999999
1210
+ - type: precision_at_1000
1211
+ value: 0.11399999999999999
1212
+ - type: precision_at_3
1213
+ value: 31.518
1214
+ - type: precision_at_5
1215
+ value: 19.772000000000002
1216
+ - type: recall_at_1
1217
+ value: 70.132
1218
+ - type: recall_at_10
1219
+ value: 92.204
1220
+ - type: recall_at_100
1221
+ value: 96.261
1222
+ - type: recall_at_1000
1223
+ value: 98.17399999999999
1224
+ - type: recall_at_3
1225
+ value: 86.288
1226
+ - type: recall_at_5
1227
+ value: 89.63799999999999
1228
+ - task:
1229
+ type: Retrieval
1230
+ dataset:
1231
+ name: MTEB FiQA2018
1232
+ type: fiqa
1233
+ config: default
1234
+ split: test
1235
+ revision: None
1236
+ metrics:
1237
+ - type: map_at_1
1238
+ value: 22.269
1239
+ - type: map_at_10
1240
+ value: 36.042
1241
+ - type: map_at_100
1242
+ value: 37.988
1243
+ - type: map_at_1000
1244
+ value: 38.162
1245
+ - type: map_at_3
1246
+ value: 31.691000000000003
1247
+ - type: map_at_5
1248
+ value: 33.988
1249
+ - type: mrr_at_1
1250
+ value: 44.907000000000004
1251
+ - type: mrr_at_10
1252
+ value: 53.348
1253
+ - type: mrr_at_100
1254
+ value: 54.033
1255
+ - type: mrr_at_1000
1256
+ value: 54.064
1257
+ - type: mrr_at_3
1258
+ value: 50.977
1259
+ - type: mrr_at_5
1260
+ value: 52.112
1261
+ - type: ndcg_at_1
1262
+ value: 44.907000000000004
1263
+ - type: ndcg_at_10
1264
+ value: 44.302
1265
+ - type: ndcg_at_100
1266
+ value: 51.054
1267
+ - type: ndcg_at_1000
1268
+ value: 53.822
1269
+ - type: ndcg_at_3
1270
+ value: 40.615
1271
+ - type: ndcg_at_5
1272
+ value: 41.455999999999996
1273
+ - type: precision_at_1
1274
+ value: 44.907000000000004
1275
+ - type: precision_at_10
1276
+ value: 12.176
1277
+ - type: precision_at_100
1278
+ value: 1.931
1279
+ - type: precision_at_1000
1280
+ value: 0.243
1281
+ - type: precision_at_3
1282
+ value: 27.16
1283
+ - type: precision_at_5
1284
+ value: 19.567999999999998
1285
+ - type: recall_at_1
1286
+ value: 22.269
1287
+ - type: recall_at_10
1288
+ value: 51.188
1289
+ - type: recall_at_100
1290
+ value: 75.924
1291
+ - type: recall_at_1000
1292
+ value: 92.525
1293
+ - type: recall_at_3
1294
+ value: 36.643
1295
+ - type: recall_at_5
1296
+ value: 42.27
1297
+ - task:
1298
+ type: Retrieval
1299
+ dataset:
1300
+ name: MTEB HotpotQA
1301
+ type: hotpotqa
1302
+ config: default
1303
+ split: test
1304
+ revision: None
1305
+ metrics:
1306
+ - type: map_at_1
1307
+ value: 40.412
1308
+ - type: map_at_10
1309
+ value: 66.376
1310
+ - type: map_at_100
1311
+ value: 67.217
1312
+ - type: map_at_1000
1313
+ value: 67.271
1314
+ - type: map_at_3
1315
+ value: 62.741
1316
+ - type: map_at_5
1317
+ value: 65.069
1318
+ - type: mrr_at_1
1319
+ value: 80.824
1320
+ - type: mrr_at_10
1321
+ value: 86.53
1322
+ - type: mrr_at_100
1323
+ value: 86.67399999999999
1324
+ - type: mrr_at_1000
1325
+ value: 86.678
1326
+ - type: mrr_at_3
1327
+ value: 85.676
1328
+ - type: mrr_at_5
1329
+ value: 86.256
1330
+ - type: ndcg_at_1
1331
+ value: 80.824
1332
+ - type: ndcg_at_10
1333
+ value: 74.332
1334
+ - type: ndcg_at_100
1335
+ value: 77.154
1336
+ - type: ndcg_at_1000
1337
+ value: 78.12400000000001
1338
+ - type: ndcg_at_3
1339
+ value: 69.353
1340
+ - type: ndcg_at_5
1341
+ value: 72.234
1342
+ - type: precision_at_1
1343
+ value: 80.824
1344
+ - type: precision_at_10
1345
+ value: 15.652
1346
+ - type: precision_at_100
1347
+ value: 1.7840000000000003
1348
+ - type: precision_at_1000
1349
+ value: 0.191
1350
+ - type: precision_at_3
1351
+ value: 44.911
1352
+ - type: precision_at_5
1353
+ value: 29.221000000000004
1354
+ - type: recall_at_1
1355
+ value: 40.412
1356
+ - type: recall_at_10
1357
+ value: 78.25800000000001
1358
+ - type: recall_at_100
1359
+ value: 89.196
1360
+ - type: recall_at_1000
1361
+ value: 95.544
1362
+ - type: recall_at_3
1363
+ value: 67.367
1364
+ - type: recall_at_5
1365
+ value: 73.05199999999999
1366
+ - task:
1367
+ type: Classification
1368
+ dataset:
1369
+ name: MTEB ImdbClassification
1370
+ type: mteb/imdb
1371
+ config: default
1372
+ split: test
1373
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1374
+ metrics:
1375
+ - type: accuracy
1376
+ value: 92.78880000000001
1377
+ - type: ap
1378
+ value: 89.39251741048801
1379
+ - type: f1
1380
+ value: 92.78019950076781
1381
+ - task:
1382
+ type: Retrieval
1383
+ dataset:
1384
+ name: MTEB MSMARCO
1385
+ type: msmarco
1386
+ config: default
1387
+ split: dev
1388
+ revision: None
1389
+ metrics:
1390
+ - type: map_at_1
1391
+ value: 22.888
1392
+ - type: map_at_10
1393
+ value: 35.146
1394
+ - type: map_at_100
1395
+ value: 36.325
1396
+ - type: map_at_1000
1397
+ value: 36.372
1398
+ - type: map_at_3
1399
+ value: 31.3
1400
+ - type: map_at_5
1401
+ value: 33.533
1402
+ - type: mrr_at_1
1403
+ value: 23.480999999999998
1404
+ - type: mrr_at_10
1405
+ value: 35.777
1406
+ - type: mrr_at_100
1407
+ value: 36.887
1408
+ - type: mrr_at_1000
1409
+ value: 36.928
1410
+ - type: mrr_at_3
1411
+ value: 31.989
1412
+ - type: mrr_at_5
1413
+ value: 34.202
1414
+ - type: ndcg_at_1
1415
+ value: 23.496
1416
+ - type: ndcg_at_10
1417
+ value: 42.028999999999996
1418
+ - type: ndcg_at_100
1419
+ value: 47.629
1420
+ - type: ndcg_at_1000
1421
+ value: 48.785000000000004
1422
+ - type: ndcg_at_3
1423
+ value: 34.227000000000004
1424
+ - type: ndcg_at_5
1425
+ value: 38.207
1426
+ - type: precision_at_1
1427
+ value: 23.496
1428
+ - type: precision_at_10
1429
+ value: 6.596
1430
+ - type: precision_at_100
1431
+ value: 0.9400000000000001
1432
+ - type: precision_at_1000
1433
+ value: 0.104
1434
+ - type: precision_at_3
1435
+ value: 14.513000000000002
1436
+ - type: precision_at_5
1437
+ value: 10.711
1438
+ - type: recall_at_1
1439
+ value: 22.888
1440
+ - type: recall_at_10
1441
+ value: 63.129999999999995
1442
+ - type: recall_at_100
1443
+ value: 88.90299999999999
1444
+ - type: recall_at_1000
1445
+ value: 97.69
1446
+ - type: recall_at_3
1447
+ value: 42.014
1448
+ - type: recall_at_5
1449
+ value: 51.554
1450
+ - task:
1451
+ type: Classification
1452
+ dataset:
1453
+ name: MTEB MTOPDomainClassification (en)
1454
+ type: mteb/mtop_domain
1455
+ config: en
1456
+ split: test
1457
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1458
+ metrics:
1459
+ - type: accuracy
1460
+ value: 94.59188326493388
1461
+ - type: f1
1462
+ value: 94.36568950290486
1463
+ - task:
1464
+ type: Classification
1465
+ dataset:
1466
+ name: MTEB MTOPIntentClassification (en)
1467
+ type: mteb/mtop_intent
1468
+ config: en
1469
+ split: test
1470
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1471
+ metrics:
1472
+ - type: accuracy
1473
+ value: 79.25672594619242
1474
+ - type: f1
1475
+ value: 59.52405059722216
1476
+ - task:
1477
+ type: Classification
1478
+ dataset:
1479
+ name: MTEB MassiveIntentClassification (en)
1480
+ type: mteb/amazon_massive_intent
1481
+ config: en
1482
+ split: test
1483
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1484
+ metrics:
1485
+ - type: accuracy
1486
+ value: 77.4142568930733
1487
+ - type: f1
1488
+ value: 75.23044196543388
1489
+ - task:
1490
+ type: Classification
1491
+ dataset:
1492
+ name: MTEB MassiveScenarioClassification (en)
1493
+ type: mteb/amazon_massive_scenario
1494
+ config: en
1495
+ split: test
1496
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1497
+ metrics:
1498
+ - type: accuracy
1499
+ value: 80.44720914593141
1500
+ - type: f1
1501
+ value: 80.41049641537015
1502
+ - task:
1503
+ type: Clustering
1504
+ dataset:
1505
+ name: MTEB MedrxivClusteringP2P
1506
+ type: mteb/medrxiv-clustering-p2p
1507
+ config: default
1508
+ split: test
1509
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1510
+ metrics:
1511
+ - type: v_measure
1512
+ value: 31.960921474993775
1513
+ - task:
1514
+ type: Clustering
1515
+ dataset:
1516
+ name: MTEB MedrxivClusteringS2S
1517
+ type: mteb/medrxiv-clustering-s2s
1518
+ config: default
1519
+ split: test
1520
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1521
+ metrics:
1522
+ - type: v_measure
1523
+ value: 30.88042240204361
1524
+ - task:
1525
+ type: Reranking
1526
+ dataset:
1527
+ name: MTEB MindSmallReranking
1528
+ type: mteb/mind_small
1529
+ config: default
1530
+ split: test
1531
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1532
+ metrics:
1533
+ - type: map
1534
+ value: 32.27071371606404
1535
+ - type: mrr
1536
+ value: 33.541450459533856
1537
+ - task:
1538
+ type: Retrieval
1539
+ dataset:
1540
+ name: MTEB NFCorpus
1541
+ type: nfcorpus
1542
+ config: default
1543
+ split: test
1544
+ revision: None
1545
+ metrics:
1546
+ - type: map_at_1
1547
+ value: 6.551
1548
+ - type: map_at_10
1549
+ value: 14.359
1550
+ - type: map_at_100
1551
+ value: 18.157
1552
+ - type: map_at_1000
1553
+ value: 19.659
1554
+ - type: map_at_3
1555
+ value: 10.613999999999999
1556
+ - type: map_at_5
1557
+ value: 12.296
1558
+ - type: mrr_at_1
1559
+ value: 47.368
1560
+ - type: mrr_at_10
1561
+ value: 56.689
1562
+ - type: mrr_at_100
1563
+ value: 57.24399999999999
1564
+ - type: mrr_at_1000
1565
+ value: 57.284
1566
+ - type: mrr_at_3
1567
+ value: 54.489
1568
+ - type: mrr_at_5
1569
+ value: 55.928999999999995
1570
+ - type: ndcg_at_1
1571
+ value: 45.511
1572
+ - type: ndcg_at_10
1573
+ value: 36.911
1574
+ - type: ndcg_at_100
1575
+ value: 34.241
1576
+ - type: ndcg_at_1000
1577
+ value: 43.064
1578
+ - type: ndcg_at_3
1579
+ value: 42.348
1580
+ - type: ndcg_at_5
1581
+ value: 39.884
1582
+ - type: precision_at_1
1583
+ value: 46.749
1584
+ - type: precision_at_10
1585
+ value: 27.028000000000002
1586
+ - type: precision_at_100
1587
+ value: 8.52
1588
+ - type: precision_at_1000
1589
+ value: 2.154
1590
+ - type: precision_at_3
1591
+ value: 39.525
1592
+ - type: precision_at_5
1593
+ value: 34.18
1594
+ - type: recall_at_1
1595
+ value: 6.551
1596
+ - type: recall_at_10
1597
+ value: 18.602
1598
+ - type: recall_at_100
1599
+ value: 34.882999999999996
1600
+ - type: recall_at_1000
1601
+ value: 66.049
1602
+ - type: recall_at_3
1603
+ value: 11.872
1604
+ - type: recall_at_5
1605
+ value: 14.74
1606
+ - task:
1607
+ type: Retrieval
1608
+ dataset:
1609
+ name: MTEB NQ
1610
+ type: nq
1611
+ config: default
1612
+ split: test
1613
+ revision: None
1614
+ metrics:
1615
+ - type: map_at_1
1616
+ value: 27.828999999999997
1617
+ - type: map_at_10
1618
+ value: 43.606
1619
+ - type: map_at_100
1620
+ value: 44.656
1621
+ - type: map_at_1000
1622
+ value: 44.690000000000005
1623
+ - type: map_at_3
1624
+ value: 39.015
1625
+ - type: map_at_5
1626
+ value: 41.625
1627
+ - type: mrr_at_1
1628
+ value: 31.518
1629
+ - type: mrr_at_10
1630
+ value: 46.047
1631
+ - type: mrr_at_100
1632
+ value: 46.846
1633
+ - type: mrr_at_1000
1634
+ value: 46.867999999999995
1635
+ - type: mrr_at_3
1636
+ value: 42.154
1637
+ - type: mrr_at_5
1638
+ value: 44.468999999999994
1639
+ - type: ndcg_at_1
1640
+ value: 31.518
1641
+ - type: ndcg_at_10
1642
+ value: 51.768
1643
+ - type: ndcg_at_100
1644
+ value: 56.184999999999995
1645
+ - type: ndcg_at_1000
1646
+ value: 56.92
1647
+ - type: ndcg_at_3
1648
+ value: 43.059999999999995
1649
+ - type: ndcg_at_5
1650
+ value: 47.481
1651
+ - type: precision_at_1
1652
+ value: 31.518
1653
+ - type: precision_at_10
1654
+ value: 8.824
1655
+ - type: precision_at_100
1656
+ value: 1.131
1657
+ - type: precision_at_1000
1658
+ value: 0.12
1659
+ - type: precision_at_3
1660
+ value: 19.969
1661
+ - type: precision_at_5
1662
+ value: 14.502
1663
+ - type: recall_at_1
1664
+ value: 27.828999999999997
1665
+ - type: recall_at_10
1666
+ value: 74.244
1667
+ - type: recall_at_100
1668
+ value: 93.325
1669
+ - type: recall_at_1000
1670
+ value: 98.71799999999999
1671
+ - type: recall_at_3
1672
+ value: 51.601
1673
+ - type: recall_at_5
1674
+ value: 61.841
1675
+ - task:
1676
+ type: Retrieval
1677
+ dataset:
1678
+ name: MTEB QuoraRetrieval
1679
+ type: quora
1680
+ config: default
1681
+ split: test
1682
+ revision: None
1683
+ metrics:
1684
+ - type: map_at_1
1685
+ value: 71.54
1686
+ - type: map_at_10
1687
+ value: 85.509
1688
+ - type: map_at_100
1689
+ value: 86.137
1690
+ - type: map_at_1000
1691
+ value: 86.151
1692
+ - type: map_at_3
1693
+ value: 82.624
1694
+ - type: map_at_5
1695
+ value: 84.425
1696
+ - type: mrr_at_1
1697
+ value: 82.45
1698
+ - type: mrr_at_10
1699
+ value: 88.344
1700
+ - type: mrr_at_100
1701
+ value: 88.437
1702
+ - type: mrr_at_1000
1703
+ value: 88.437
1704
+ - type: mrr_at_3
1705
+ value: 87.417
1706
+ - type: mrr_at_5
1707
+ value: 88.066
1708
+ - type: ndcg_at_1
1709
+ value: 82.45
1710
+ - type: ndcg_at_10
1711
+ value: 89.092
1712
+ - type: ndcg_at_100
1713
+ value: 90.252
1714
+ - type: ndcg_at_1000
1715
+ value: 90.321
1716
+ - type: ndcg_at_3
1717
+ value: 86.404
1718
+ - type: ndcg_at_5
1719
+ value: 87.883
1720
+ - type: precision_at_1
1721
+ value: 82.45
1722
+ - type: precision_at_10
1723
+ value: 13.496
1724
+ - type: precision_at_100
1725
+ value: 1.536
1726
+ - type: precision_at_1000
1727
+ value: 0.157
1728
+ - type: precision_at_3
1729
+ value: 37.833
1730
+ - type: precision_at_5
1731
+ value: 24.79
1732
+ - type: recall_at_1
1733
+ value: 71.54
1734
+ - type: recall_at_10
1735
+ value: 95.846
1736
+ - type: recall_at_100
1737
+ value: 99.715
1738
+ - type: recall_at_1000
1739
+ value: 99.979
1740
+ - type: recall_at_3
1741
+ value: 88.01299999999999
1742
+ - type: recall_at_5
1743
+ value: 92.32000000000001
1744
+ - task:
1745
+ type: Clustering
1746
+ dataset:
1747
+ name: MTEB RedditClustering
1748
+ type: mteb/reddit-clustering
1749
+ config: default
1750
+ split: test
1751
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1752
+ metrics:
1753
+ - type: v_measure
1754
+ value: 57.60557586253866
1755
+ - task:
1756
+ type: Clustering
1757
+ dataset:
1758
+ name: MTEB RedditClusteringP2P
1759
+ type: mteb/reddit-clustering-p2p
1760
+ config: default
1761
+ split: test
1762
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1763
+ metrics:
1764
+ - type: v_measure
1765
+ value: 64.0287172242051
1766
+ - task:
1767
+ type: Retrieval
1768
+ dataset:
1769
+ name: MTEB SCIDOCS
1770
+ type: scidocs
1771
+ config: default
1772
+ split: test
1773
+ revision: None
1774
+ metrics:
1775
+ - type: map_at_1
1776
+ value: 3.9849999999999994
1777
+ - type: map_at_10
1778
+ value: 11.397
1779
+ - type: map_at_100
1780
+ value: 13.985
1781
+ - type: map_at_1000
1782
+ value: 14.391000000000002
1783
+ - type: map_at_3
1784
+ value: 7.66
1785
+ - type: map_at_5
1786
+ value: 9.46
1787
+ - type: mrr_at_1
1788
+ value: 19.8
1789
+ - type: mrr_at_10
1790
+ value: 31.958
1791
+ - type: mrr_at_100
1792
+ value: 33.373999999999995
1793
+ - type: mrr_at_1000
1794
+ value: 33.411
1795
+ - type: mrr_at_3
1796
+ value: 28.316999999999997
1797
+ - type: mrr_at_5
1798
+ value: 30.297
1799
+ - type: ndcg_at_1
1800
+ value: 19.8
1801
+ - type: ndcg_at_10
1802
+ value: 19.580000000000002
1803
+ - type: ndcg_at_100
1804
+ value: 29.555999999999997
1805
+ - type: ndcg_at_1000
1806
+ value: 35.882
1807
+ - type: ndcg_at_3
1808
+ value: 17.544
1809
+ - type: ndcg_at_5
1810
+ value: 15.815999999999999
1811
+ - type: precision_at_1
1812
+ value: 19.8
1813
+ - type: precision_at_10
1814
+ value: 10.61
1815
+ - type: precision_at_100
1816
+ value: 2.501
1817
+ - type: precision_at_1000
1818
+ value: 0.40099999999999997
1819
+ - type: precision_at_3
1820
+ value: 16.900000000000002
1821
+ - type: precision_at_5
1822
+ value: 14.44
1823
+ - type: recall_at_1
1824
+ value: 3.9849999999999994
1825
+ - type: recall_at_10
1826
+ value: 21.497
1827
+ - type: recall_at_100
1828
+ value: 50.727999999999994
1829
+ - type: recall_at_1000
1830
+ value: 81.27499999999999
1831
+ - type: recall_at_3
1832
+ value: 10.263
1833
+ - type: recall_at_5
1834
+ value: 14.643
1835
+ - task:
1836
+ type: STS
1837
+ dataset:
1838
+ name: MTEB SICK-R
1839
+ type: mteb/sickr-sts
1840
+ config: default
1841
+ split: test
1842
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1843
+ metrics:
1844
+ - type: cos_sim_pearson
1845
+ value: 85.0087509585503
1846
+ - type: cos_sim_spearman
1847
+ value: 81.74697270664319
1848
+ - type: euclidean_pearson
1849
+ value: 81.80424382731947
1850
+ - type: euclidean_spearman
1851
+ value: 81.29794251968431
1852
+ - type: manhattan_pearson
1853
+ value: 81.81524666226125
1854
+ - type: manhattan_spearman
1855
+ value: 81.29475370198963
1856
+ - task:
1857
+ type: STS
1858
+ dataset:
1859
+ name: MTEB STS12
1860
+ type: mteb/sts12-sts
1861
+ config: default
1862
+ split: test
1863
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1864
+ metrics:
1865
+ - type: cos_sim_pearson
1866
+ value: 86.44442736429552
1867
+ - type: cos_sim_spearman
1868
+ value: 78.51011398910948
1869
+ - type: euclidean_pearson
1870
+ value: 83.36181801196723
1871
+ - type: euclidean_spearman
1872
+ value: 79.47272621331535
1873
+ - type: manhattan_pearson
1874
+ value: 83.3660113483837
1875
+ - type: manhattan_spearman
1876
+ value: 79.47695922566032
1877
+ - task:
1878
+ type: STS
1879
+ dataset:
1880
+ name: MTEB STS13
1881
+ type: mteb/sts13-sts
1882
+ config: default
1883
+ split: test
1884
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1885
+ metrics:
1886
+ - type: cos_sim_pearson
1887
+ value: 85.82923943323635
1888
+ - type: cos_sim_spearman
1889
+ value: 86.62037823380983
1890
+ - type: euclidean_pearson
1891
+ value: 83.56369548403958
1892
+ - type: euclidean_spearman
1893
+ value: 84.2176755481191
1894
+ - type: manhattan_pearson
1895
+ value: 83.55460702084464
1896
+ - type: manhattan_spearman
1897
+ value: 84.18617930921467
1898
+ - task:
1899
+ type: STS
1900
+ dataset:
1901
+ name: MTEB STS14
1902
+ type: mteb/sts14-sts
1903
+ config: default
1904
+ split: test
1905
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1906
+ metrics:
1907
+ - type: cos_sim_pearson
1908
+ value: 84.09071068110103
1909
+ - type: cos_sim_spearman
1910
+ value: 83.05697553913335
1911
+ - type: euclidean_pearson
1912
+ value: 81.1377457216497
1913
+ - type: euclidean_spearman
1914
+ value: 81.74714169016676
1915
+ - type: manhattan_pearson
1916
+ value: 81.0893424142723
1917
+ - type: manhattan_spearman
1918
+ value: 81.7058918219677
1919
+ - task:
1920
+ type: STS
1921
+ dataset:
1922
+ name: MTEB STS15
1923
+ type: mteb/sts15-sts
1924
+ config: default
1925
+ split: test
1926
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1927
+ metrics:
1928
+ - type: cos_sim_pearson
1929
+ value: 87.61132157220429
1930
+ - type: cos_sim_spearman
1931
+ value: 88.38581627185445
1932
+ - type: euclidean_pearson
1933
+ value: 86.14904510913374
1934
+ - type: euclidean_spearman
1935
+ value: 86.5452758925542
1936
+ - type: manhattan_pearson
1937
+ value: 86.1484025377679
1938
+ - type: manhattan_spearman
1939
+ value: 86.55483841566252
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ name: MTEB STS16
1944
+ type: mteb/sts16-sts
1945
+ config: default
1946
+ split: test
1947
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 85.46195145161064
1951
+ - type: cos_sim_spearman
1952
+ value: 86.82409112251158
1953
+ - type: euclidean_pearson
1954
+ value: 84.75479672288957
1955
+ - type: euclidean_spearman
1956
+ value: 85.41144307151548
1957
+ - type: manhattan_pearson
1958
+ value: 84.70914329694165
1959
+ - type: manhattan_spearman
1960
+ value: 85.38477943384089
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ name: MTEB STS17 (en-en)
1965
+ type: mteb/sts17-crosslingual-sts
1966
+ config: en-en
1967
+ split: test
1968
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 88.06351289930238
1972
+ - type: cos_sim_spearman
1973
+ value: 87.90311138579116
1974
+ - type: euclidean_pearson
1975
+ value: 86.17651467063077
1976
+ - type: euclidean_spearman
1977
+ value: 84.89447802019073
1978
+ - type: manhattan_pearson
1979
+ value: 86.3267677479595
1980
+ - type: manhattan_spearman
1981
+ value: 85.00472295103874
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ name: MTEB STS22 (en)
1986
+ type: mteb/sts22-crosslingual-sts
1987
+ config: en
1988
+ split: test
1989
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 67.78311975978767
1993
+ - type: cos_sim_spearman
1994
+ value: 66.76465685245887
1995
+ - type: euclidean_pearson
1996
+ value: 67.21687806595443
1997
+ - type: euclidean_spearman
1998
+ value: 65.05776733534435
1999
+ - type: manhattan_pearson
2000
+ value: 67.14008143635883
2001
+ - type: manhattan_spearman
2002
+ value: 65.25247076149701
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ name: MTEB STSBenchmark
2007
+ type: mteb/stsbenchmark-sts
2008
+ config: default
2009
+ split: test
2010
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 86.7403488889418
2014
+ - type: cos_sim_spearman
2015
+ value: 87.76870289783061
2016
+ - type: euclidean_pearson
2017
+ value: 84.83171077794671
2018
+ - type: euclidean_spearman
2019
+ value: 85.50579695091902
2020
+ - type: manhattan_pearson
2021
+ value: 84.83074260180555
2022
+ - type: manhattan_spearman
2023
+ value: 85.47589026938667
2024
+ - task:
2025
+ type: Reranking
2026
+ dataset:
2027
+ name: MTEB SciDocsRR
2028
+ type: mteb/scidocs-reranking
2029
+ config: default
2030
+ split: test
2031
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2032
+ metrics:
2033
+ - type: map
2034
+ value: 87.56234016237356
2035
+ - type: mrr
2036
+ value: 96.26124238869338
2037
+ - task:
2038
+ type: Retrieval
2039
+ dataset:
2040
+ name: MTEB SciFact
2041
+ type: scifact
2042
+ config: default
2043
+ split: test
2044
+ revision: None
2045
+ metrics:
2046
+ - type: map_at_1
2047
+ value: 59.660999999999994
2048
+ - type: map_at_10
2049
+ value: 69.105
2050
+ - type: map_at_100
2051
+ value: 69.78
2052
+ - type: map_at_1000
2053
+ value: 69.80199999999999
2054
+ - type: map_at_3
2055
+ value: 65.991
2056
+ - type: map_at_5
2057
+ value: 68.02
2058
+ - type: mrr_at_1
2059
+ value: 62.666999999999994
2060
+ - type: mrr_at_10
2061
+ value: 70.259
2062
+ - type: mrr_at_100
2063
+ value: 70.776
2064
+ - type: mrr_at_1000
2065
+ value: 70.796
2066
+ - type: mrr_at_3
2067
+ value: 67.889
2068
+ - type: mrr_at_5
2069
+ value: 69.52199999999999
2070
+ - type: ndcg_at_1
2071
+ value: 62.666999999999994
2072
+ - type: ndcg_at_10
2073
+ value: 73.425
2074
+ - type: ndcg_at_100
2075
+ value: 75.955
2076
+ - type: ndcg_at_1000
2077
+ value: 76.459
2078
+ - type: ndcg_at_3
2079
+ value: 68.345
2080
+ - type: ndcg_at_5
2081
+ value: 71.319
2082
+ - type: precision_at_1
2083
+ value: 62.666999999999994
2084
+ - type: precision_at_10
2085
+ value: 9.667
2086
+ - type: precision_at_100
2087
+ value: 1.09
2088
+ - type: precision_at_1000
2089
+ value: 0.11299999999999999
2090
+ - type: precision_at_3
2091
+ value: 26.333000000000002
2092
+ - type: precision_at_5
2093
+ value: 17.732999999999997
2094
+ - type: recall_at_1
2095
+ value: 59.660999999999994
2096
+ - type: recall_at_10
2097
+ value: 85.422
2098
+ - type: recall_at_100
2099
+ value: 96.167
2100
+ - type: recall_at_1000
2101
+ value: 100
2102
+ - type: recall_at_3
2103
+ value: 72.044
2104
+ - type: recall_at_5
2105
+ value: 79.428
2106
+ - task:
2107
+ type: PairClassification
2108
+ dataset:
2109
+ name: MTEB SprintDuplicateQuestions
2110
+ type: mteb/sprintduplicatequestions-pairclassification
2111
+ config: default
2112
+ split: test
2113
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2114
+ metrics:
2115
+ - type: cos_sim_accuracy
2116
+ value: 99.86435643564356
2117
+ - type: cos_sim_ap
2118
+ value: 96.83057412333741
2119
+ - type: cos_sim_f1
2120
+ value: 93.04215337734891
2121
+ - type: cos_sim_precision
2122
+ value: 94.53044375644994
2123
+ - type: cos_sim_recall
2124
+ value: 91.60000000000001
2125
+ - type: dot_accuracy
2126
+ value: 99.7910891089109
2127
+ - type: dot_ap
2128
+ value: 94.10681982106397
2129
+ - type: dot_f1
2130
+ value: 89.34881373043918
2131
+ - type: dot_precision
2132
+ value: 90.21406727828746
2133
+ - type: dot_recall
2134
+ value: 88.5
2135
+ - type: euclidean_accuracy
2136
+ value: 99.85544554455446
2137
+ - type: euclidean_ap
2138
+ value: 96.78545104478602
2139
+ - type: euclidean_f1
2140
+ value: 92.65143992055613
2141
+ - type: euclidean_precision
2142
+ value: 92.01183431952663
2143
+ - type: euclidean_recall
2144
+ value: 93.30000000000001
2145
+ - type: manhattan_accuracy
2146
+ value: 99.85841584158416
2147
+ - type: manhattan_ap
2148
+ value: 96.80748903307823
2149
+ - type: manhattan_f1
2150
+ value: 92.78247884519662
2151
+ - type: manhattan_precision
2152
+ value: 92.36868186323092
2153
+ - type: manhattan_recall
2154
+ value: 93.2
2155
+ - type: max_accuracy
2156
+ value: 99.86435643564356
2157
+ - type: max_ap
2158
+ value: 96.83057412333741
2159
+ - type: max_f1
2160
+ value: 93.04215337734891
2161
+ - task:
2162
+ type: Clustering
2163
+ dataset:
2164
+ name: MTEB StackExchangeClustering
2165
+ type: mteb/stackexchange-clustering
2166
+ config: default
2167
+ split: test
2168
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2169
+ metrics:
2170
+ - type: v_measure
2171
+ value: 65.53971025855282
2172
+ - task:
2173
+ type: Clustering
2174
+ dataset:
2175
+ name: MTEB StackExchangeClusteringP2P
2176
+ type: mteb/stackexchange-clustering-p2p
2177
+ config: default
2178
+ split: test
2179
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2180
+ metrics:
2181
+ - type: v_measure
2182
+ value: 33.97791591490788
2183
+ - task:
2184
+ type: Reranking
2185
+ dataset:
2186
+ name: MTEB StackOverflowDupQuestions
2187
+ type: mteb/stackoverflowdupquestions-reranking
2188
+ config: default
2189
+ split: test
2190
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2191
+ metrics:
2192
+ - type: map
2193
+ value: 55.852215301355066
2194
+ - type: mrr
2195
+ value: 56.85527809608691
2196
+ - task:
2197
+ type: Summarization
2198
+ dataset:
2199
+ name: MTEB SummEval
2200
+ type: mteb/summeval
2201
+ config: default
2202
+ split: test
2203
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2204
+ metrics:
2205
+ - type: cos_sim_pearson
2206
+ value: 31.21442519856758
2207
+ - type: cos_sim_spearman
2208
+ value: 30.822536216936825
2209
+ - type: dot_pearson
2210
+ value: 28.661325528121807
2211
+ - type: dot_spearman
2212
+ value: 28.1435226478879
2213
+ - task:
2214
+ type: Retrieval
2215
+ dataset:
2216
+ name: MTEB TRECCOVID
2217
+ type: trec-covid
2218
+ config: default
2219
+ split: test
2220
+ revision: None
2221
+ metrics:
2222
+ - type: map_at_1
2223
+ value: 0.183
2224
+ - type: map_at_10
2225
+ value: 1.526
2226
+ - type: map_at_100
2227
+ value: 7.915
2228
+ - type: map_at_1000
2229
+ value: 19.009
2230
+ - type: map_at_3
2231
+ value: 0.541
2232
+ - type: map_at_5
2233
+ value: 0.8659999999999999
2234
+ - type: mrr_at_1
2235
+ value: 68
2236
+ - type: mrr_at_10
2237
+ value: 81.186
2238
+ - type: mrr_at_100
2239
+ value: 81.186
2240
+ - type: mrr_at_1000
2241
+ value: 81.186
2242
+ - type: mrr_at_3
2243
+ value: 80
2244
+ - type: mrr_at_5
2245
+ value: 80.9
2246
+ - type: ndcg_at_1
2247
+ value: 64
2248
+ - type: ndcg_at_10
2249
+ value: 64.13799999999999
2250
+ - type: ndcg_at_100
2251
+ value: 47.632000000000005
2252
+ - type: ndcg_at_1000
2253
+ value: 43.037
2254
+ - type: ndcg_at_3
2255
+ value: 67.542
2256
+ - type: ndcg_at_5
2257
+ value: 67.496
2258
+ - type: precision_at_1
2259
+ value: 68
2260
+ - type: precision_at_10
2261
+ value: 67.80000000000001
2262
+ - type: precision_at_100
2263
+ value: 48.980000000000004
2264
+ - type: precision_at_1000
2265
+ value: 19.036
2266
+ - type: precision_at_3
2267
+ value: 72
2268
+ - type: precision_at_5
2269
+ value: 71.2
2270
+ - type: recall_at_1
2271
+ value: 0.183
2272
+ - type: recall_at_10
2273
+ value: 1.799
2274
+ - type: recall_at_100
2275
+ value: 11.652999999999999
2276
+ - type: recall_at_1000
2277
+ value: 40.086
2278
+ - type: recall_at_3
2279
+ value: 0.5930000000000001
2280
+ - type: recall_at_5
2281
+ value: 0.983
2282
+ - task:
2283
+ type: Retrieval
2284
+ dataset:
2285
+ name: MTEB Touche2020
2286
+ type: webis-touche2020
2287
+ config: default
2288
+ split: test
2289
+ revision: None
2290
+ metrics:
2291
+ - type: map_at_1
2292
+ value: 2.29
2293
+ - type: map_at_10
2294
+ value: 9.489
2295
+ - type: map_at_100
2296
+ value: 15.051
2297
+ - type: map_at_1000
2298
+ value: 16.561999999999998
2299
+ - type: map_at_3
2300
+ value: 5.137
2301
+ - type: map_at_5
2302
+ value: 6.7989999999999995
2303
+ - type: mrr_at_1
2304
+ value: 28.571
2305
+ - type: mrr_at_10
2306
+ value: 45.699
2307
+ - type: mrr_at_100
2308
+ value: 46.461000000000006
2309
+ - type: mrr_at_1000
2310
+ value: 46.461000000000006
2311
+ - type: mrr_at_3
2312
+ value: 41.837
2313
+ - type: mrr_at_5
2314
+ value: 43.163000000000004
2315
+ - type: ndcg_at_1
2316
+ value: 23.469
2317
+ - type: ndcg_at_10
2318
+ value: 23.544999999999998
2319
+ - type: ndcg_at_100
2320
+ value: 34.572
2321
+ - type: ndcg_at_1000
2322
+ value: 46.035
2323
+ - type: ndcg_at_3
2324
+ value: 27.200000000000003
2325
+ - type: ndcg_at_5
2326
+ value: 25.266
2327
+ - type: precision_at_1
2328
+ value: 28.571
2329
+ - type: precision_at_10
2330
+ value: 22.041
2331
+ - type: precision_at_100
2332
+ value: 7.3469999999999995
2333
+ - type: precision_at_1000
2334
+ value: 1.484
2335
+ - type: precision_at_3
2336
+ value: 29.932
2337
+ - type: precision_at_5
2338
+ value: 26.531
2339
+ - type: recall_at_1
2340
+ value: 2.29
2341
+ - type: recall_at_10
2342
+ value: 15.895999999999999
2343
+ - type: recall_at_100
2344
+ value: 45.518
2345
+ - type: recall_at_1000
2346
+ value: 80.731
2347
+ - type: recall_at_3
2348
+ value: 6.433
2349
+ - type: recall_at_5
2350
+ value: 9.484
2351
+ - task:
2352
+ type: Classification
2353
+ dataset:
2354
+ name: MTEB ToxicConversationsClassification
2355
+ type: mteb/toxic_conversations_50k
2356
+ config: default
2357
+ split: test
2358
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2359
+ metrics:
2360
+ - type: accuracy
2361
+ value: 71.4178
2362
+ - type: ap
2363
+ value: 14.575240629602373
2364
+ - type: f1
2365
+ value: 55.02449563229096
2366
+ - task:
2367
+ type: Classification
2368
+ dataset:
2369
+ name: MTEB TweetSentimentExtractionClassification
2370
+ type: mteb/tweet_sentiment_extraction
2371
+ config: default
2372
+ split: test
2373
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2374
+ metrics:
2375
+ - type: accuracy
2376
+ value: 60.00282965478212
2377
+ - type: f1
2378
+ value: 60.34413028768773
2379
+ - task:
2380
+ type: Clustering
2381
+ dataset:
2382
+ name: MTEB TwentyNewsgroupsClustering
2383
+ type: mteb/twentynewsgroups-clustering
2384
+ config: default
2385
+ split: test
2386
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2387
+ metrics:
2388
+ - type: v_measure
2389
+ value: 50.409448342549936
2390
+ - task:
2391
+ type: PairClassification
2392
+ dataset:
2393
+ name: MTEB TwitterSemEval2015
2394
+ type: mteb/twittersemeval2015-pairclassification
2395
+ config: default
2396
+ split: test
2397
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2398
+ metrics:
2399
+ - type: cos_sim_accuracy
2400
+ value: 87.62591643321214
2401
+ - type: cos_sim_ap
2402
+ value: 79.28766491329633
2403
+ - type: cos_sim_f1
2404
+ value: 71.98772064466617
2405
+ - type: cos_sim_precision
2406
+ value: 69.8609731876862
2407
+ - type: cos_sim_recall
2408
+ value: 74.24802110817942
2409
+ - type: dot_accuracy
2410
+ value: 84.75293556654945
2411
+ - type: dot_ap
2412
+ value: 69.72705761174353
2413
+ - type: dot_f1
2414
+ value: 65.08692852543464
2415
+ - type: dot_precision
2416
+ value: 63.57232704402516
2417
+ - type: dot_recall
2418
+ value: 66.6754617414248
2419
+ - type: euclidean_accuracy
2420
+ value: 87.44710019669786
2421
+ - type: euclidean_ap
2422
+ value: 79.11021477292638
2423
+ - type: euclidean_f1
2424
+ value: 71.5052389470994
2425
+ - type: euclidean_precision
2426
+ value: 69.32606541129832
2427
+ - type: euclidean_recall
2428
+ value: 73.82585751978891
2429
+ - type: manhattan_accuracy
2430
+ value: 87.42325803182929
2431
+ - type: manhattan_ap
2432
+ value: 79.05094494327616
2433
+ - type: manhattan_f1
2434
+ value: 71.36333985649055
2435
+ - type: manhattan_precision
2436
+ value: 70.58064516129032
2437
+ - type: manhattan_recall
2438
+ value: 72.16358839050132
2439
+ - type: max_accuracy
2440
+ value: 87.62591643321214
2441
+ - type: max_ap
2442
+ value: 79.28766491329633
2443
+ - type: max_f1
2444
+ value: 71.98772064466617
2445
+ - task:
2446
+ type: PairClassification
2447
+ dataset:
2448
+ name: MTEB TwitterURLCorpus
2449
+ type: mteb/twitterurlcorpus-pairclassification
2450
+ config: default
2451
+ split: test
2452
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2453
+ metrics:
2454
+ - type: cos_sim_accuracy
2455
+ value: 88.85202002561415
2456
+ - type: cos_sim_ap
2457
+ value: 85.9835303311168
2458
+ - type: cos_sim_f1
2459
+ value: 78.25741142443962
2460
+ - type: cos_sim_precision
2461
+ value: 73.76635768811342
2462
+ - type: cos_sim_recall
2463
+ value: 83.3307668617185
2464
+ - type: dot_accuracy
2465
+ value: 88.20584468506229
2466
+ - type: dot_ap
2467
+ value: 83.591632302697
2468
+ - type: dot_f1
2469
+ value: 76.81739705396173
2470
+ - type: dot_precision
2471
+ value: 73.45275728837373
2472
+ - type: dot_recall
2473
+ value: 80.50508161379734
2474
+ - type: euclidean_accuracy
2475
+ value: 88.64633057787093
2476
+ - type: euclidean_ap
2477
+ value: 85.25705123182283
2478
+ - type: euclidean_f1
2479
+ value: 77.18535726329199
2480
+ - type: euclidean_precision
2481
+ value: 75.17699437997226
2482
+ - type: euclidean_recall
2483
+ value: 79.30397289805975
2484
+ - type: manhattan_accuracy
2485
+ value: 88.63274731245392
2486
+ - type: manhattan_ap
2487
+ value: 85.2376825633018
2488
+ - type: manhattan_f1
2489
+ value: 77.15810785937788
2490
+ - type: manhattan_precision
2491
+ value: 73.92255061014319
2492
+ - type: manhattan_recall
2493
+ value: 80.68986757006468
2494
+ - type: max_accuracy
2495
+ value: 88.85202002561415
2496
+ - type: max_ap
2497
+ value: 85.9835303311168
2498
+ - type: max_f1
2499
+ value: 78.25741142443962
2500
+ ---
2501
+
2502
+ # Santyyy/ember-v1-Q8_0-GGUF
2503
+ This model was converted to GGUF format from [`llmrails/ember-v1`](https://huggingface.co/llmrails/ember-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2504
+ Refer to the [original model card](https://huggingface.co/llmrails/ember-v1) for more details on the model.
2505
+
2506
+ ## Use with llama.cpp
2507
+ Install llama.cpp through brew (works on Mac and Linux)
2508
+
2509
+ ```bash
2510
+ brew install llama.cpp
2511
+
2512
+ ```
2513
+ Invoke the llama.cpp server or the CLI.
2514
+
2515
+ ### CLI:
2516
+ ```bash
2517
+ llama-cli --hf-repo Santyyy/ember-v1-Q8_0-GGUF --hf-file ember-v1-q8_0.gguf -p "The meaning to life and the universe is"
2518
+ ```
2519
+
2520
+ ### Server:
2521
+ ```bash
2522
+ llama-server --hf-repo Santyyy/ember-v1-Q8_0-GGUF --hf-file ember-v1-q8_0.gguf -c 2048
2523
+ ```
2524
+
2525
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2526
+
2527
+ Step 1: Clone llama.cpp from GitHub.
2528
+ ```
2529
+ git clone https://github.com/ggerganov/llama.cpp
2530
+ ```
2531
+
2532
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2533
+ ```
2534
+ cd llama.cpp && LLAMA_CURL=1 make
2535
+ ```
2536
+
2537
+ Step 3: Run inference through the main binary.
2538
+ ```
2539
+ ./llama-cli --hf-repo Santyyy/ember-v1-Q8_0-GGUF --hf-file ember-v1-q8_0.gguf -p "The meaning to life and the universe is"
2540
+ ```
2541
+ or
2542
+ ```
2543
+ ./llama-server --hf-repo Santyyy/ember-v1-Q8_0-GGUF --hf-file ember-v1-q8_0.gguf -c 2048
2544
+ ```