File size: 4,541 Bytes
dfec516
 
 
a1709ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfec516
 
8479c2a
 
 
 
 
 
 
 
 
 
dfec516
 
 
8479c2a
 
 
 
dfec516
 
 
 
a4a6400
dfec516
 
 
a4a6400
dfec516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1709ef
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
language:
- en
license: llama3
model-index:
- name: L3-8B-Lunaris-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 68.95
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 32.11
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.46
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.82
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.55
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Sao10K/L3-8B-Lunaris-v1
      name: Open LLM Leaderboard
---

A generalist / roleplaying model merge based on Llama 3. Models are selected from my personal experience while using them.

I personally think this is an improvement over Stheno v3.2, considering the other models helped balance out its creativity and at the same time improving its logic.

Settings:
```
Instruct // Context Template: Llama-3-Instruct
Temperature: 1.4
min_p: 0.1
```

---

Merging seems to be a black box magic though? In my personal experience merging multiple models from different datasets / data works better than combining them all in one.

*Values chosen are from long-running personal experimentation since Llama-2 Merging Era. I have tweaked them to fit this recipe.*

Mergekit Config 
```
models:
  - model: meta-llama/Meta-Llama-3-8B-Instruct
  - model: crestf411/L3-8B-sunfall-v0.1 # Another RP Model trained on... stuff
    parameters:
      density: 0.4
      weight: 0.25
  - model: Hastagaras/Jamet-8B-L3-MK1 - # Another RP / Storytelling Model
    parameters:
      density: 0.5
      weight: 0.3
  - model: maldv/badger-iota-llama-3-8b #Megamerge - Helps with General Knowledge
    parameters:
      density: 0.6
      weight: 0.35
  - model: Sao10K/Stheno-3.2-Beta # This is Stheno v3.2's Initial Name
    parameters:
      density: 0.7
      weight: 0.4
merge_method: ties
base_model: meta-llama/Meta-Llama-3-8B-Instruct
parameters:
  int8_mask: true
  rescale: true
  normalize: false
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Sao10K__L3-8B-Lunaris-v1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |25.48|
|IFEval (0-Shot)    |68.95|
|BBH (3-Shot)       |32.11|
|MATH Lvl 5 (4-Shot)| 8.46|
|GPQA (0-shot)      | 6.82|
|MuSR (0-shot)      | 5.55|
|MMLU-PRO (5-shot)  |30.97|