SaraAlthubaiti commited on
Commit
3447959
·
verified ·
1 Parent(s): ad582c7
config.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+ import logging
17
+
18
+ from omegaconf import OmegaConf
19
+
20
+
21
+ class Config:
22
+ def __init__(self, args):
23
+ self.config = {}
24
+
25
+ self.args = args
26
+ user_config = self._build_opt_list(self.args.options)
27
+ config = OmegaConf.load(self.args.cfg_path)
28
+ config = OmegaConf.merge(config, user_config)
29
+ self.config = config
30
+
31
+ def _convert_to_dot_list(self, opts):
32
+ if opts is None:
33
+ opts = []
34
+
35
+ if len(opts) == 0:
36
+ return opts
37
+
38
+ has_equal = opts[0].find("=") != -1
39
+
40
+ if has_equal:
41
+ return opts
42
+
43
+ return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
44
+
45
+ def _build_opt_list(self, opts):
46
+ opts_dot_list = self._convert_to_dot_list(opts)
47
+ return OmegaConf.from_dotlist(opts_dot_list)
48
+
49
+ def pretty_print(self):
50
+ logging.info("\n===== Running Parameters =====")
51
+ logging.info(self._convert_node_to_json(self.config.run))
52
+
53
+ logging.info("\n====== Dataset Attributes ======")
54
+ logging.info(self._convert_node_to_json(self.config.datasets))
55
+
56
+ logging.info(f"\n====== Model Attributes ======")
57
+ logging.info(self._convert_node_to_json(self.config.model))
58
+
59
+ def _convert_node_to_json(self, node):
60
+ container = OmegaConf.to_container(node, resolve=True)
61
+ return json.dumps(container, indent=4, sort_keys=True)
62
+
63
+ def to_dict(self):
64
+ return OmegaConf.to_container(self.config)
models/Qformer.py ADDED
@@ -0,0 +1,1217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from salesforce@LAVIS. Below is the original copyright:
3
+ * Copyright (c) 2023, salesforce.com, inc.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
7
+ * By Junnan Li
8
+ * Based on huggingface code base
9
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
10
+ """
11
+
12
+ import math
13
+ import os
14
+ import warnings
15
+ from dataclasses import dataclass
16
+ from typing import Optional, Tuple, Dict, Any
17
+
18
+ import torch
19
+ from torch import Tensor, device, dtype, nn
20
+ import torch.utils.checkpoint
21
+ from torch import nn
22
+ from torch.nn import CrossEntropyLoss
23
+ import torch.nn.functional as F
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.file_utils import (
27
+ ModelOutput,
28
+ )
29
+ from transformers.modeling_outputs import (
30
+ BaseModelOutputWithPastAndCrossAttentions,
31
+ BaseModelOutputWithPoolingAndCrossAttentions,
32
+ CausalLMOutputWithCrossAttentions,
33
+ MaskedLMOutput,
34
+ MultipleChoiceModelOutput,
35
+ NextSentencePredictorOutput,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutput,
38
+ TokenClassifierOutput,
39
+ )
40
+ from transformers.modeling_utils import (
41
+ PreTrainedModel,
42
+ apply_chunking_to_forward,
43
+ find_pruneable_heads_and_indices,
44
+ prune_linear_layer,
45
+ )
46
+ from transformers.utils import logging
47
+ from transformers.models.bert.configuration_bert import BertConfig
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+
52
+ class BertEmbeddings(nn.Module):
53
+ """Construct the embeddings from word and position embeddings."""
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.word_embeddings = nn.Embedding(
58
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
59
+ )
60
+ self.position_embeddings = nn.Embedding(
61
+ config.max_position_embeddings, config.hidden_size
62
+ )
63
+
64
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
65
+ # any TensorFlow checkpoint file
66
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
67
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
68
+
69
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
70
+ self.register_buffer(
71
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
72
+ )
73
+ self.position_embedding_type = getattr(
74
+ config, "position_embedding_type", "absolute"
75
+ )
76
+
77
+ self.config = config
78
+
79
+ def forward(
80
+ self,
81
+ input_ids=None,
82
+ position_ids=None,
83
+ query_embeds=None,
84
+ past_key_values_length=0,
85
+ ):
86
+ if input_ids is not None:
87
+ seq_length = input_ids.size()[1]
88
+ else:
89
+ seq_length = 0
90
+
91
+ if position_ids is None:
92
+ position_ids = self.position_ids[
93
+ :, past_key_values_length : seq_length + past_key_values_length
94
+ ].clone()
95
+
96
+ if input_ids is not None:
97
+ embeddings = self.word_embeddings(input_ids)
98
+ if self.position_embedding_type == "absolute":
99
+ position_embeddings = self.position_embeddings(position_ids)
100
+ embeddings = embeddings + position_embeddings
101
+
102
+ if query_embeds is not None:
103
+ embeddings = torch.cat((query_embeds, embeddings), dim=1)
104
+ else:
105
+ embeddings = query_embeds
106
+
107
+ embeddings = self.LayerNorm(embeddings)
108
+ embeddings = self.dropout(embeddings)
109
+ return embeddings
110
+
111
+
112
+ class BertSelfAttention(nn.Module):
113
+ def __init__(self, config, is_cross_attention):
114
+ super().__init__()
115
+ self.config = config
116
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
117
+ config, "embedding_size"
118
+ ):
119
+ raise ValueError(
120
+ "The hidden size (%d) is not a multiple of the number of attention "
121
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
122
+ )
123
+
124
+ self.num_attention_heads = config.num_attention_heads
125
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
126
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
127
+
128
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
129
+ if is_cross_attention:
130
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
131
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
132
+ else:
133
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
134
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
135
+
136
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
137
+ self.position_embedding_type = getattr(
138
+ config, "position_embedding_type", "absolute"
139
+ )
140
+ if (
141
+ self.position_embedding_type == "relative_key"
142
+ or self.position_embedding_type == "relative_key_query"
143
+ ):
144
+ self.max_position_embeddings = config.max_position_embeddings
145
+ self.distance_embedding = nn.Embedding(
146
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
147
+ )
148
+ self.save_attention = False
149
+
150
+ def save_attn_gradients(self, attn_gradients):
151
+ self.attn_gradients = attn_gradients
152
+
153
+ def get_attn_gradients(self):
154
+ return self.attn_gradients
155
+
156
+ def save_attention_map(self, attention_map):
157
+ self.attention_map = attention_map
158
+
159
+ def get_attention_map(self):
160
+ return self.attention_map
161
+
162
+ def transpose_for_scores(self, x):
163
+ new_x_shape = x.size()[:-1] + (
164
+ self.num_attention_heads,
165
+ self.attention_head_size,
166
+ )
167
+ x = x.view(*new_x_shape)
168
+ return x.permute(0, 2, 1, 3)
169
+
170
+ def forward(
171
+ self,
172
+ hidden_states,
173
+ attention_mask=None,
174
+ head_mask=None,
175
+ encoder_hidden_states=None,
176
+ encoder_attention_mask=None,
177
+ past_key_value=None,
178
+ output_attentions=False,
179
+ ):
180
+
181
+ # If this is instantiated as a cross-attention module, the keys
182
+ # and values come from an encoder; the attention mask needs to be
183
+ # such that the encoder's padding tokens are not attended to.
184
+ is_cross_attention = encoder_hidden_states is not None
185
+
186
+ if is_cross_attention:
187
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
188
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
189
+ attention_mask = encoder_attention_mask
190
+ elif past_key_value is not None:
191
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
192
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
193
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
194
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
195
+ else:
196
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
197
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
198
+
199
+ mixed_query_layer = self.query(hidden_states)
200
+
201
+ query_layer = self.transpose_for_scores(mixed_query_layer)
202
+
203
+ past_key_value = (key_layer, value_layer)
204
+
205
+ # Take the dot product between "query" and "key" to get the raw attention scores.
206
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
207
+
208
+ if (
209
+ self.position_embedding_type == "relative_key"
210
+ or self.position_embedding_type == "relative_key_query"
211
+ ):
212
+ seq_length = hidden_states.size()[1]
213
+ position_ids_l = torch.arange(
214
+ seq_length, dtype=torch.long, device=hidden_states.device
215
+ ).view(-1, 1)
216
+ position_ids_r = torch.arange(
217
+ seq_length, dtype=torch.long, device=hidden_states.device
218
+ ).view(1, -1)
219
+ distance = position_ids_l - position_ids_r
220
+ positional_embedding = self.distance_embedding(
221
+ distance + self.max_position_embeddings - 1
222
+ )
223
+ positional_embedding = positional_embedding.to(
224
+ dtype=query_layer.dtype
225
+ ) # fp16 compatibility
226
+
227
+ if self.position_embedding_type == "relative_key":
228
+ relative_position_scores = torch.einsum(
229
+ "bhld,lrd->bhlr", query_layer, positional_embedding
230
+ )
231
+ attention_scores = attention_scores + relative_position_scores
232
+ elif self.position_embedding_type == "relative_key_query":
233
+ relative_position_scores_query = torch.einsum(
234
+ "bhld,lrd->bhlr", query_layer, positional_embedding
235
+ )
236
+ relative_position_scores_key = torch.einsum(
237
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
238
+ )
239
+ attention_scores = (
240
+ attention_scores
241
+ + relative_position_scores_query
242
+ + relative_position_scores_key
243
+ )
244
+
245
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
246
+ if attention_mask is not None:
247
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
248
+ attention_scores = attention_scores + attention_mask
249
+
250
+ # Normalize the attention scores to probabilities.
251
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
252
+
253
+ if is_cross_attention and self.save_attention:
254
+ self.save_attention_map(attention_probs)
255
+ attention_probs.register_hook(self.save_attn_gradients)
256
+
257
+ # This is actually dropping out entire tokens to attend to, which might
258
+ # seem a bit unusual, but is taken from the original Transformer paper.
259
+ attention_probs_dropped = self.dropout(attention_probs)
260
+
261
+ # Mask heads if we want to
262
+ if head_mask is not None:
263
+ attention_probs_dropped = attention_probs_dropped * head_mask
264
+
265
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
266
+
267
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
268
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
269
+ context_layer = context_layer.view(*new_context_layer_shape)
270
+
271
+ outputs = (
272
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
273
+ )
274
+
275
+ outputs = outputs + (past_key_value,)
276
+ return outputs
277
+
278
+
279
+ class BertSelfOutput(nn.Module):
280
+ def __init__(self, config):
281
+ super().__init__()
282
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
283
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
284
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
285
+
286
+ def forward(self, hidden_states, input_tensor):
287
+ hidden_states = self.dense(hidden_states)
288
+ hidden_states = self.dropout(hidden_states)
289
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
290
+ return hidden_states
291
+
292
+
293
+ class BertAttention(nn.Module):
294
+ def __init__(self, config, is_cross_attention=False):
295
+ super().__init__()
296
+ self.self = BertSelfAttention(config, is_cross_attention)
297
+ self.output = BertSelfOutput(config)
298
+ self.pruned_heads = set()
299
+
300
+ def prune_heads(self, heads):
301
+ if len(heads) == 0:
302
+ return
303
+ heads, index = find_pruneable_heads_and_indices(
304
+ heads,
305
+ self.self.num_attention_heads,
306
+ self.self.attention_head_size,
307
+ self.pruned_heads,
308
+ )
309
+
310
+ # Prune linear layers
311
+ self.self.query = prune_linear_layer(self.self.query, index)
312
+ self.self.key = prune_linear_layer(self.self.key, index)
313
+ self.self.value = prune_linear_layer(self.self.value, index)
314
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
315
+
316
+ # Update hyper params and store pruned heads
317
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
318
+ self.self.all_head_size = (
319
+ self.self.attention_head_size * self.self.num_attention_heads
320
+ )
321
+ self.pruned_heads = self.pruned_heads.union(heads)
322
+
323
+ def forward(
324
+ self,
325
+ hidden_states,
326
+ attention_mask=None,
327
+ head_mask=None,
328
+ encoder_hidden_states=None,
329
+ encoder_attention_mask=None,
330
+ past_key_value=None,
331
+ output_attentions=False,
332
+ ):
333
+ self_outputs = self.self(
334
+ hidden_states,
335
+ attention_mask,
336
+ head_mask,
337
+ encoder_hidden_states,
338
+ encoder_attention_mask,
339
+ past_key_value,
340
+ output_attentions,
341
+ )
342
+ attention_output = self.output(self_outputs[0], hidden_states)
343
+
344
+ outputs = (attention_output,) + self_outputs[
345
+ 1:
346
+ ] # add attentions if we output them
347
+ return outputs
348
+
349
+
350
+ class BertIntermediate(nn.Module):
351
+ def __init__(self, config):
352
+ super().__init__()
353
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
354
+ if isinstance(config.hidden_act, str):
355
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
356
+ else:
357
+ self.intermediate_act_fn = config.hidden_act
358
+
359
+ def forward(self, hidden_states):
360
+ hidden_states = self.dense(hidden_states)
361
+ hidden_states = self.intermediate_act_fn(hidden_states)
362
+ return hidden_states
363
+
364
+
365
+ class BertOutput(nn.Module):
366
+ def __init__(self, config):
367
+ super().__init__()
368
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
369
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
370
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
371
+
372
+ def forward(self, hidden_states, input_tensor):
373
+ hidden_states = self.dense(hidden_states)
374
+ hidden_states = self.dropout(hidden_states)
375
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
376
+ return hidden_states
377
+
378
+
379
+ class BertLayer(nn.Module):
380
+ def __init__(self, config, layer_num):
381
+ super().__init__()
382
+ self.config = config
383
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
384
+ self.seq_len_dim = 1
385
+ self.attention = BertAttention(config)
386
+ self.layer_num = layer_num
387
+ if (
388
+ self.config.add_cross_attention
389
+ and layer_num % self.config.cross_attention_freq == 0
390
+ ):
391
+ self.crossattention = BertAttention(
392
+ config, is_cross_attention=self.config.add_cross_attention
393
+ )
394
+ self.has_cross_attention = True
395
+ else:
396
+ self.has_cross_attention = False
397
+ self.intermediate = BertIntermediate(config)
398
+ self.output = BertOutput(config)
399
+
400
+ self.intermediate_query = BertIntermediate(config)
401
+ self.output_query = BertOutput(config)
402
+
403
+ def forward(
404
+ self,
405
+ hidden_states,
406
+ attention_mask=None,
407
+ head_mask=None,
408
+ encoder_hidden_states=None,
409
+ encoder_attention_mask=None,
410
+ past_key_value=None,
411
+ output_attentions=False,
412
+ query_length=0,
413
+ ):
414
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
415
+ self_attn_past_key_value = (
416
+ past_key_value[:2] if past_key_value is not None else None
417
+ )
418
+ self_attention_outputs = self.attention(
419
+ hidden_states,
420
+ attention_mask,
421
+ head_mask,
422
+ output_attentions=output_attentions,
423
+ past_key_value=self_attn_past_key_value,
424
+ )
425
+ attention_output = self_attention_outputs[0]
426
+ outputs = self_attention_outputs[1:-1]
427
+
428
+ present_key_value = self_attention_outputs[-1]
429
+
430
+ if query_length > 0:
431
+ query_attention_output = attention_output[:, :query_length, :]
432
+
433
+ if self.has_cross_attention:
434
+ assert (
435
+ encoder_hidden_states is not None
436
+ ), "encoder_hidden_states must be given for cross-attention layers"
437
+ cross_attention_outputs = self.crossattention(
438
+ query_attention_output,
439
+ attention_mask,
440
+ head_mask,
441
+ encoder_hidden_states,
442
+ encoder_attention_mask,
443
+ output_attentions=output_attentions,
444
+ )
445
+ query_attention_output = cross_attention_outputs[0]
446
+ outputs = (
447
+ outputs + cross_attention_outputs[1:-1]
448
+ ) # add cross attentions if we output attention weights
449
+
450
+ layer_output = apply_chunking_to_forward(
451
+ self.feed_forward_chunk_query,
452
+ self.chunk_size_feed_forward,
453
+ self.seq_len_dim,
454
+ query_attention_output,
455
+ )
456
+ if attention_output.shape[1] > query_length:
457
+ layer_output_text = apply_chunking_to_forward(
458
+ self.feed_forward_chunk,
459
+ self.chunk_size_feed_forward,
460
+ self.seq_len_dim,
461
+ attention_output[:, query_length:, :],
462
+ )
463
+ layer_output = torch.cat([layer_output, layer_output_text], dim=1)
464
+ else:
465
+ layer_output = apply_chunking_to_forward(
466
+ self.feed_forward_chunk,
467
+ self.chunk_size_feed_forward,
468
+ self.seq_len_dim,
469
+ attention_output,
470
+ )
471
+ outputs = (layer_output,) + outputs
472
+
473
+ outputs = outputs + (present_key_value,)
474
+
475
+ return outputs
476
+
477
+ def feed_forward_chunk(self, attention_output):
478
+ intermediate_output = self.intermediate(attention_output)
479
+ layer_output = self.output(intermediate_output, attention_output)
480
+ return layer_output
481
+
482
+ def feed_forward_chunk_query(self, attention_output):
483
+ intermediate_output = self.intermediate_query(attention_output)
484
+ layer_output = self.output_query(intermediate_output, attention_output)
485
+ return layer_output
486
+
487
+
488
+ class BertEncoder(nn.Module):
489
+ def __init__(self, config):
490
+ super().__init__()
491
+ self.config = config
492
+ self.layer = nn.ModuleList(
493
+ [BertLayer(config, i) for i in range(config.num_hidden_layers)]
494
+ )
495
+
496
+ def forward(
497
+ self,
498
+ hidden_states,
499
+ attention_mask=None,
500
+ head_mask=None,
501
+ encoder_hidden_states=None,
502
+ encoder_attention_mask=None,
503
+ past_key_values=None,
504
+ use_cache=None,
505
+ output_attentions=False,
506
+ output_hidden_states=False,
507
+ return_dict=True,
508
+ query_length=0,
509
+ ):
510
+ all_hidden_states = () if output_hidden_states else None
511
+ all_self_attentions = () if output_attentions else None
512
+ all_cross_attentions = (
513
+ () if output_attentions and self.config.add_cross_attention else None
514
+ )
515
+
516
+ next_decoder_cache = () if use_cache else None
517
+
518
+ for i in range(self.config.num_hidden_layers):
519
+ layer_module = self.layer[i]
520
+ if output_hidden_states:
521
+ all_hidden_states = all_hidden_states + (hidden_states,)
522
+
523
+ layer_head_mask = head_mask[i] if head_mask is not None else None
524
+ past_key_value = past_key_values[i] if past_key_values is not None else None
525
+
526
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
527
+
528
+ if use_cache:
529
+ logger.warn(
530
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
531
+ )
532
+ use_cache = False
533
+
534
+ def create_custom_forward(module):
535
+ def custom_forward(*inputs):
536
+ return module(
537
+ *inputs, past_key_value, output_attentions, query_length
538
+ )
539
+
540
+ return custom_forward
541
+
542
+ layer_outputs = torch.utils.checkpoint.checkpoint(
543
+ create_custom_forward(layer_module),
544
+ hidden_states,
545
+ attention_mask,
546
+ layer_head_mask,
547
+ encoder_hidden_states,
548
+ encoder_attention_mask,
549
+ )
550
+ else:
551
+ layer_outputs = layer_module(
552
+ hidden_states,
553
+ attention_mask,
554
+ layer_head_mask,
555
+ encoder_hidden_states,
556
+ encoder_attention_mask,
557
+ past_key_value,
558
+ output_attentions,
559
+ query_length,
560
+ )
561
+
562
+ hidden_states = layer_outputs[0]
563
+ if use_cache:
564
+ next_decoder_cache += (layer_outputs[-1],)
565
+ if output_attentions:
566
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
567
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
568
+
569
+ if output_hidden_states:
570
+ all_hidden_states = all_hidden_states + (hidden_states,)
571
+
572
+ if not return_dict:
573
+ return tuple(
574
+ v
575
+ for v in [
576
+ hidden_states,
577
+ next_decoder_cache,
578
+ all_hidden_states,
579
+ all_self_attentions,
580
+ all_cross_attentions,
581
+ ]
582
+ if v is not None
583
+ )
584
+ return BaseModelOutputWithPastAndCrossAttentions(
585
+ last_hidden_state=hidden_states,
586
+ past_key_values=next_decoder_cache,
587
+ hidden_states=all_hidden_states,
588
+ attentions=all_self_attentions,
589
+ cross_attentions=all_cross_attentions,
590
+ )
591
+
592
+
593
+ class BertPooler(nn.Module):
594
+ def __init__(self, config):
595
+ super().__init__()
596
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
597
+ self.activation = nn.Tanh()
598
+
599
+ def forward(self, hidden_states):
600
+ # We "pool" the model by simply taking the hidden state corresponding
601
+ # to the first token.
602
+ first_token_tensor = hidden_states[:, 0]
603
+ pooled_output = self.dense(first_token_tensor)
604
+ pooled_output = self.activation(pooled_output)
605
+ return pooled_output
606
+
607
+
608
+ class BertPredictionHeadTransform(nn.Module):
609
+ def __init__(self, config):
610
+ super().__init__()
611
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
612
+ if isinstance(config.hidden_act, str):
613
+ self.transform_act_fn = ACT2FN[config.hidden_act]
614
+ else:
615
+ self.transform_act_fn = config.hidden_act
616
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
617
+
618
+ def forward(self, hidden_states):
619
+ hidden_states = self.dense(hidden_states)
620
+ hidden_states = self.transform_act_fn(hidden_states)
621
+ hidden_states = self.LayerNorm(hidden_states)
622
+ return hidden_states
623
+
624
+
625
+ class BertLMPredictionHead(nn.Module):
626
+ def __init__(self, config):
627
+ super().__init__()
628
+ self.transform = BertPredictionHeadTransform(config)
629
+
630
+ # The output weights are the same as the input embeddings, but there is
631
+ # an output-only bias for each token.
632
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
633
+
634
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
635
+
636
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
637
+ self.decoder.bias = self.bias
638
+
639
+ def forward(self, hidden_states):
640
+ hidden_states = self.transform(hidden_states)
641
+ hidden_states = self.decoder(hidden_states)
642
+ return hidden_states
643
+
644
+
645
+ class BertOnlyMLMHead(nn.Module):
646
+ def __init__(self, config):
647
+ super().__init__()
648
+ self.predictions = BertLMPredictionHead(config)
649
+
650
+ def forward(self, sequence_output):
651
+ prediction_scores = self.predictions(sequence_output)
652
+ return prediction_scores
653
+
654
+
655
+ class BertPreTrainedModel(PreTrainedModel):
656
+ """
657
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
658
+ models.
659
+ """
660
+
661
+ config_class = BertConfig
662
+ base_model_prefix = "bert"
663
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
664
+
665
+ def _init_weights(self, module):
666
+ """Initialize the weights"""
667
+ if isinstance(module, (nn.Linear, nn.Embedding)):
668
+ # Slightly different from the TF version which uses truncated_normal for initialization
669
+ # cf https://github.com/pytorch/pytorch/pull/5617
670
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
671
+ elif isinstance(module, nn.LayerNorm):
672
+ module.bias.data.zero_()
673
+ module.weight.data.fill_(1.0)
674
+ if isinstance(module, nn.Linear) and module.bias is not None:
675
+ module.bias.data.zero_()
676
+
677
+
678
+ class BertModel(BertPreTrainedModel):
679
+ """
680
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
681
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
682
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
683
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
684
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
685
+ input to the forward pass.
686
+ """
687
+
688
+ def __init__(self, config, add_pooling_layer=False):
689
+ super().__init__(config)
690
+ self.config = config
691
+
692
+ self.embeddings = BertEmbeddings(config)
693
+
694
+ self.encoder = BertEncoder(config)
695
+
696
+ self.pooler = BertPooler(config) if add_pooling_layer else None
697
+
698
+ self.init_weights()
699
+
700
+ def get_input_embeddings(self):
701
+ return self.embeddings.word_embeddings
702
+
703
+ def set_input_embeddings(self, value):
704
+ self.embeddings.word_embeddings = value
705
+
706
+ def _prune_heads(self, heads_to_prune):
707
+ """
708
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
709
+ class PreTrainedModel
710
+ """
711
+ for layer, heads in heads_to_prune.items():
712
+ self.encoder.layer[layer].attention.prune_heads(heads)
713
+
714
+ def get_extended_attention_mask(
715
+ self,
716
+ attention_mask: Tensor,
717
+ input_shape: Tuple[int],
718
+ device: device,
719
+ is_decoder: bool,
720
+ has_query: bool = False,
721
+ ) -> Tensor:
722
+ """
723
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
724
+
725
+ Arguments:
726
+ attention_mask (:obj:`torch.Tensor`):
727
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
728
+ input_shape (:obj:`Tuple[int]`):
729
+ The shape of the input to the model.
730
+ device: (:obj:`torch.device`):
731
+ The device of the input to the model.
732
+
733
+ Returns:
734
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
735
+ """
736
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
737
+ # ourselves in which case we just need to make it broadcastable to all heads.
738
+ if attention_mask.dim() == 3:
739
+ extended_attention_mask = attention_mask[:, None, :, :]
740
+ elif attention_mask.dim() == 2:
741
+ # Provided a padding mask of dimensions [batch_size, seq_length]
742
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
743
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
744
+ if is_decoder:
745
+ batch_size, seq_length = input_shape
746
+
747
+ seq_ids = torch.arange(seq_length, device=device)
748
+ causal_mask = (
749
+ seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
750
+ <= seq_ids[None, :, None]
751
+ )
752
+
753
+ # add a prefix ones mask to the causal mask
754
+ # causal and attention masks must have same type with pytorch version < 1.3
755
+ causal_mask = causal_mask.to(attention_mask.dtype)
756
+
757
+ if causal_mask.shape[1] < attention_mask.shape[1]:
758
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
759
+ if has_query: # UniLM style attention mask
760
+ causal_mask = torch.cat(
761
+ [
762
+ torch.zeros(
763
+ (batch_size, prefix_seq_len, seq_length),
764
+ device=device,
765
+ dtype=causal_mask.dtype,
766
+ ),
767
+ causal_mask,
768
+ ],
769
+ axis=1,
770
+ )
771
+ causal_mask = torch.cat(
772
+ [
773
+ torch.ones(
774
+ (batch_size, causal_mask.shape[1], prefix_seq_len),
775
+ device=device,
776
+ dtype=causal_mask.dtype,
777
+ ),
778
+ causal_mask,
779
+ ],
780
+ axis=-1,
781
+ )
782
+ extended_attention_mask = (
783
+ causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
784
+ )
785
+ else:
786
+ extended_attention_mask = attention_mask[:, None, None, :]
787
+ else:
788
+ raise ValueError(
789
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
790
+ input_shape, attention_mask.shape
791
+ )
792
+ )
793
+
794
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
795
+ # masked positions, this operation will create a tensor which is 0.0 for
796
+ # positions we want to attend and -10000.0 for masked positions.
797
+ # Since we are adding it to the raw scores before the softmax, this is
798
+ # effectively the same as removing these entirely.
799
+ extended_attention_mask = extended_attention_mask.to(
800
+ dtype=self.dtype
801
+ ) # fp16 compatibility
802
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
803
+ return extended_attention_mask
804
+
805
+ def forward(
806
+ self,
807
+ input_ids=None,
808
+ attention_mask=None,
809
+ position_ids=None,
810
+ head_mask=None,
811
+ query_embeds=None,
812
+ encoder_hidden_states=None,
813
+ encoder_attention_mask=None,
814
+ past_key_values=None,
815
+ use_cache=None,
816
+ output_attentions=None,
817
+ output_hidden_states=None,
818
+ return_dict=None,
819
+ is_decoder=False,
820
+ ):
821
+ r"""
822
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
823
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
824
+ the model is configured as a decoder.
825
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
826
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
827
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
828
+ - 1 for tokens that are **not masked**,
829
+ - 0 for tokens that are **masked**.
830
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
831
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
832
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
833
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
834
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
835
+ use_cache (:obj:`bool`, `optional`):
836
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
837
+ decoding (see :obj:`past_key_values`).
838
+ """
839
+ output_attentions = (
840
+ output_attentions
841
+ if output_attentions is not None
842
+ else self.config.output_attentions
843
+ )
844
+ output_hidden_states = (
845
+ output_hidden_states
846
+ if output_hidden_states is not None
847
+ else self.config.output_hidden_states
848
+ )
849
+ return_dict = (
850
+ return_dict if return_dict is not None else self.config.use_return_dict
851
+ )
852
+
853
+ # use_cache = use_cache if use_cache is not None else self.config.use_cache
854
+
855
+ if input_ids is None:
856
+ assert (
857
+ query_embeds is not None
858
+ ), "You have to specify query_embeds when input_ids is None"
859
+
860
+ # past_key_values_length
861
+ past_key_values_length = (
862
+ past_key_values[0][0].shape[2] - self.config.query_length
863
+ if past_key_values is not None
864
+ else 0
865
+ )
866
+
867
+ query_length = query_embeds.shape[1] if query_embeds is not None else 0
868
+
869
+ embedding_output = self.embeddings(
870
+ input_ids=input_ids,
871
+ position_ids=position_ids,
872
+ query_embeds=query_embeds,
873
+ past_key_values_length=past_key_values_length,
874
+ )
875
+
876
+ input_shape = embedding_output.size()[:-1]
877
+ batch_size, seq_length = input_shape
878
+ device = embedding_output.device
879
+
880
+ if attention_mask is None:
881
+ attention_mask = torch.ones(
882
+ ((batch_size, seq_length + past_key_values_length)), device=device
883
+ )
884
+
885
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
886
+ # ourselves in which case we just need to make it broadcastable to all heads.
887
+ if is_decoder:
888
+ extended_attention_mask = self.get_extended_attention_mask(
889
+ attention_mask,
890
+ input_ids.shape,
891
+ device,
892
+ is_decoder,
893
+ has_query=(query_embeds is not None),
894
+ )
895
+ else:
896
+ extended_attention_mask = self.get_extended_attention_mask(
897
+ attention_mask, input_shape, device, is_decoder
898
+ )
899
+
900
+ # If a 2D or 3D attention mask is provided for the cross-attention
901
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
902
+ if encoder_hidden_states is not None:
903
+ if type(encoder_hidden_states) == list:
904
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
905
+ 0
906
+ ].size()
907
+ else:
908
+ (
909
+ encoder_batch_size,
910
+ encoder_sequence_length,
911
+ _,
912
+ ) = encoder_hidden_states.size()
913
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
914
+
915
+ if type(encoder_attention_mask) == list:
916
+ encoder_extended_attention_mask = [
917
+ self.invert_attention_mask(mask) for mask in encoder_attention_mask
918
+ ]
919
+ elif encoder_attention_mask is None:
920
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
921
+ encoder_extended_attention_mask = self.invert_attention_mask(
922
+ encoder_attention_mask
923
+ )
924
+ else:
925
+ encoder_extended_attention_mask = self.invert_attention_mask(
926
+ encoder_attention_mask
927
+ )
928
+ else:
929
+ encoder_extended_attention_mask = None
930
+
931
+ # Prepare head mask if needed
932
+ # 1.0 in head_mask indicate we keep the head
933
+ # attention_probs has shape bsz x n_heads x N x N
934
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
935
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
936
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
937
+
938
+ encoder_outputs = self.encoder(
939
+ embedding_output,
940
+ attention_mask=extended_attention_mask,
941
+ head_mask=head_mask,
942
+ encoder_hidden_states=encoder_hidden_states,
943
+ encoder_attention_mask=encoder_extended_attention_mask,
944
+ past_key_values=past_key_values,
945
+ use_cache=use_cache,
946
+ output_attentions=output_attentions,
947
+ output_hidden_states=output_hidden_states,
948
+ return_dict=return_dict,
949
+ query_length=query_length,
950
+ )
951
+ sequence_output = encoder_outputs[0]
952
+ pooled_output = (
953
+ self.pooler(sequence_output) if self.pooler is not None else None
954
+ )
955
+
956
+ if not return_dict:
957
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
958
+
959
+ return BaseModelOutputWithPoolingAndCrossAttentions(
960
+ last_hidden_state=sequence_output,
961
+ pooler_output=pooled_output,
962
+ past_key_values=encoder_outputs.past_key_values,
963
+ hidden_states=encoder_outputs.hidden_states,
964
+ attentions=encoder_outputs.attentions,
965
+ cross_attentions=encoder_outputs.cross_attentions,
966
+ )
967
+
968
+
969
+ class BertLMHeadModel(BertPreTrainedModel):
970
+
971
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
972
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
973
+
974
+ def __init__(self, config):
975
+ super().__init__(config)
976
+
977
+ self.bert = BertModel(config, add_pooling_layer=False)
978
+ self.cls = BertOnlyMLMHead(config)
979
+
980
+ self.init_weights()
981
+
982
+ def get_output_embeddings(self):
983
+ return self.cls.predictions.decoder
984
+
985
+ def set_output_embeddings(self, new_embeddings):
986
+ self.cls.predictions.decoder = new_embeddings
987
+
988
+ def forward(
989
+ self,
990
+ input_ids=None,
991
+ attention_mask=None,
992
+ position_ids=None,
993
+ head_mask=None,
994
+ query_embeds=None,
995
+ encoder_hidden_states=None,
996
+ encoder_attention_mask=None,
997
+ labels=None,
998
+ past_key_values=None,
999
+ use_cache=True,
1000
+ output_attentions=None,
1001
+ output_hidden_states=None,
1002
+ return_dict=None,
1003
+ return_logits=False,
1004
+ is_decoder=True,
1005
+ reduction="mean",
1006
+ ):
1007
+ r"""
1008
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
1009
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1010
+ the model is configured as a decoder.
1011
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1012
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1013
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
1014
+ - 1 for tokens that are **not masked**,
1015
+ - 0 for tokens that are **masked**.
1016
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1017
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1018
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
1019
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
1020
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1021
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1022
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
1023
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
1024
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
1025
+ use_cache (:obj:`bool`, `optional`):
1026
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
1027
+ decoding (see :obj:`past_key_values`).
1028
+ Returns:
1029
+ Example::
1030
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
1031
+ >>> import torch
1032
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
1033
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
1034
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
1035
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1036
+ >>> outputs = model(**inputs)
1037
+ >>> prediction_logits = outputs.logits
1038
+ """
1039
+ return_dict = (
1040
+ return_dict if return_dict is not None else self.config.use_return_dict
1041
+ )
1042
+ if labels is not None:
1043
+ use_cache = False
1044
+ if past_key_values is not None:
1045
+ query_embeds = None
1046
+
1047
+ outputs = self.bert(
1048
+ input_ids,
1049
+ attention_mask=attention_mask,
1050
+ position_ids=position_ids,
1051
+ head_mask=head_mask,
1052
+ query_embeds=query_embeds,
1053
+ encoder_hidden_states=encoder_hidden_states,
1054
+ encoder_attention_mask=encoder_attention_mask,
1055
+ past_key_values=past_key_values,
1056
+ use_cache=use_cache,
1057
+ output_attentions=output_attentions,
1058
+ output_hidden_states=output_hidden_states,
1059
+ return_dict=return_dict,
1060
+ is_decoder=is_decoder,
1061
+ )
1062
+
1063
+ sequence_output = outputs[0]
1064
+ if query_embeds is not None:
1065
+ sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
1066
+
1067
+ prediction_scores = self.cls(sequence_output)
1068
+
1069
+ if return_logits:
1070
+ return prediction_scores[:, :-1, :].contiguous()
1071
+
1072
+ lm_loss = None
1073
+ if labels is not None:
1074
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1075
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
1076
+ labels = labels[:, 1:].contiguous()
1077
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
1078
+ lm_loss = loss_fct(
1079
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
1080
+ labels.view(-1),
1081
+ )
1082
+ if reduction == "none":
1083
+ lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
1084
+
1085
+ if not return_dict:
1086
+ output = (prediction_scores,) + outputs[2:]
1087
+ return ((lm_loss,) + output) if lm_loss is not None else output
1088
+
1089
+ return CausalLMOutputWithCrossAttentions(
1090
+ loss=lm_loss,
1091
+ logits=prediction_scores,
1092
+ past_key_values=outputs.past_key_values,
1093
+ hidden_states=outputs.hidden_states,
1094
+ attentions=outputs.attentions,
1095
+ cross_attentions=outputs.cross_attentions,
1096
+ )
1097
+
1098
+ def prepare_inputs_for_generation(
1099
+ self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
1100
+ ):
1101
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1102
+ if attention_mask is None:
1103
+ attention_mask = input_ids.new_ones(input_ids.shape)
1104
+ query_mask = input_ids.new_ones(query_embeds.shape[:-1])
1105
+ attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
1106
+
1107
+ # cut decoder_input_ids if past is used
1108
+ if past is not None:
1109
+ input_ids = input_ids[:, -1:]
1110
+
1111
+ return {
1112
+ "input_ids": input_ids,
1113
+ "query_embeds": query_embeds,
1114
+ "attention_mask": attention_mask,
1115
+ "past_key_values": past,
1116
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
1117
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
1118
+ "is_decoder": True,
1119
+ }
1120
+
1121
+ def _reorder_cache(self, past, beam_idx):
1122
+ reordered_past = ()
1123
+ for layer_past in past:
1124
+ reordered_past += (
1125
+ tuple(
1126
+ past_state.index_select(0, beam_idx) for past_state in layer_past
1127
+ ),
1128
+ )
1129
+ return reordered_past
1130
+
1131
+
1132
+ class BertForMaskedLM(BertPreTrainedModel):
1133
+
1134
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
1135
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
1136
+
1137
+ def __init__(self, config):
1138
+ super().__init__(config)
1139
+
1140
+ self.bert = BertModel(config, add_pooling_layer=False)
1141
+ self.cls = BertOnlyMLMHead(config)
1142
+
1143
+ self.init_weights()
1144
+
1145
+ def get_output_embeddings(self):
1146
+ return self.cls.predictions.decoder
1147
+
1148
+ def set_output_embeddings(self, new_embeddings):
1149
+ self.cls.predictions.decoder = new_embeddings
1150
+
1151
+ def forward(
1152
+ self,
1153
+ input_ids=None,
1154
+ attention_mask=None,
1155
+ position_ids=None,
1156
+ head_mask=None,
1157
+ query_embeds=None,
1158
+ encoder_hidden_states=None,
1159
+ encoder_attention_mask=None,
1160
+ labels=None,
1161
+ output_attentions=None,
1162
+ output_hidden_states=None,
1163
+ return_dict=None,
1164
+ return_logits=False,
1165
+ is_decoder=False,
1166
+ ):
1167
+ r"""
1168
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1169
+ Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
1170
+ config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
1171
+ (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
1172
+ """
1173
+
1174
+ return_dict = (
1175
+ return_dict if return_dict is not None else self.config.use_return_dict
1176
+ )
1177
+
1178
+ outputs = self.bert(
1179
+ input_ids,
1180
+ attention_mask=attention_mask,
1181
+ position_ids=position_ids,
1182
+ head_mask=head_mask,
1183
+ query_embeds=query_embeds,
1184
+ encoder_hidden_states=encoder_hidden_states,
1185
+ encoder_attention_mask=encoder_attention_mask,
1186
+ output_attentions=output_attentions,
1187
+ output_hidden_states=output_hidden_states,
1188
+ return_dict=return_dict,
1189
+ is_decoder=is_decoder,
1190
+ )
1191
+
1192
+ if query_embeds is not None:
1193
+ sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
1194
+ prediction_scores = self.cls(sequence_output)
1195
+
1196
+ if return_logits:
1197
+ return prediction_scores
1198
+
1199
+ masked_lm_loss = None
1200
+ if labels is not None:
1201
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1202
+ masked_lm_loss = loss_fct(
1203
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1204
+ )
1205
+
1206
+ if not return_dict:
1207
+ output = (prediction_scores,) + outputs[2:]
1208
+ return (
1209
+ ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1210
+ )
1211
+
1212
+ return MaskedLMOutput(
1213
+ loss=masked_lm_loss,
1214
+ logits=prediction_scores,
1215
+ hidden_states=outputs.hidden_states,
1216
+ attentions=outputs.attentions,
1217
+ )
models/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .salmonn import SALMONN
16
+
17
+ def load_model(config):
18
+ return SALMONN.from_config(config)
models/beats/BEATs.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
3
+ # Github source: https://github.com/microsoft/unilm/tree/master/beats
4
+ # Copyright (c) 2022 Microsoft
5
+ # Licensed under The MIT License [see LICENSE for details]
6
+ # Based on fairseq code bases
7
+ # https://github.com/pytorch/fairseq
8
+ # --------------------------------------------------------
9
+
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.nn import LayerNorm
14
+ import torchaudio.compliance.kaldi as ta_kaldi
15
+
16
+ from .backbone import (
17
+ TransformerEncoder,
18
+ )
19
+
20
+ import logging
21
+ from typing import Optional
22
+
23
+ logger = logging.getLogger(__name__)
24
+
25
+
26
+ class BEATsConfig:
27
+ def __init__(self, cfg=None):
28
+ self.input_patch_size: int = -1 # path size of patch embedding
29
+ self.embed_dim: int = 512 # patch embedding dimension
30
+ self.conv_bias: bool = False # include bias in conv encoder
31
+
32
+ self.encoder_layers: int = 12 # num encoder layers in the transformer
33
+ self.encoder_embed_dim: int = 768 # encoder embedding dimension
34
+ self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
35
+ self.encoder_attention_heads: int = 12 # num encoder attention heads
36
+ self.activation_fn: str = "gelu" # activation function to use
37
+
38
+ self.layer_wise_gradient_decay_ratio: float = 1.0 # ratio for layer-wise gradient decay
39
+ self.layer_norm_first: bool = False # apply layernorm first in the transformer
40
+ self.deep_norm: bool = False # apply deep_norm first in the transformer
41
+
42
+ # dropouts
43
+ self.dropout: float = 0.1 # dropout probability for the transformer
44
+ self.attention_dropout: float = 0.1 # dropout probability for attention weights
45
+ self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
46
+ self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
47
+ self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
48
+
49
+ # positional embeddings
50
+ self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
51
+ self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
52
+
53
+ # relative position embedding
54
+ self.relative_position_embedding: bool = False # apply relative position embedding
55
+ self.num_buckets: int = 320 # number of buckets for relative position embedding
56
+ self.max_distance: int = 1280 # maximum distance for relative position embedding
57
+ self.gru_rel_pos: bool = False # apply gated relative position embedding
58
+
59
+ # label predictor
60
+ self.finetuned_model: bool = False # whether the model is a fine-tuned model.
61
+ self.predictor_dropout: float = 0.1 # dropout probability for the predictor
62
+ self.predictor_class: int = 527 # target class number for the predictor
63
+
64
+ if cfg is not None:
65
+ self.update(cfg)
66
+
67
+ def update(self, cfg: dict):
68
+ self.__dict__.update(cfg)
69
+
70
+
71
+ class BEATs(nn.Module):
72
+ def __init__(
73
+ self,
74
+ cfg: BEATsConfig,
75
+ ) -> None:
76
+ super().__init__()
77
+ logger.info(f"BEATs Config: {cfg.__dict__}")
78
+
79
+ self.cfg = cfg
80
+
81
+ self.embed = cfg.embed_dim
82
+ self.post_extract_proj = (
83
+ nn.Linear(self.embed, cfg.encoder_embed_dim)
84
+ if self.embed != cfg.encoder_embed_dim
85
+ else None
86
+ )
87
+
88
+ self.input_patch_size = cfg.input_patch_size
89
+ self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
90
+ bias=cfg.conv_bias)
91
+
92
+ self.dropout_input = nn.Dropout(cfg.dropout_input)
93
+
94
+ assert not cfg.deep_norm or not cfg.layer_norm_first
95
+ self.encoder = TransformerEncoder(cfg)
96
+ self.layer_norm = LayerNorm(self.embed)
97
+
98
+ if cfg.finetuned_model:
99
+ self.predictor_dropout = nn.Dropout(cfg.predictor_dropout)
100
+ self.predictor = nn.Linear(cfg.encoder_embed_dim, cfg.predictor_class)
101
+ else:
102
+ self.predictor = None
103
+
104
+ def forward_padding_mask(
105
+ self,
106
+ features: torch.Tensor,
107
+ padding_mask: torch.Tensor,
108
+ ) -> torch.Tensor:
109
+ extra = padding_mask.size(1) % features.size(1)
110
+ if extra > 0:
111
+ padding_mask = padding_mask[:, :-extra]
112
+ padding_mask = padding_mask.view(
113
+ padding_mask.size(0), features.size(1), -1
114
+ )
115
+ padding_mask = padding_mask.all(-1)
116
+ return padding_mask
117
+
118
+ def preprocess(
119
+ self,
120
+ source: torch.Tensor,
121
+ fbank_mean: float = 15.41663,
122
+ fbank_std: float = 6.55582,
123
+ ) -> torch.Tensor:
124
+ fbanks = []
125
+ for waveform in source:
126
+ waveform = waveform.unsqueeze(0) * 2 ** 15
127
+ fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
128
+ fbanks.append(fbank)
129
+ fbank = torch.stack(fbanks, dim=0)
130
+ fbank = (fbank - fbank_mean) / (2 * fbank_std)
131
+ return fbank
132
+
133
+ def extract_features(
134
+ self,
135
+ source: torch.Tensor,
136
+ padding_mask: Optional[torch.Tensor] = None,
137
+ fbank_mean: float = 15.41663,
138
+ fbank_std: float = 6.55582,
139
+ feature_only=False,
140
+ ):
141
+ fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std).to(torch.float32)
142
+
143
+ if padding_mask is not None:
144
+ padding_mask = self.forward_padding_mask(fbank, padding_mask)
145
+
146
+ fbank = fbank.unsqueeze(1)
147
+ features = self.patch_embedding(fbank)
148
+ features = features.reshape(features.shape[0], features.shape[1], -1)
149
+ features = features.transpose(1, 2)
150
+ features = self.layer_norm(features)
151
+
152
+ if padding_mask is not None:
153
+ padding_mask = self.forward_padding_mask(features, padding_mask)
154
+
155
+ if self.post_extract_proj is not None:
156
+ features = self.post_extract_proj(features)
157
+
158
+ x = self.dropout_input(features)
159
+
160
+ x, layer_results = self.encoder(
161
+ x,
162
+ padding_mask=padding_mask,
163
+ )
164
+
165
+ if not feature_only and self.predictor is not None:
166
+ x = self.predictor_dropout(x)
167
+ logits = self.predictor(x)
168
+
169
+ if padding_mask is not None and padding_mask.any():
170
+ logits[padding_mask] = 0
171
+ logits = logits.sum(dim=1)
172
+ logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(logits)
173
+ else:
174
+ logits = logits.mean(dim=1)
175
+
176
+ lprobs = torch.sigmoid(logits)
177
+
178
+ return lprobs, padding_mask
179
+ else:
180
+ return x, padding_mask
models/beats/Tokenizers.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
3
+ # Github source: https://github.com/microsoft/unilm/tree/master/beats
4
+ # Copyright (c) 2022 Microsoft
5
+ # Licensed under The MIT License [see LICENSE for details]
6
+ # Based on fairseq code bases
7
+ # https://github.com/pytorch/fairseq
8
+ # --------------------------------------------------------
9
+
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.nn import LayerNorm
14
+ import torchaudio.compliance.kaldi as ta_kaldi
15
+
16
+ from .backbone import (
17
+ TransformerEncoder,
18
+ )
19
+ from .quantizer import (
20
+ NormEMAVectorQuantizer,
21
+ )
22
+
23
+ import logging
24
+ from typing import Optional
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+
29
+ class TokenizersConfig:
30
+ def __init__(self, cfg=None):
31
+ self.input_patch_size: int = -1 # path size of patch embedding
32
+ self.embed_dim: int = 512 # patch embedding dimension
33
+ self.conv_bias: bool = False # include bias in conv encoder
34
+
35
+ self.encoder_layers: int = 12 # num encoder layers in the transformer
36
+ self.encoder_embed_dim: int = 768 # encoder embedding dimension
37
+ self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
38
+ self.encoder_attention_heads: int = 12 # num encoder attention heads
39
+ self.activation_fn: str = "gelu" # activation function to use
40
+
41
+ self.layer_norm_first: bool = False # apply layernorm first in the transformer
42
+ self.deep_norm: bool = False # apply deep_norm first in the transformer
43
+
44
+ # dropouts
45
+ self.dropout: float = 0.1 # dropout probability for the transformer
46
+ self.attention_dropout: float = 0.1 # dropout probability for attention weights
47
+ self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
48
+ self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
49
+ self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
50
+
51
+ # positional embeddings
52
+ self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
53
+ self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
54
+
55
+ # relative position embedding
56
+ self.relative_position_embedding: bool = False # apply relative position embedding
57
+ self.num_buckets: int = 320 # number of buckets for relative position embedding
58
+ self.max_distance: int = 1280 # maximum distance for relative position embedding
59
+ self.gru_rel_pos: bool = False # apply gated relative position embedding
60
+
61
+ # quantizer
62
+ self.quant_n: int = 1024 # codebook number in quantizer
63
+ self.quant_dim: int = 256 # codebook dimension in quantizer
64
+
65
+ if cfg is not None:
66
+ self.update(cfg)
67
+
68
+ def update(self, cfg: dict):
69
+ self.__dict__.update(cfg)
70
+
71
+
72
+ class Tokenizers(nn.Module):
73
+ def __init__(
74
+ self,
75
+ cfg: TokenizersConfig,
76
+ ) -> None:
77
+ super().__init__()
78
+ logger.info(f"Tokenizers Config: {cfg.__dict__}")
79
+
80
+ self.cfg = cfg
81
+
82
+ self.embed = cfg.embed_dim
83
+ self.post_extract_proj = (
84
+ nn.Linear(self.embed, cfg.encoder_embed_dim)
85
+ if self.embed != cfg.encoder_embed_dim
86
+ else None
87
+ )
88
+
89
+ self.input_patch_size = cfg.input_patch_size
90
+ self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
91
+ bias=cfg.conv_bias)
92
+
93
+ self.dropout_input = nn.Dropout(cfg.dropout_input)
94
+
95
+ assert not cfg.deep_norm or not cfg.layer_norm_first
96
+ self.encoder = TransformerEncoder(cfg)
97
+ self.layer_norm = LayerNorm(self.embed)
98
+
99
+ self.quantize = NormEMAVectorQuantizer(
100
+ n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99,
101
+ )
102
+ self.quant_n = cfg.quant_n
103
+ self.quantize_layer = nn.Sequential(
104
+ nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim),
105
+ nn.Tanh(),
106
+ nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize
107
+ )
108
+
109
+ def forward_padding_mask(
110
+ self,
111
+ features: torch.Tensor,
112
+ padding_mask: torch.Tensor,
113
+ ) -> torch.Tensor:
114
+ extra = padding_mask.size(1) % features.size(1)
115
+ if extra > 0:
116
+ padding_mask = padding_mask[:, :-extra]
117
+ padding_mask = padding_mask.view(
118
+ padding_mask.size(0), features.size(1), -1
119
+ )
120
+ padding_mask = padding_mask.all(-1)
121
+ return padding_mask
122
+
123
+ def preprocess(
124
+ self,
125
+ source: torch.Tensor,
126
+ fbank_mean: float = 15.41663,
127
+ fbank_std: float = 6.55582,
128
+ ) -> torch.Tensor:
129
+ fbanks = []
130
+ for waveform in source:
131
+ waveform = waveform.unsqueeze(0) * 2 ** 15
132
+ fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
133
+ fbanks.append(fbank)
134
+ fbank = torch.stack(fbanks, dim=0)
135
+ fbank = (fbank - fbank_mean) / (2 * fbank_std)
136
+ return fbank
137
+
138
+ def extract_labels(
139
+ self,
140
+ source: torch.Tensor,
141
+ padding_mask: Optional[torch.Tensor] = None,
142
+ fbank_mean: float = 15.41663,
143
+ fbank_std: float = 6.55582,
144
+ ):
145
+ fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std)
146
+
147
+ if padding_mask is not None:
148
+ padding_mask = self.forward_padding_mask(fbank, padding_mask)
149
+
150
+ fbank = fbank.unsqueeze(1)
151
+ features = self.patch_embedding(fbank)
152
+ features = features.reshape(features.shape[0], features.shape[1], -1)
153
+ features = features.transpose(1, 2)
154
+ features = self.layer_norm(features)
155
+
156
+ if padding_mask is not None:
157
+ padding_mask = self.forward_padding_mask(features, padding_mask)
158
+
159
+ if self.post_extract_proj is not None:
160
+ features = self.post_extract_proj(features)
161
+
162
+ x = self.dropout_input(features)
163
+
164
+ x, layer_results = self.encoder(
165
+ x,
166
+ padding_mask=padding_mask,
167
+ )
168
+
169
+ quantize_input = self.quantize_layer(x)
170
+ quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input)
171
+
172
+ return embed_ind
models/beats/__init__.py ADDED
File without changes
models/beats/backbone.py ADDED
@@ -0,0 +1,783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
3
+ # Github source: https://github.com/microsoft/unilm/tree/master/beats
4
+ # Copyright (c) 2022 Microsoft
5
+ # Licensed under The MIT License [see LICENSE for details]
6
+ # Based on fairseq code bases
7
+ # https://github.com/pytorch/fairseq
8
+ # --------------------------------------------------------
9
+
10
+ import math
11
+ import numpy as np
12
+ from typing import Dict, Optional, Tuple
13
+ import torch
14
+ from torch import Tensor, nn
15
+ import torch.nn.functional as F
16
+ from torch.nn import LayerNorm, Parameter
17
+ from .modules import (
18
+ GradMultiply,
19
+ SamePad,
20
+ get_activation_fn,
21
+ GLU_Linear,
22
+ quant_noise,
23
+ )
24
+
25
+
26
+ class TransformerEncoder(nn.Module):
27
+ def __init__(self, args):
28
+ super().__init__()
29
+
30
+ self.dropout = args.dropout
31
+ self.embedding_dim = args.encoder_embed_dim
32
+
33
+ self.pos_conv = nn.Conv1d(
34
+ self.embedding_dim,
35
+ self.embedding_dim,
36
+ kernel_size=args.conv_pos,
37
+ padding=args.conv_pos // 2,
38
+ groups=args.conv_pos_groups,
39
+ )
40
+ dropout = 0
41
+ std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
42
+ nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
43
+ nn.init.constant_(self.pos_conv.bias, 0)
44
+
45
+ self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
46
+ self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
47
+
48
+ if hasattr(args, "relative_position_embedding"):
49
+ self.relative_position_embedding = args.relative_position_embedding
50
+ self.num_buckets = args.num_buckets
51
+ self.max_distance = args.max_distance
52
+ else:
53
+ self.relative_position_embedding = False
54
+ self.num_buckets = 0
55
+ self.max_distance = 0
56
+
57
+ self.layers = nn.ModuleList(
58
+ [
59
+ TransformerSentenceEncoderLayer(
60
+ embedding_dim=self.embedding_dim,
61
+ ffn_embedding_dim=args.encoder_ffn_embed_dim,
62
+ num_attention_heads=args.encoder_attention_heads,
63
+ dropout=self.dropout,
64
+ attention_dropout=args.attention_dropout,
65
+ activation_dropout=args.activation_dropout,
66
+ activation_fn=args.activation_fn,
67
+ layer_norm_first=args.layer_norm_first,
68
+ deep_norm=args.deep_norm,
69
+ has_relative_attention_bias=self.relative_position_embedding,
70
+ num_buckets=self.num_buckets,
71
+ max_distance=self.max_distance,
72
+ gru_rel_pos=args.gru_rel_pos,
73
+ encoder_layers=args.encoder_layers,
74
+ )
75
+ for i in range(args.encoder_layers)
76
+ ]
77
+ )
78
+ if self.relative_position_embedding:
79
+ for i in range(1, args.encoder_layers):
80
+ del self.layers[i].self_attn.relative_attention_bias
81
+ self.layers[i].self_attn.relative_attention_bias = self.layers[0].self_attn.relative_attention_bias
82
+
83
+ self.layer_norm_first = args.layer_norm_first
84
+ self.layer_norm = LayerNorm(self.embedding_dim)
85
+ self.layerdrop = args.encoder_layerdrop
86
+
87
+ self.apply(init_bert_params)
88
+
89
+ if args.deep_norm:
90
+ deep_norm_beta = math.pow(8 * args.encoder_layers, -1 / 4)
91
+ for i in range(args.encoder_layers):
92
+ nn.init.xavier_normal_(self.layers[i].self_attn.k_proj.weight, gain=1)
93
+ nn.init.xavier_normal_(self.layers[i].self_attn.v_proj.weight, gain=deep_norm_beta)
94
+ nn.init.xavier_normal_(self.layers[i].self_attn.q_proj.weight, gain=1)
95
+ nn.init.xavier_normal_(self.layers[i].self_attn.out_proj.weight, gain=deep_norm_beta)
96
+ nn.init.xavier_normal_(self.layers[i].fc1.weight, gain=deep_norm_beta)
97
+ nn.init.xavier_normal_(self.layers[i].fc2.weight, gain=deep_norm_beta)
98
+
99
+ self.layer_wise_gradient_decay_ratio = getattr(args, "layer_wise_gradient_decay_ratio", 1)
100
+
101
+ def forward(self, x, padding_mask=None, layer=None):
102
+ x, layer_results = self.extract_features(x, padding_mask, layer)
103
+
104
+ if self.layer_norm_first and layer is None:
105
+ x = self.layer_norm(x)
106
+
107
+ return x, layer_results
108
+
109
+ def extract_features(self, x, padding_mask=None, tgt_layer=None):
110
+
111
+ if padding_mask is not None:
112
+ x[padding_mask] = 0
113
+
114
+ x_conv = self.pos_conv(x.transpose(1, 2))
115
+ x_conv = x_conv.transpose(1, 2)
116
+ x = x + x_conv
117
+
118
+ if not self.layer_norm_first:
119
+ x = self.layer_norm(x)
120
+
121
+ x = F.dropout(x, p=self.dropout, training=self.training)
122
+
123
+ # B x T x C -> T x B x C
124
+ x = x.transpose(0, 1)
125
+
126
+ layer_results = []
127
+ z = None
128
+ if tgt_layer is not None:
129
+ layer_results.append((x, z))
130
+ r = None
131
+ pos_bias = None
132
+ for i, layer in enumerate(self.layers):
133
+ if self.layer_wise_gradient_decay_ratio != 1.0:
134
+ x = GradMultiply.apply(x, self.layer_wise_gradient_decay_ratio)
135
+ dropout_probability = np.random.random()
136
+ if not self.training or (dropout_probability > self.layerdrop):
137
+ x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_bias)
138
+ if tgt_layer is not None:
139
+ layer_results.append((x, z))
140
+ if i == tgt_layer:
141
+ r = x
142
+ break
143
+
144
+ if r is not None:
145
+ x = r
146
+
147
+ # T x B x C -> B x T x C
148
+ x = x.transpose(0, 1)
149
+
150
+ return x, layer_results
151
+
152
+
153
+ class TransformerSentenceEncoderLayer(nn.Module):
154
+ def __init__(
155
+ self,
156
+ embedding_dim: float = 768,
157
+ ffn_embedding_dim: float = 3072,
158
+ num_attention_heads: float = 8,
159
+ dropout: float = 0.1,
160
+ attention_dropout: float = 0.1,
161
+ activation_dropout: float = 0.1,
162
+ activation_fn: str = "relu",
163
+ layer_norm_first: bool = False,
164
+ deep_norm: bool = False,
165
+ has_relative_attention_bias: bool = False,
166
+ num_buckets: int = 0,
167
+ max_distance: int = 0,
168
+ rescale_init: bool = False,
169
+ gru_rel_pos: bool = False,
170
+ encoder_layers: int = 0,
171
+ ) -> None:
172
+
173
+ super().__init__()
174
+ self.embedding_dim = embedding_dim
175
+ self.dropout = dropout
176
+ self.activation_dropout = activation_dropout
177
+
178
+ self.activation_name = activation_fn
179
+ self.activation_fn = get_activation_fn(activation_fn)
180
+ self.self_attn = MultiheadAttention(
181
+ self.embedding_dim,
182
+ num_attention_heads,
183
+ dropout=attention_dropout,
184
+ self_attention=True,
185
+ has_relative_attention_bias=has_relative_attention_bias,
186
+ num_buckets=num_buckets,
187
+ max_distance=max_distance,
188
+ rescale_init=rescale_init,
189
+ gru_rel_pos=gru_rel_pos,
190
+ )
191
+
192
+ self.dropout1 = nn.Dropout(dropout)
193
+ self.dropout2 = nn.Dropout(self.activation_dropout)
194
+ self.dropout3 = nn.Dropout(dropout)
195
+
196
+ self.layer_norm_first = layer_norm_first
197
+
198
+ self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
199
+
200
+ if self.activation_name == "glu":
201
+ self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
202
+ else:
203
+ self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
204
+ self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
205
+
206
+ self.final_layer_norm = LayerNorm(self.embedding_dim)
207
+
208
+ self.deep_norm = deep_norm
209
+ if self.deep_norm:
210
+ self.deep_norm_alpha = math.pow(2 * encoder_layers, 1 / 4)
211
+ else:
212
+ self.deep_norm_alpha = 1
213
+
214
+ def forward(
215
+ self,
216
+ x: torch.Tensor,
217
+ self_attn_mask: torch.Tensor = None,
218
+ self_attn_padding_mask: torch.Tensor = None,
219
+ need_weights: bool = False,
220
+ pos_bias=None
221
+ ):
222
+ residual = x
223
+
224
+ if self.layer_norm_first:
225
+ x = self.self_attn_layer_norm(x)
226
+ x, attn, pos_bias = self.self_attn(
227
+ query=x,
228
+ key=x,
229
+ value=x,
230
+ key_padding_mask=self_attn_padding_mask,
231
+ need_weights=False,
232
+ attn_mask=self_attn_mask,
233
+ position_bias=pos_bias
234
+ )
235
+ x = self.dropout1(x)
236
+ x = residual + x
237
+
238
+ residual = x
239
+ x = self.final_layer_norm(x)
240
+ if self.activation_name == "glu":
241
+ x = self.fc1(x)
242
+ else:
243
+ x = self.activation_fn(self.fc1(x))
244
+ x = self.dropout2(x)
245
+ x = self.fc2(x)
246
+ x = self.dropout3(x)
247
+ x = residual + x
248
+ else:
249
+ x, attn, pos_bias = self.self_attn(
250
+ query=x,
251
+ key=x,
252
+ value=x,
253
+ key_padding_mask=self_attn_padding_mask,
254
+ need_weights=need_weights,
255
+ attn_mask=self_attn_mask,
256
+ position_bias=pos_bias
257
+ )
258
+
259
+ x = self.dropout1(x)
260
+ x = residual * self.deep_norm_alpha + x
261
+
262
+ x = self.self_attn_layer_norm(x)
263
+
264
+ residual = x
265
+ if self.activation_name == "glu":
266
+ x = self.fc1(x)
267
+ else:
268
+ x = self.activation_fn(self.fc1(x))
269
+ x = self.dropout2(x)
270
+ x = self.fc2(x)
271
+ x = self.dropout3(x)
272
+ x = residual * self.deep_norm_alpha + x
273
+ x = self.final_layer_norm(x)
274
+
275
+ return x, attn, pos_bias
276
+
277
+
278
+ class MultiheadAttention(nn.Module):
279
+ """Multi-headed attention.
280
+
281
+ See "Attention Is All You Need" for more details.
282
+ """
283
+
284
+ def __init__(
285
+ self,
286
+ embed_dim,
287
+ num_heads,
288
+ kdim=None,
289
+ vdim=None,
290
+ dropout=0.0,
291
+ bias=True,
292
+ add_bias_kv=False,
293
+ add_zero_attn=False,
294
+ self_attention=False,
295
+ encoder_decoder_attention=False,
296
+ q_noise=0.0,
297
+ qn_block_size=8,
298
+ has_relative_attention_bias=False,
299
+ num_buckets=32,
300
+ max_distance=128,
301
+ gru_rel_pos=False,
302
+ rescale_init=False,
303
+ ):
304
+ super().__init__()
305
+ self.embed_dim = embed_dim
306
+ self.kdim = kdim if kdim is not None else embed_dim
307
+ self.vdim = vdim if vdim is not None else embed_dim
308
+ self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
309
+
310
+ self.num_heads = num_heads
311
+ self.dropout_module = nn.Dropout(dropout)
312
+
313
+ self.has_relative_attention_bias = has_relative_attention_bias
314
+ self.num_buckets = num_buckets
315
+ self.max_distance = max_distance
316
+ if self.has_relative_attention_bias:
317
+ self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
318
+
319
+ self.head_dim = embed_dim // num_heads
320
+ self.q_head_dim = self.head_dim
321
+ self.k_head_dim = self.head_dim
322
+ assert (
323
+ self.head_dim * num_heads == self.embed_dim
324
+ ), "embed_dim must be divisible by num_heads"
325
+ self.scaling = self.head_dim ** -0.5
326
+
327
+ self.self_attention = self_attention
328
+ self.encoder_decoder_attention = encoder_decoder_attention
329
+
330
+ assert not self.self_attention or self.qkv_same_dim, (
331
+ "Self-attention requires query, key and " "value to be of the same size"
332
+ )
333
+
334
+ k_bias = True
335
+ if rescale_init:
336
+ k_bias = False
337
+
338
+ k_embed_dim = embed_dim
339
+ q_embed_dim = embed_dim
340
+
341
+ self.k_proj = quant_noise(
342
+ nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
343
+ )
344
+ self.v_proj = quant_noise(
345
+ nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
346
+ )
347
+ self.q_proj = quant_noise(
348
+ nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
349
+ )
350
+
351
+ self.out_proj = quant_noise(
352
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
353
+ )
354
+
355
+ if add_bias_kv:
356
+ self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
357
+ self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
358
+ else:
359
+ self.bias_k = self.bias_v = None
360
+
361
+ self.add_zero_attn = add_zero_attn
362
+
363
+ self.gru_rel_pos = gru_rel_pos
364
+ if self.gru_rel_pos:
365
+ self.grep_linear = nn.Linear(self.q_head_dim, 8)
366
+ self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
367
+
368
+ self.reset_parameters()
369
+
370
+ def reset_parameters(self):
371
+ if self.qkv_same_dim:
372
+ # Empirically observed the convergence to be much better with
373
+ # the scaled initialization
374
+ nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
375
+ nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
376
+ nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
377
+ else:
378
+ nn.init.xavier_uniform_(self.k_proj.weight)
379
+ nn.init.xavier_uniform_(self.v_proj.weight)
380
+ nn.init.xavier_uniform_(self.q_proj.weight)
381
+
382
+ nn.init.xavier_uniform_(self.out_proj.weight)
383
+ if self.out_proj.bias is not None:
384
+ nn.init.constant_(self.out_proj.bias, 0.0)
385
+ if self.bias_k is not None:
386
+ nn.init.xavier_normal_(self.bias_k)
387
+ if self.bias_v is not None:
388
+ nn.init.xavier_normal_(self.bias_v)
389
+ if self.has_relative_attention_bias:
390
+ nn.init.xavier_normal_(self.relative_attention_bias.weight)
391
+
392
+ def _relative_positions_bucket(self, relative_positions, bidirectional=True):
393
+ num_buckets = self.num_buckets
394
+ max_distance = self.max_distance
395
+ relative_buckets = 0
396
+
397
+ if bidirectional:
398
+ num_buckets = num_buckets // 2
399
+ relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
400
+ relative_positions = torch.abs(relative_positions)
401
+ else:
402
+ relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
403
+
404
+ max_exact = num_buckets // 2
405
+ is_small = relative_positions < max_exact
406
+
407
+ relative_postion_if_large = max_exact + (
408
+ torch.log(relative_positions.float() / max_exact)
409
+ / math.log(max_distance / max_exact)
410
+ * (num_buckets - max_exact)
411
+ ).to(torch.long)
412
+ relative_postion_if_large = torch.min(
413
+ relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
414
+ )
415
+
416
+ relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
417
+ return relative_buckets
418
+
419
+ def compute_bias(self, query_length, key_length):
420
+ context_position = torch.arange(query_length, dtype=torch.long)[:, None]
421
+ memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
422
+ relative_position = memory_position - context_position
423
+ relative_position_bucket = self._relative_positions_bucket(
424
+ relative_position,
425
+ bidirectional=True
426
+ )
427
+ relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
428
+ values = self.relative_attention_bias(relative_position_bucket)
429
+ values = values.permute([2, 0, 1])
430
+ return values
431
+
432
+ def forward(
433
+ self,
434
+ query,
435
+ key: Optional[Tensor],
436
+ value: Optional[Tensor],
437
+ key_padding_mask: Optional[Tensor] = None,
438
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
439
+ need_weights: bool = True,
440
+ static_kv: bool = False,
441
+ attn_mask: Optional[Tensor] = None,
442
+ before_softmax: bool = False,
443
+ need_head_weights: bool = False,
444
+ position_bias: Optional[Tensor] = None
445
+ ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
446
+ """Input shape: Time x Batch x Channel
447
+
448
+ Args:
449
+ key_padding_mask (ByteTensor, optional): mask to exclude
450
+ keys that are pads, of shape `(batch, src_len)`, where
451
+ padding elements are indicated by 1s.
452
+ need_weights (bool, optional): return the attention weights,
453
+ averaged over heads (default: False).
454
+ attn_mask (ByteTensor, optional): typically used to
455
+ implement causal attention, where the mask prevents the
456
+ attention from looking forward in time (default: None).
457
+ before_softmax (bool, optional): return the raw attention
458
+ weights and values before the attention softmax.
459
+ need_head_weights (bool, optional): return the attention
460
+ weights for each head. Implies *need_weights*. Default:
461
+ return the average attention weights over all heads.
462
+ """
463
+ if need_head_weights:
464
+ need_weights = True
465
+
466
+ is_tpu = query.device.type == "xla"
467
+
468
+ tgt_len, bsz, embed_dim = query.size()
469
+ src_len = tgt_len
470
+ assert embed_dim == self.embed_dim
471
+ assert list(query.size()) == [tgt_len, bsz, embed_dim]
472
+ if key is not None:
473
+ src_len, key_bsz, _ = key.size()
474
+ if not torch.jit.is_scripting():
475
+ assert key_bsz == bsz
476
+ assert value is not None
477
+ assert src_len, bsz == value.shape[:2]
478
+
479
+ if self.has_relative_attention_bias and position_bias is None:
480
+ position_bias = self.compute_bias(tgt_len, src_len)
481
+ position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
482
+
483
+ if incremental_state is not None:
484
+ saved_state = self._get_input_buffer(incremental_state)
485
+ if saved_state is not None and "prev_key" in saved_state:
486
+ # previous time steps are cached - no need to recompute
487
+ # key and value if they are static
488
+ if static_kv:
489
+ assert self.encoder_decoder_attention and not self.self_attention
490
+ key = value = None
491
+ else:
492
+ saved_state = None
493
+
494
+ if self.self_attention:
495
+ q = self.q_proj(query)
496
+ k = self.k_proj(query)
497
+ v = self.v_proj(query)
498
+ elif self.encoder_decoder_attention:
499
+ # encoder-decoder attention
500
+ q = self.q_proj(query)
501
+ if key is None:
502
+ assert value is None
503
+ k = v = None
504
+ else:
505
+ k = self.k_proj(key)
506
+ v = self.v_proj(key)
507
+
508
+ else:
509
+ assert key is not None and value is not None
510
+ q = self.q_proj(query)
511
+ k = self.k_proj(key)
512
+ v = self.v_proj(value)
513
+ q *= self.scaling
514
+ alpha = 32
515
+ q *= 1 / alpha
516
+
517
+ if self.bias_k is not None:
518
+ assert self.bias_v is not None
519
+ k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
520
+ v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
521
+ if attn_mask is not None:
522
+ attn_mask = torch.cat(
523
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
524
+ )
525
+ if key_padding_mask is not None:
526
+ key_padding_mask = torch.cat(
527
+ [
528
+ key_padding_mask,
529
+ key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
530
+ ],
531
+ dim=1,
532
+ )
533
+
534
+ q = (
535
+ q.contiguous()
536
+ .view(tgt_len, bsz * self.num_heads, self.q_head_dim)
537
+ .transpose(0, 1)
538
+ )
539
+ if k is not None:
540
+ k = (
541
+ k.contiguous()
542
+ .view(-1, bsz * self.num_heads, self.k_head_dim)
543
+ .transpose(0, 1)
544
+ )
545
+ if v is not None:
546
+ v = (
547
+ v.contiguous()
548
+ .view(-1, bsz * self.num_heads, self.head_dim)
549
+ .transpose(0, 1)
550
+ )
551
+
552
+ if saved_state is not None:
553
+ # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
554
+ if "prev_key" in saved_state:
555
+ _prev_key = saved_state["prev_key"]
556
+ assert _prev_key is not None
557
+ prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
558
+ if static_kv:
559
+ k = prev_key
560
+ else:
561
+ assert k is not None
562
+ k = torch.cat([prev_key, k], dim=1)
563
+ src_len = k.size(1)
564
+ if "prev_value" in saved_state:
565
+ _prev_value = saved_state["prev_value"]
566
+ assert _prev_value is not None
567
+ prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
568
+ if static_kv:
569
+ v = prev_value
570
+ else:
571
+ assert v is not None
572
+ v = torch.cat([prev_value, v], dim=1)
573
+ prev_key_padding_mask: Optional[Tensor] = None
574
+ if "prev_key_padding_mask" in saved_state:
575
+ prev_key_padding_mask = saved_state["prev_key_padding_mask"]
576
+ assert k is not None and v is not None
577
+ key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
578
+ key_padding_mask=key_padding_mask,
579
+ prev_key_padding_mask=prev_key_padding_mask,
580
+ batch_size=bsz,
581
+ src_len=k.size(1),
582
+ static_kv=static_kv,
583
+ )
584
+
585
+ saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
586
+ saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
587
+ saved_state["prev_key_padding_mask"] = key_padding_mask
588
+ # In this branch incremental_state is never None
589
+ assert incremental_state is not None
590
+ incremental_state = self._set_input_buffer(incremental_state, saved_state)
591
+ assert k is not None
592
+ assert k.size(1) == src_len
593
+
594
+ # This is part of a workaround to get around fork/join parallelism
595
+ # not supporting Optional types.
596
+ if key_padding_mask is not None and key_padding_mask.dim() == 0:
597
+ key_padding_mask = None
598
+
599
+ if key_padding_mask is not None:
600
+ assert key_padding_mask.size(0) == bsz
601
+ assert key_padding_mask.size(1) == src_len
602
+
603
+ if self.add_zero_attn:
604
+ assert v is not None
605
+ src_len += 1
606
+ k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
607
+ v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
608
+ if attn_mask is not None:
609
+ attn_mask = torch.cat(
610
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
611
+ )
612
+ if key_padding_mask is not None:
613
+ key_padding_mask = torch.cat(
614
+ [
615
+ key_padding_mask,
616
+ torch.zeros(key_padding_mask.size(0), 1).type_as(
617
+ key_padding_mask
618
+ ),
619
+ ],
620
+ dim=1,
621
+ )
622
+
623
+ attn_weights = torch.bmm(q, k.transpose(1, 2))
624
+ attn_weights = (attn_weights - attn_weights.max(dim=-1, keepdim=True)[0]) * alpha
625
+ attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
626
+
627
+ assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
628
+
629
+ if attn_mask is not None:
630
+ attn_mask = attn_mask.unsqueeze(0)
631
+ attn_weights += attn_mask
632
+
633
+ if key_padding_mask is not None:
634
+ # don't attend to padding symbols
635
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
636
+ if not is_tpu:
637
+ attn_weights = attn_weights.masked_fill(
638
+ key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
639
+ float("-inf"),
640
+ )
641
+ else:
642
+ attn_weights = attn_weights.transpose(0, 2)
643
+ attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
644
+ attn_weights = attn_weights.transpose(0, 2)
645
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
646
+
647
+ if before_softmax:
648
+ return attn_weights, v, position_bias
649
+
650
+ if position_bias is not None:
651
+ attn_mask_rel_pos = position_bias
652
+ if self.gru_rel_pos == 1:
653
+ query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) * alpha / self.scaling
654
+ _B, _H, _L, __ = query_layer.size()
655
+ gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
656
+ _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
657
+ gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
658
+ attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, tgt_len, 1) * position_bias
659
+
660
+ attn_mask_rel_pos = attn_mask_rel_pos.view(attn_weights.size())
661
+
662
+ attn_weights = attn_weights + attn_mask_rel_pos
663
+
664
+ attn_weights_float = F.softmax(
665
+ attn_weights, dim=-1
666
+ )
667
+ attn_weights = attn_weights_float.type_as(attn_weights)
668
+ attn_probs = self.dropout_module(attn_weights)
669
+
670
+ assert v is not None
671
+ attn = torch.bmm(attn_probs, v)
672
+ assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
673
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
674
+ attn = self.out_proj(attn)
675
+ attn_weights: Optional[Tensor] = None
676
+ if need_weights:
677
+ attn_weights = attn_weights_float.view(
678
+ bsz, self.num_heads, tgt_len, src_len
679
+ ).transpose(1, 0)
680
+ if not need_head_weights:
681
+ # average attention weights over heads
682
+ attn_weights = attn_weights.mean(dim=0)
683
+
684
+ return attn, attn_weights, position_bias
685
+
686
+ @staticmethod
687
+ def _append_prev_key_padding_mask(
688
+ key_padding_mask: Optional[Tensor],
689
+ prev_key_padding_mask: Optional[Tensor],
690
+ batch_size: int,
691
+ src_len: int,
692
+ static_kv: bool,
693
+ ) -> Optional[Tensor]:
694
+ # saved key padding masks have shape (bsz, seq_len)
695
+ if prev_key_padding_mask is not None and static_kv:
696
+ new_key_padding_mask = prev_key_padding_mask
697
+ elif prev_key_padding_mask is not None and key_padding_mask is not None:
698
+ new_key_padding_mask = torch.cat(
699
+ [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
700
+ )
701
+ # During incremental decoding, as the padding token enters and
702
+ # leaves the frame, there will be a time when prev or current
703
+ # is None
704
+ elif prev_key_padding_mask is not None:
705
+ if src_len > prev_key_padding_mask.size(1):
706
+ filler = torch.zeros(
707
+ (batch_size, src_len - prev_key_padding_mask.size(1)),
708
+ device=prev_key_padding_mask.device,
709
+ )
710
+ new_key_padding_mask = torch.cat(
711
+ [prev_key_padding_mask.float(), filler.float()], dim=1
712
+ )
713
+ else:
714
+ new_key_padding_mask = prev_key_padding_mask.float()
715
+ elif key_padding_mask is not None:
716
+ if src_len > key_padding_mask.size(1):
717
+ filler = torch.zeros(
718
+ (batch_size, src_len - key_padding_mask.size(1)),
719
+ device=key_padding_mask.device,
720
+ )
721
+ new_key_padding_mask = torch.cat(
722
+ [filler.float(), key_padding_mask.float()], dim=1
723
+ )
724
+ else:
725
+ new_key_padding_mask = key_padding_mask.float()
726
+ else:
727
+ new_key_padding_mask = prev_key_padding_mask
728
+ return new_key_padding_mask
729
+
730
+ def _get_input_buffer(
731
+ self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
732
+ ) -> Dict[str, Optional[Tensor]]:
733
+ result = self.get_incremental_state(incremental_state, "attn_state")
734
+ if result is not None:
735
+ return result
736
+ else:
737
+ empty_result: Dict[str, Optional[Tensor]] = {}
738
+ return empty_result
739
+
740
+ def _set_input_buffer(
741
+ self,
742
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
743
+ buffer: Dict[str, Optional[Tensor]],
744
+ ):
745
+ return self.set_incremental_state(incremental_state, "attn_state", buffer)
746
+
747
+ def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
748
+ return attn_weights
749
+
750
+
751
+ def init_bert_params(module):
752
+ """
753
+ Initialize the weights specific to the BERT Model.
754
+ This overrides the default initializations depending on the specified arguments.
755
+ 1. If normal_init_linear_weights is set then weights of linear
756
+ layer will be initialized using the normal distribution and
757
+ bais will be set to the specified value.
758
+ 2. If normal_init_embed_weights is set then weights of embedding
759
+ layer will be initialized using the normal distribution.
760
+ 3. If normal_init_proj_weights is set then weights of
761
+ in_project_weight for MultiHeadAttention initialized using
762
+ the normal distribution (to be validated).
763
+ """
764
+
765
+ def normal_(data):
766
+ # with FSDP, module params will be on CUDA, so we cast them back to CPU
767
+ # so that the RNG is consistent with and without FSDP
768
+ data.copy_(
769
+ data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
770
+ )
771
+
772
+ if isinstance(module, nn.Linear):
773
+ normal_(module.weight.data)
774
+ if module.bias is not None:
775
+ module.bias.data.zero_()
776
+ if isinstance(module, nn.Embedding):
777
+ normal_(module.weight.data)
778
+ if module.padding_idx is not None:
779
+ module.weight.data[module.padding_idx].zero_()
780
+ if isinstance(module, MultiheadAttention):
781
+ normal_(module.q_proj.weight.data)
782
+ normal_(module.k_proj.weight.data)
783
+ normal_(module.v_proj.weight.data)
models/beats/modules.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
3
+ # Github source: https://github.com/microsoft/unilm/tree/master/beats
4
+ # Copyright (c) 2022 Microsoft
5
+ # Licensed under The MIT License [see LICENSE for details]
6
+ # Based on fairseq code bases
7
+ # https://github.com/pytorch/fairseq
8
+ # --------------------------------------------------------
9
+
10
+ import math
11
+ import warnings
12
+ import torch
13
+ from torch import Tensor, nn
14
+ import torch.nn.functional as F
15
+
16
+
17
+ class GradMultiply(torch.autograd.Function):
18
+ @staticmethod
19
+ def forward(ctx, x, scale):
20
+ ctx.scale = scale
21
+ res = x.new(x)
22
+ return res
23
+
24
+ @staticmethod
25
+ def backward(ctx, grad):
26
+ return grad * ctx.scale, None
27
+
28
+
29
+ class SamePad(nn.Module):
30
+ def __init__(self, kernel_size, causal=False):
31
+ super().__init__()
32
+ if causal:
33
+ self.remove = kernel_size - 1
34
+ else:
35
+ self.remove = 1 if kernel_size % 2 == 0 else 0
36
+
37
+ def forward(self, x):
38
+ if self.remove > 0:
39
+ x = x[:, :, : -self.remove]
40
+ return x
41
+
42
+
43
+ class Swish(nn.Module):
44
+ def __init__(self):
45
+ super(Swish, self).__init__()
46
+ self.act = torch.nn.Sigmoid()
47
+
48
+ def forward(self, x):
49
+ return x * self.act(x)
50
+
51
+
52
+ class GLU_Linear(nn.Module):
53
+ def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
54
+ super(GLU_Linear, self).__init__()
55
+
56
+ self.glu_type = glu_type
57
+ self.output_dim = output_dim
58
+
59
+ if glu_type == "sigmoid":
60
+ self.glu_act = torch.nn.Sigmoid()
61
+ elif glu_type == "swish":
62
+ self.glu_act = Swish()
63
+ elif glu_type == "relu":
64
+ self.glu_act = torch.nn.ReLU()
65
+ elif glu_type == "gelu":
66
+ self.glu_act = torch.nn.GELU()
67
+
68
+ if bias_in_glu:
69
+ self.linear = nn.Linear(input_dim, output_dim * 2, True)
70
+ else:
71
+ self.linear = nn.Linear(input_dim, output_dim * 2, False)
72
+
73
+ def forward(self, x):
74
+ # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
75
+ x = self.linear(x)
76
+
77
+ if self.glu_type == "bilinear":
78
+ x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
79
+ else:
80
+ x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
81
+
82
+ return x
83
+
84
+
85
+ def gelu_accurate(x):
86
+ if not hasattr(gelu_accurate, "_a"):
87
+ gelu_accurate._a = math.sqrt(2 / math.pi)
88
+ return (
89
+ 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
90
+ )
91
+
92
+
93
+ def gelu(x: torch.Tensor) -> torch.Tensor:
94
+ return torch.nn.functional.gelu(x.float()).type_as(x)
95
+
96
+
97
+ def get_activation_fn(activation: str):
98
+ """Returns the activation function corresponding to `activation`"""
99
+
100
+ if activation == "relu":
101
+ return F.relu
102
+ elif activation == "gelu":
103
+ return gelu
104
+ elif activation == "gelu_fast":
105
+ warnings.warn(
106
+ "--activation-fn=gelu_fast has been renamed to gelu_accurate"
107
+ )
108
+ return gelu_accurate
109
+ elif activation == "gelu_accurate":
110
+ return gelu_accurate
111
+ elif activation == "tanh":
112
+ return torch.tanh
113
+ elif activation == "linear":
114
+ return lambda x: x
115
+ elif activation == "glu":
116
+ return lambda x: x
117
+ else:
118
+ raise RuntimeError("--activation-fn {} not supported".format(activation))
119
+
120
+
121
+ def quant_noise(module, p, block_size):
122
+ """
123
+ Wraps modules and applies quantization noise to the weights for
124
+ subsequent quantization with Iterative Product Quantization as
125
+ described in "Training with Quantization Noise for Extreme Model Compression"
126
+
127
+ Args:
128
+ - module: nn.Module
129
+ - p: amount of Quantization Noise
130
+ - block_size: size of the blocks for subsequent quantization with iPQ
131
+
132
+ Remarks:
133
+ - Module weights must have the right sizes wrt the block size
134
+ - Only Linear, Embedding and Conv2d modules are supported for the moment
135
+ - For more detail on how to quantize by blocks with convolutional weights,
136
+ see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
137
+ - We implement the simplest form of noise here as stated in the paper
138
+ which consists in randomly dropping blocks
139
+ """
140
+
141
+ # if no quantization noise, don't register hook
142
+ if p <= 0:
143
+ return module
144
+
145
+ # supported modules
146
+ assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
147
+
148
+ # test whether module.weight has the right sizes wrt block_size
149
+ is_conv = module.weight.ndim == 4
150
+
151
+ # 2D matrix
152
+ if not is_conv:
153
+ assert (
154
+ module.weight.size(1) % block_size == 0
155
+ ), "Input features must be a multiple of block sizes"
156
+
157
+ # 4D matrix
158
+ else:
159
+ # 1x1 convolutions
160
+ if module.kernel_size == (1, 1):
161
+ assert (
162
+ module.in_channels % block_size == 0
163
+ ), "Input channels must be a multiple of block sizes"
164
+ # regular convolutions
165
+ else:
166
+ k = module.kernel_size[0] * module.kernel_size[1]
167
+ assert k % block_size == 0, "Kernel size must be a multiple of block size"
168
+
169
+ def _forward_pre_hook(mod, input):
170
+ # no noise for evaluation
171
+ if mod.training:
172
+ if not is_conv:
173
+ # gather weight and sizes
174
+ weight = mod.weight
175
+ in_features = weight.size(1)
176
+ out_features = weight.size(0)
177
+
178
+ # split weight matrix into blocks and randomly drop selected blocks
179
+ mask = torch.zeros(
180
+ in_features // block_size * out_features, device=weight.device
181
+ )
182
+ mask.bernoulli_(p)
183
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
184
+
185
+ else:
186
+ # gather weight and sizes
187
+ weight = mod.weight
188
+ in_channels = mod.in_channels
189
+ out_channels = mod.out_channels
190
+
191
+ # split weight matrix into blocks and randomly drop selected blocks
192
+ if mod.kernel_size == (1, 1):
193
+ mask = torch.zeros(
194
+ int(in_channels // block_size * out_channels),
195
+ device=weight.device,
196
+ )
197
+ mask.bernoulli_(p)
198
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
199
+ else:
200
+ mask = torch.zeros(
201
+ weight.size(0), weight.size(1), device=weight.device
202
+ )
203
+ mask.bernoulli_(p)
204
+ mask = (
205
+ mask.unsqueeze(2)
206
+ .unsqueeze(3)
207
+ .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
208
+ )
209
+
210
+ # scale weights and apply mask
211
+ mask = mask.to(
212
+ torch.bool
213
+ ) # x.bool() is not currently supported in TorchScript
214
+ s = 1 / (1 - p)
215
+ mod.weight.data = s * weight.masked_fill(mask, 0)
216
+
217
+ module.register_forward_pre_hook(_forward_pre_hook)
218
+ return module
models/beats/quantizer.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
3
+ # Github source: https://github.com/microsoft/unilm/tree/master/beats
4
+ # Copyright (c) 2022 Microsoft
5
+ # Licensed under The MIT License [see LICENSE for details]
6
+ # Based on VQGAN code bases
7
+ # https://github.com/CompVis/taming-transformers
8
+ # --------------------------------------------------------'
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torch.distributed as distributed
14
+
15
+ try:
16
+ from einops import rearrange, repeat
17
+ except ImportError:
18
+ pass
19
+
20
+
21
+ def l2norm(t):
22
+ return F.normalize(t, p=2, dim=-1)
23
+
24
+
25
+ def ema_inplace(moving_avg, new, decay):
26
+ moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
27
+
28
+
29
+ def sample_vectors(samples, num):
30
+ num_samples, device = samples.shape[0], samples.device
31
+
32
+ if num_samples >= num:
33
+ indices = torch.randperm(num_samples, device=device)[:num]
34
+ else:
35
+ indices = torch.randint(0, num_samples, (num,), device=device)
36
+
37
+ return samples[indices]
38
+
39
+
40
+ def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False):
41
+ dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
42
+
43
+ means = sample_vectors(samples, num_clusters)
44
+
45
+ for _ in range(num_iters):
46
+ if use_cosine_sim:
47
+ dists = samples @ means.t()
48
+ else:
49
+ diffs = rearrange(samples, 'n d -> n () d') \
50
+ - rearrange(means, 'c d -> () c d')
51
+ dists = -(diffs ** 2).sum(dim=-1)
52
+
53
+ buckets = dists.max(dim=-1).indices
54
+ bins = torch.bincount(buckets, minlength=num_clusters)
55
+ zero_mask = bins == 0
56
+ bins_min_clamped = bins.masked_fill(zero_mask, 1)
57
+
58
+ new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
59
+ new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples)
60
+ new_means = new_means / bins_min_clamped[..., None]
61
+
62
+ if use_cosine_sim:
63
+ new_means = l2norm(new_means)
64
+
65
+ means = torch.where(zero_mask[..., None], means, new_means)
66
+
67
+ return means, bins
68
+
69
+
70
+ class EmbeddingEMA(nn.Module):
71
+ def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''):
72
+ super().__init__()
73
+ self.num_tokens = num_tokens
74
+ self.codebook_dim = codebook_dim
75
+ self.decay = decay
76
+ self.eps = eps
77
+ if codebook_init_path == '':
78
+ if not kmeans_init:
79
+ weight = torch.randn(num_tokens, codebook_dim)
80
+ weight = l2norm(weight)
81
+ else:
82
+ weight = torch.zeros(num_tokens, codebook_dim)
83
+ self.register_buffer('initted', torch.Tensor([not kmeans_init]))
84
+ else:
85
+ print(f"load init codebook weight from {codebook_init_path}")
86
+ codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu')
87
+ weight = codebook_ckpt_weight.clone()
88
+ self.register_buffer('initted', torch.Tensor([True]))
89
+
90
+ self.weight = nn.Parameter(weight, requires_grad=False)
91
+ self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
92
+ self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
93
+ # self.register_buffer('initted', torch.Tensor([not kmeans_init]))
94
+ self.update = True
95
+
96
+ @torch.jit.ignore
97
+ def init_embed_(self, data):
98
+ if self.initted:
99
+ return
100
+ print("Performing Kemans init for codebook")
101
+ embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim=True)
102
+ self.weight.data.copy_(embed)
103
+ self.cluster_size.data.copy_(cluster_size)
104
+ self.initted.data.copy_(torch.Tensor([True]))
105
+
106
+ def forward(self, embed_id):
107
+ return F.embedding(embed_id, self.weight)
108
+
109
+ def cluster_size_ema_update(self, new_cluster_size):
110
+ self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
111
+
112
+ def embed_avg_ema_update(self, new_embed_avg):
113
+ self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
114
+
115
+ def weight_update(self, num_tokens):
116
+ n = self.cluster_size.sum()
117
+ smoothed_cluster_size = (
118
+ (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
119
+ )
120
+ # normalize embedding average with smoothed cluster size
121
+ embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
122
+ # embed_normalized = l2norm(self.embed_avg / smoothed_cluster_size.unsqueeze(1))
123
+ self.weight.data.copy_(embed_normalized)
124
+
125
+
126
+ def norm_ema_inplace(moving_avg, new, decay):
127
+ moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
128
+ moving_avg.data.copy_(l2norm(moving_avg.data))
129
+
130
+
131
+ class NormEMAVectorQuantizer(nn.Module):
132
+ def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
133
+ statistic_code_usage=True, kmeans_init=False, codebook_init_path=''):
134
+ super().__init__()
135
+ self.codebook_dim = embedding_dim
136
+ self.num_tokens = n_embed
137
+ self.beta = beta
138
+ self.decay = decay
139
+
140
+ # learnable = True if orthogonal_reg_weight > 0 else False
141
+ self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path)
142
+
143
+ self.statistic_code_usage = statistic_code_usage
144
+ if statistic_code_usage:
145
+ self.register_buffer('cluster_size', torch.zeros(n_embed))
146
+ if distributed.is_available() and distributed.is_initialized():
147
+ print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!")
148
+ self.all_reduce_fn = distributed.all_reduce
149
+ else:
150
+ self.all_reduce_fn = nn.Identity()
151
+
152
+ def reset_cluster_size(self, device):
153
+ if self.statistic_code_usage:
154
+ self.register_buffer('cluster_size', torch.zeros(self.num_tokens))
155
+ self.cluster_size = self.cluster_size.to(device)
156
+
157
+ def forward(self, z):
158
+ # reshape z -> (batch, height, width, channel) and flatten
159
+ # z, 'b c h w -> b h w c'
160
+ # z = rearrange(z, 'b c h w -> b h w c')
161
+ # z = z.transpose(1, 2)
162
+ z = l2norm(z)
163
+ z_flattened = z.reshape(-1, self.codebook_dim)
164
+
165
+ self.embedding.init_embed_(z_flattened)
166
+
167
+ d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
168
+ self.embedding.weight.pow(2).sum(dim=1) - 2 * \
169
+ torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
170
+
171
+ encoding_indices = torch.argmin(d, dim=1)
172
+
173
+ z_q = self.embedding(encoding_indices).view(z.shape)
174
+
175
+ encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
176
+
177
+ if not self.training:
178
+ with torch.no_grad():
179
+ cluster_size = encodings.sum(0)
180
+ self.all_reduce_fn(cluster_size)
181
+ ema_inplace(self.cluster_size, cluster_size, self.decay)
182
+
183
+ if self.training and self.embedding.update:
184
+ # EMA cluster size
185
+
186
+ bins = encodings.sum(0)
187
+ self.all_reduce_fn(bins)
188
+
189
+ # self.embedding.cluster_size_ema_update(bins)
190
+ ema_inplace(self.cluster_size, bins, self.decay)
191
+
192
+ zero_mask = (bins == 0)
193
+ bins = bins.masked_fill(zero_mask, 1.)
194
+
195
+ embed_sum = z_flattened.t() @ encodings
196
+ self.all_reduce_fn(embed_sum)
197
+
198
+ embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
199
+ embed_normalized = l2norm(embed_normalized)
200
+
201
+ embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight,
202
+ embed_normalized)
203
+ norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay)
204
+
205
+ # compute loss for embedding
206
+ loss = self.beta * F.mse_loss(z_q.detach(), z)
207
+
208
+ # preserve gradients
209
+ z_q = z + (z_q - z).detach()
210
+
211
+ # reshape back to match original input shape
212
+ # z_q, 'b h w c -> b c h w'
213
+ # z_q = rearrange(z_q, 'b h w c -> b c h w')
214
+ # z_q = z_q.transpose(1, 2)
215
+ return z_q, loss, encoding_indices
models/modeling_llama.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
2
+
3
+ """ PyTorch LLaMA model."""
4
+ import math
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
14
+ from transformers.modeling_utils import PreTrainedModel
15
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
16
+ from transformers.models.llama.configuration_llama import LlamaConfig
17
+
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+ _CONFIG_FOR_DOC = "LlamaConfig"
22
+
23
+
24
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
25
+ def _make_causal_mask(
26
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
27
+ ):
28
+ """
29
+ Make causal mask used for bi-directional self-attention.
30
+ """
31
+ bsz, tgt_len = input_ids_shape
32
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
33
+ mask_cond = torch.arange(mask.size(-1), device=device)
34
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
35
+ mask = mask.to(dtype)
36
+
37
+ if past_key_values_length > 0:
38
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
39
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
40
+
41
+
42
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
43
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
44
+ """
45
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
46
+ """
47
+ bsz, src_len = mask.size()
48
+ tgt_len = tgt_len if tgt_len is not None else src_len
49
+
50
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
51
+
52
+ inverted_mask = 1.0 - expanded_mask
53
+
54
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
55
+
56
+
57
+ class LlamaRMSNorm(nn.Module):
58
+ def __init__(self, hidden_size, eps=1e-6):
59
+ """
60
+ LlamaRMSNorm is equivalent to T5LayerNorm
61
+ """
62
+ super().__init__()
63
+ self.weight = nn.Parameter(torch.ones(hidden_size))
64
+ self.variance_epsilon = eps
65
+
66
+ def forward(self, hidden_states):
67
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
68
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
69
+
70
+ # convert into half-precision if necessary
71
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
72
+ hidden_states = hidden_states.to(self.weight.dtype)
73
+
74
+ return self.weight * hidden_states
75
+
76
+
77
+ class LlamaRotaryEmbedding(torch.nn.Module):
78
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
79
+ super().__init__()
80
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
81
+ self.register_buffer("inv_freq", inv_freq)
82
+
83
+ # Build here to make `torch.jit.trace` work.
84
+ self.max_seq_len_cached = max_position_embeddings
85
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
86
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
87
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
88
+ emb = torch.cat((freqs, freqs), dim=-1)
89
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
90
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
91
+
92
+ def forward(self, x, seq_len=None):
93
+ # x: [bs, num_attention_heads, seq_len, head_size]
94
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
95
+ if seq_len > self.max_seq_len_cached:
96
+ self.max_seq_len_cached = seq_len
97
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
98
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
99
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
100
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
101
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
102
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
103
+ return (
104
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
105
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
106
+ )
107
+
108
+
109
+ def rotate_half(x):
110
+ """Rotates half the hidden dims of the input."""
111
+ x1 = x[..., : x.shape[-1] // 2]
112
+ x2 = x[..., x.shape[-1] // 2 :]
113
+ return torch.cat((-x2, x1), dim=-1)
114
+
115
+
116
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
117
+ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
118
+ gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
119
+ cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
120
+ sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
121
+ q_embed = (q * cos) + (rotate_half(q) * sin)
122
+ k_embed = (k * cos) + (rotate_half(k) * sin)
123
+ return q_embed, k_embed
124
+
125
+
126
+ class LlamaMLP(nn.Module):
127
+ def __init__(
128
+ self,
129
+ hidden_size: int,
130
+ intermediate_size: int,
131
+ hidden_act: str,
132
+ ):
133
+ super().__init__()
134
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
135
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
136
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
137
+ self.act_fn = ACT2FN[hidden_act]
138
+
139
+ def forward(self, x):
140
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
141
+
142
+
143
+ class LlamaAttention(nn.Module):
144
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
145
+
146
+ def __init__(self, config: LlamaConfig):
147
+ super().__init__()
148
+ self.config = config
149
+ self.hidden_size = config.hidden_size
150
+ self.num_heads = config.num_attention_heads
151
+ self.head_dim = self.hidden_size // self.num_heads
152
+ self.max_position_embeddings = config.max_position_embeddings
153
+
154
+ if (self.head_dim * self.num_heads) != self.hidden_size:
155
+ raise ValueError(
156
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
157
+ f" and `num_heads`: {self.num_heads})."
158
+ )
159
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
160
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
161
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
162
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
163
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
164
+
165
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
166
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
167
+
168
+ def forward(
169
+ self,
170
+ hidden_states: torch.Tensor,
171
+ attention_mask: Optional[torch.Tensor] = None,
172
+ position_ids: Optional[torch.LongTensor] = None,
173
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
174
+ output_attentions: bool = False,
175
+ use_cache: bool = False,
176
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
177
+ bsz, q_len, _ = hidden_states.size()
178
+
179
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
180
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
181
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
182
+
183
+ kv_seq_len = key_states.shape[-2]
184
+ if past_key_value is not None:
185
+ kv_seq_len += past_key_value[0].shape[-2]
186
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
187
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
188
+ # [bsz, nh, t, hd]
189
+
190
+ if past_key_value is not None:
191
+ # reuse k, v, self_attention
192
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
193
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
194
+
195
+ past_key_value = (key_states, value_states) if use_cache else None
196
+
197
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
198
+
199
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
200
+ raise ValueError(
201
+ f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
202
+ f" {attn_weights.size()}"
203
+ )
204
+
205
+ if attention_mask is not None:
206
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
207
+ raise ValueError(
208
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
209
+ )
210
+ attn_weights = attn_weights + attention_mask
211
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
212
+
213
+ # upcast attention to fp32
214
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
215
+ attn_output = torch.matmul(attn_weights, value_states)
216
+
217
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
218
+ raise ValueError(
219
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
220
+ f" {attn_output.size()}"
221
+ )
222
+
223
+ attn_output = attn_output.transpose(1, 2)
224
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
225
+
226
+ attn_output = self.o_proj(attn_output)
227
+
228
+ if not output_attentions:
229
+ attn_weights = None
230
+
231
+ return attn_output, attn_weights, past_key_value
232
+
233
+
234
+ class LlamaDecoderLayer(nn.Module):
235
+ def __init__(self, config: LlamaConfig):
236
+ super().__init__()
237
+ self.hidden_size = config.hidden_size
238
+ self.self_attn = LlamaAttention(config=config)
239
+ self.mlp = LlamaMLP(
240
+ hidden_size=self.hidden_size,
241
+ intermediate_size=config.intermediate_size,
242
+ hidden_act=config.hidden_act,
243
+ )
244
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
245
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
246
+
247
+ def forward(
248
+ self,
249
+ hidden_states: torch.Tensor,
250
+ attention_mask: Optional[torch.Tensor] = None,
251
+ position_ids: Optional[torch.LongTensor] = None,
252
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
253
+ output_attentions: Optional[bool] = False,
254
+ use_cache: Optional[bool] = False,
255
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
256
+ """
257
+ Args:
258
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
259
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
260
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
261
+ output_attentions (`bool`, *optional*):
262
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
263
+ returned tensors for more detail.
264
+ use_cache (`bool`, *optional*):
265
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
266
+ (see `past_key_values`).
267
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
268
+ """
269
+
270
+ residual = hidden_states
271
+
272
+ hidden_states = self.input_layernorm(hidden_states)
273
+
274
+ # Self Attention
275
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
276
+ hidden_states=hidden_states,
277
+ attention_mask=attention_mask,
278
+ position_ids=position_ids,
279
+ past_key_value=past_key_value,
280
+ output_attentions=output_attentions,
281
+ use_cache=use_cache,
282
+ )
283
+ hidden_states = residual + hidden_states
284
+
285
+ # Fully Connected
286
+ residual = hidden_states
287
+ hidden_states = self.post_attention_layernorm(hidden_states)
288
+ hidden_states = self.mlp(hidden_states)
289
+ hidden_states = residual + hidden_states
290
+
291
+ outputs = (hidden_states,)
292
+
293
+ if output_attentions:
294
+ outputs += (self_attn_weights,)
295
+
296
+ if use_cache:
297
+ outputs += (present_key_value,)
298
+
299
+ return outputs
300
+
301
+
302
+ LLAMA_START_DOCSTRING = r"""
303
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
304
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
305
+ etc.)
306
+
307
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
308
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
309
+ and behavior.
310
+
311
+ Parameters:
312
+ config ([`LlamaConfig`]):
313
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
314
+ load the weights associated with the model, only the configuration. Check out the
315
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
316
+ """
317
+
318
+
319
+ @add_start_docstrings(
320
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
321
+ LLAMA_START_DOCSTRING,
322
+ )
323
+ class LlamaPreTrainedModel(PreTrainedModel):
324
+ config_class = LlamaConfig
325
+ base_model_prefix = "model"
326
+ supports_gradient_checkpointing = True
327
+ _no_split_modules = ["LlamaDecoderLayer"]
328
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
329
+
330
+ def _init_weights(self, module):
331
+ std = self.config.initializer_range
332
+ if isinstance(module, nn.Linear):
333
+ module.weight.data.normal_(mean=0.0, std=std)
334
+ if module.bias is not None:
335
+ module.bias.data.zero_()
336
+ elif isinstance(module, nn.Embedding):
337
+ module.weight.data.normal_(mean=0.0, std=std)
338
+ if module.padding_idx is not None:
339
+ module.weight.data[module.padding_idx].zero_()
340
+
341
+ def _set_gradient_checkpointing(self, module, value=False):
342
+ if isinstance(module, LlamaModel):
343
+ module.gradient_checkpointing = value
344
+
345
+
346
+ LLAMA_INPUTS_DOCSTRING = r"""
347
+ Args:
348
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
349
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
350
+ it.
351
+
352
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
353
+ [`PreTrainedTokenizer.__call__`] for details.
354
+
355
+ [What are input IDs?](../glossary#input-ids)
356
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
357
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
358
+
359
+ - 1 for tokens that are **not masked**,
360
+ - 0 for tokens that are **masked**.
361
+
362
+ [What are attention masks?](../glossary#attention-mask)
363
+
364
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
365
+ [`PreTrainedTokenizer.__call__`] for details.
366
+
367
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
368
+ `past_key_values`).
369
+
370
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
371
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
372
+ information on the default strategy.
373
+
374
+ - 1 indicates the head is **not masked**,
375
+ - 0 indicates the head is **masked**.
376
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
377
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
378
+ config.n_positions - 1]`.
379
+
380
+ [What are position IDs?](../glossary#position-ids)
381
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
382
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
383
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
384
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
385
+
386
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
387
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
388
+
389
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
390
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
391
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
392
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
393
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
394
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
395
+ model's internal embedding lookup matrix.
396
+ use_cache (`bool`, *optional*):
397
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
398
+ `past_key_values`).
399
+ output_attentions (`bool`, *optional*):
400
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
401
+ tensors for more detail.
402
+ output_hidden_states (`bool`, *optional*):
403
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
404
+ more detail.
405
+ return_dict (`bool`, *optional*):
406
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
407
+ """
408
+
409
+
410
+ @add_start_docstrings(
411
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
412
+ LLAMA_START_DOCSTRING,
413
+ )
414
+ class LlamaModel(LlamaPreTrainedModel):
415
+ """
416
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
417
+
418
+ Args:
419
+ config: LlamaConfig
420
+ """
421
+
422
+ def __init__(self, config: LlamaConfig):
423
+ super().__init__(config)
424
+ self.padding_idx = config.pad_token_id
425
+ self.vocab_size = config.vocab_size
426
+
427
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
428
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
429
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
430
+
431
+ self.gradient_checkpointing = False
432
+ # Initialize weights and apply final processing
433
+ self.post_init()
434
+
435
+ def get_input_embeddings(self):
436
+ return self.embed_tokens
437
+
438
+ def set_input_embeddings(self, value):
439
+ self.embed_tokens = value
440
+
441
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
442
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
443
+ # create causal mask
444
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
445
+ combined_attention_mask = None
446
+ if input_shape[-1] > 1:
447
+ combined_attention_mask = _make_causal_mask(
448
+ input_shape,
449
+ inputs_embeds.dtype,
450
+ device=inputs_embeds.device,
451
+ past_key_values_length=past_key_values_length,
452
+ )
453
+
454
+ if attention_mask is not None:
455
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
456
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
457
+ inputs_embeds.device
458
+ )
459
+ combined_attention_mask = (
460
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
461
+ )
462
+
463
+ return combined_attention_mask
464
+
465
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
466
+ def forward(
467
+ self,
468
+ input_ids: torch.LongTensor = None,
469
+ attention_mask: Optional[torch.Tensor] = None,
470
+ position_ids: Optional[torch.LongTensor] = None,
471
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
472
+ inputs_embeds: Optional[torch.FloatTensor] = None,
473
+ query_embeds: Optional[torch.FloatTensor] = None,
474
+ use_cache: Optional[bool] = None,
475
+ output_attentions: Optional[bool] = None,
476
+ output_hidden_states: Optional[bool] = None,
477
+ return_dict: Optional[bool] = None,
478
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
479
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
480
+ output_hidden_states = (
481
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
482
+ )
483
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
484
+
485
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
486
+
487
+ # retrieve input_ids and inputs_embeds
488
+ if input_ids is not None and inputs_embeds is not None:
489
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
490
+ elif input_ids is not None:
491
+ batch_size, seq_length = input_ids.shape
492
+ elif inputs_embeds is not None:
493
+ batch_size, seq_length, _ = inputs_embeds.shape
494
+ else:
495
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
496
+
497
+ if inputs_embeds is None:
498
+ inputs_embeds = self.embed_tokens(input_ids)
499
+ if query_embeds is not None:
500
+ inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
501
+ batch_size, seq_length, _ = inputs_embeds.shape
502
+
503
+ seq_length_with_past = seq_length
504
+ past_key_values_length = 0
505
+
506
+ if past_key_values is not None:
507
+ past_key_values_length = past_key_values[0][0].shape[2]
508
+ seq_length_with_past = seq_length_with_past + past_key_values_length
509
+
510
+ if position_ids is None:
511
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
512
+ position_ids = torch.arange(
513
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
514
+ )
515
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
516
+ else:
517
+ position_ids = position_ids.view(-1, seq_length).long()
518
+
519
+ # embed positions
520
+ if attention_mask is None:
521
+ attention_mask = torch.ones(
522
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
523
+ )
524
+ attention_mask = self._prepare_decoder_attention_mask(
525
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
526
+ )
527
+
528
+ hidden_states = inputs_embeds
529
+
530
+ if self.gradient_checkpointing and self.training:
531
+ if use_cache:
532
+ logger.warning_once(
533
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
534
+ )
535
+ use_cache = False
536
+
537
+ # decoder layers
538
+ all_hidden_states = () if output_hidden_states else None
539
+ all_self_attns = () if output_attentions else None
540
+ next_decoder_cache = () if use_cache else None
541
+
542
+ for idx, decoder_layer in enumerate(self.layers):
543
+ if output_hidden_states:
544
+ all_hidden_states += (hidden_states,)
545
+
546
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
547
+
548
+ if self.gradient_checkpointing and self.training:
549
+
550
+ def create_custom_forward(module):
551
+ def custom_forward(*inputs):
552
+ # None for past_key_value
553
+ return module(*inputs, output_attentions, None)
554
+
555
+ return custom_forward
556
+
557
+ layer_outputs = torch.utils.checkpoint.checkpoint(
558
+ create_custom_forward(decoder_layer),
559
+ hidden_states,
560
+ attention_mask,
561
+ position_ids,
562
+ None,
563
+ )
564
+ else:
565
+ layer_outputs = decoder_layer(
566
+ hidden_states,
567
+ attention_mask=attention_mask,
568
+ position_ids=position_ids,
569
+ past_key_value=past_key_value,
570
+ output_attentions=output_attentions,
571
+ use_cache=use_cache,
572
+ )
573
+
574
+ hidden_states = layer_outputs[0]
575
+
576
+ if use_cache:
577
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
578
+
579
+ if output_attentions:
580
+ all_self_attns += (layer_outputs[1],)
581
+
582
+ hidden_states = self.norm(hidden_states)
583
+
584
+ # add hidden states from the last decoder layer
585
+ if output_hidden_states:
586
+ all_hidden_states += (hidden_states,)
587
+
588
+ next_cache = next_decoder_cache if use_cache else None
589
+ if not return_dict:
590
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
591
+ return BaseModelOutputWithPast(
592
+ last_hidden_state=hidden_states,
593
+ past_key_values=next_cache,
594
+ hidden_states=all_hidden_states,
595
+ attentions=all_self_attns,
596
+ )
597
+
598
+
599
+ class LlamaForCausalLM(LlamaPreTrainedModel):
600
+ def __init__(self, config):
601
+ super().__init__(config)
602
+ self.model = LlamaModel(config)
603
+
604
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
605
+
606
+ # Initialize weights and apply final processing
607
+ self.post_init()
608
+
609
+ def get_input_embeddings(self):
610
+ return self.model.embed_tokens
611
+
612
+ def set_input_embeddings(self, value):
613
+ self.model.embed_tokens = value
614
+
615
+ def get_output_embeddings(self):
616
+ return self.lm_head
617
+
618
+ def set_output_embeddings(self, new_embeddings):
619
+ self.lm_head = new_embeddings
620
+
621
+ def set_decoder(self, decoder):
622
+ self.model = decoder
623
+
624
+ def get_decoder(self):
625
+ return self.model
626
+
627
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
628
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
629
+ def forward(
630
+ self,
631
+ input_ids: torch.LongTensor = None,
632
+ attention_mask: Optional[torch.Tensor] = None,
633
+ position_ids: Optional[torch.LongTensor] = None,
634
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
635
+ inputs_embeds: Optional[torch.FloatTensor] = None,
636
+ query_embeds: Optional[torch.FloatTensor] = None,
637
+ labels: Optional[torch.LongTensor] = None,
638
+ use_cache: Optional[bool] = None,
639
+ output_attentions: Optional[bool] = None,
640
+ output_hidden_states: Optional[bool] = None,
641
+ return_dict: Optional[bool] = None,
642
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
643
+ r"""
644
+ Args:
645
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
646
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
647
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
648
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
649
+
650
+ Returns:
651
+
652
+ Example:
653
+
654
+ ```python
655
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
656
+
657
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
658
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
659
+
660
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
661
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
662
+
663
+ >>> # Generate
664
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
665
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
666
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
667
+ ```"""
668
+
669
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
670
+ output_hidden_states = (
671
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
672
+ )
673
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
674
+
675
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
676
+ outputs = self.model(
677
+ input_ids=input_ids,
678
+ attention_mask=attention_mask,
679
+ position_ids=position_ids,
680
+ past_key_values=past_key_values,
681
+ inputs_embeds=inputs_embeds,
682
+ query_embeds=query_embeds,
683
+ use_cache=use_cache,
684
+ output_attentions=output_attentions,
685
+ output_hidden_states=output_hidden_states,
686
+ return_dict=return_dict,
687
+ )
688
+
689
+ hidden_states = outputs[0]
690
+ logits = self.lm_head(hidden_states)
691
+
692
+ loss = None
693
+ if labels is not None:
694
+ # Shift so that tokens < n predict n
695
+ shift_logits = logits[..., :-1, :].contiguous()
696
+ shift_labels = labels[..., 1:].contiguous()
697
+ # Flatten the tokens
698
+ loss_fct = CrossEntropyLoss()
699
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
700
+ shift_labels = shift_labels.view(-1)
701
+ # Enable model parallelism
702
+ shift_labels = shift_labels.to(shift_logits.device)
703
+ loss = loss_fct(shift_logits, shift_labels)
704
+
705
+ if not return_dict:
706
+ output = (logits,) + outputs[1:]
707
+ return (loss,) + output if loss is not None else output
708
+
709
+ return CausalLMOutputWithPast(
710
+ loss=loss,
711
+ logits=logits,
712
+ past_key_values=outputs.past_key_values,
713
+ hidden_states=outputs.hidden_states,
714
+ attentions=outputs.attentions,
715
+ )
716
+
717
+ def prepare_inputs_for_generation(
718
+ self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
719
+ ):
720
+ if past_key_values:
721
+ input_ids = input_ids[:, -1:]
722
+
723
+ position_ids = kwargs.get("position_ids", None)
724
+ if attention_mask is not None and position_ids is None:
725
+ # create position_ids on the fly for batch generation
726
+ position_ids = attention_mask.long().cumsum(-1) - 1
727
+ position_ids.masked_fill_(attention_mask == 0, 1)
728
+ if past_key_values:
729
+ position_ids = position_ids[:, -1].unsqueeze(-1)
730
+ query_embeds = None
731
+
732
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
733
+ if inputs_embeds is not None and past_key_values is None:
734
+ model_inputs = {"inputs_embeds": inputs_embeds}
735
+ else:
736
+ model_inputs = {"input_ids": input_ids}
737
+
738
+ model_inputs.update(
739
+ {
740
+ "position_ids": position_ids,
741
+ "query_embeds": query_embeds,
742
+ "past_key_values": past_key_values,
743
+ "use_cache": kwargs.get("use_cache"),
744
+ "attention_mask": attention_mask,
745
+ }
746
+ )
747
+ return model_inputs
748
+
749
+ @staticmethod
750
+ def _reorder_cache(past_key_values, beam_idx):
751
+ reordered_past = ()
752
+ for layer_past in past_key_values:
753
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
754
+ return reordered_past
models/modeling_qwen2.py ADDED
@@ -0,0 +1,1169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/qwen2/modular_qwen2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_qwen2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from typing import Callable, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from ...activations import ACT2FN
13
+ from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
14
+ from ...generation import GenerationMixin
15
+ from ...modeling_attn_mask_utils import AttentionMaskConverter
16
+ from ...modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from ...modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ QuestionAnsweringModelOutput,
21
+ SequenceClassifierOutputWithPast,
22
+ TokenClassifierOutput,
23
+ )
24
+ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
25
+ from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
26
+ from ...processing_utils import Unpack
27
+ from ...utils import (
28
+ LossKwargs,
29
+ add_code_sample_docstrings,
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ replace_return_docstrings,
34
+ )
35
+ from ...utils.deprecation import deprecate_kwarg
36
+ from .configuration_qwen2 import Qwen2Config
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
42
+ _CONFIG_FOR_DOC = "Qwen2Config"
43
+
44
+
45
+ class Qwen2MLP(nn.Module):
46
+ def __init__(self, config):
47
+ super().__init__()
48
+ self.config = config
49
+ self.hidden_size = config.hidden_size
50
+ self.intermediate_size = config.intermediate_size
51
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
52
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
53
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
54
+ self.act_fn = ACT2FN[config.hidden_act]
55
+
56
+ def forward(self, x):
57
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
58
+ return down_proj
59
+
60
+
61
+ def rotate_half(x):
62
+ """Rotates half the hidden dims of the input."""
63
+ x1 = x[..., : x.shape[-1] // 2]
64
+ x2 = x[..., x.shape[-1] // 2 :]
65
+ return torch.cat((-x2, x1), dim=-1)
66
+
67
+
68
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
69
+ """Applies Rotary Position Embedding to the query and key tensors.
70
+
71
+ Args:
72
+ q (`torch.Tensor`): The query tensor.
73
+ k (`torch.Tensor`): The key tensor.
74
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
75
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
76
+ position_ids (`torch.Tensor`, *optional*):
77
+ Deprecated and unused.
78
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
79
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
80
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
81
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
82
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
83
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
84
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
85
+ Returns:
86
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
87
+ """
88
+ cos = cos.unsqueeze(unsqueeze_dim)
89
+ sin = sin.unsqueeze(unsqueeze_dim)
90
+ q_embed = (q * cos) + (rotate_half(q) * sin)
91
+ k_embed = (k * cos) + (rotate_half(k) * sin)
92
+ return q_embed, k_embed
93
+
94
+
95
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
96
+ """
97
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
98
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
99
+ """
100
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
101
+ if n_rep == 1:
102
+ return hidden_states
103
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
104
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
105
+
106
+
107
+ def eager_attention_forward(
108
+ module: nn.Module,
109
+ query: torch.Tensor,
110
+ key: torch.Tensor,
111
+ value: torch.Tensor,
112
+ attention_mask: Optional[torch.Tensor],
113
+ scaling: float,
114
+ dropout: float = 0.0,
115
+ **kwargs,
116
+ ):
117
+ key_states = repeat_kv(key, module.num_key_value_groups)
118
+ value_states = repeat_kv(value, module.num_key_value_groups)
119
+
120
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
121
+ if attention_mask is not None:
122
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
123
+ attn_weights = attn_weights + causal_mask
124
+
125
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
126
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
127
+ attn_output = torch.matmul(attn_weights, value_states)
128
+ attn_output = attn_output.transpose(1, 2).contiguous()
129
+
130
+ return attn_output, attn_weights
131
+
132
+
133
+ class Qwen2Attention(nn.Module):
134
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
135
+
136
+ def __init__(self, config: Qwen2Config, layer_idx: int):
137
+ super().__init__()
138
+ self.config = config
139
+ self.layer_idx = layer_idx
140
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
141
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
142
+ self.scaling = self.head_dim**-0.5
143
+ self.attention_dropout = config.attention_dropout
144
+ self.is_causal = True
145
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
146
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
147
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
148
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
149
+
150
+ def forward(
151
+ self,
152
+ hidden_states: torch.Tensor,
153
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
154
+ attention_mask: Optional[torch.Tensor],
155
+ past_key_value: Optional[Cache] = None,
156
+ cache_position: Optional[torch.LongTensor] = None,
157
+ **kwargs: Unpack[FlashAttentionKwargs],
158
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
159
+ input_shape = hidden_states.shape[:-1]
160
+ hidden_shape = (*input_shape, -1, self.head_dim)
161
+
162
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
163
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
164
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
165
+
166
+ cos, sin = position_embeddings
167
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
168
+
169
+ if past_key_value is not None:
170
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
171
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
172
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
173
+
174
+ sliding_window = None
175
+ if (
176
+ self.config.use_sliding_window
177
+ and getattr(self.config, "sliding_window", None) is not None
178
+ and self.layer_idx >= self.config.max_window_layers
179
+ ):
180
+ sliding_window = self.config.sliding_window
181
+
182
+ attention_interface: Callable = eager_attention_forward
183
+ if self.config._attn_implementation != "eager":
184
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
185
+ logger.warning_once(
186
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
187
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
188
+ )
189
+ else:
190
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
191
+
192
+ attn_output, attn_weights = attention_interface(
193
+ self,
194
+ query_states,
195
+ key_states,
196
+ value_states,
197
+ attention_mask,
198
+ dropout=0.0 if not self.training else self.attention_dropout,
199
+ scaling=self.scaling,
200
+ sliding_window=sliding_window, # main diff with Llama
201
+ **kwargs,
202
+ )
203
+
204
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
205
+ attn_output = self.o_proj(attn_output)
206
+ return attn_output, attn_weights
207
+
208
+
209
+ class Qwen2RMSNorm(nn.Module):
210
+ def __init__(self, hidden_size, eps=1e-6):
211
+ """
212
+ Qwen2RMSNorm is equivalent to T5LayerNorm
213
+ """
214
+ super().__init__()
215
+ self.weight = nn.Parameter(torch.ones(hidden_size))
216
+ self.variance_epsilon = eps
217
+
218
+ def forward(self, hidden_states):
219
+ input_dtype = hidden_states.dtype
220
+ hidden_states = hidden_states.to(torch.float32)
221
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
222
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
223
+ return self.weight * hidden_states.to(input_dtype)
224
+
225
+ def extra_repr(self):
226
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
227
+
228
+
229
+ class Qwen2DecoderLayer(nn.Module):
230
+ def __init__(self, config: Qwen2Config, layer_idx: int):
231
+ super().__init__()
232
+ self.hidden_size = config.hidden_size
233
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
234
+ self.mlp = Qwen2MLP(config)
235
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
236
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
237
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
238
+ logger.warning_once(
239
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
240
+ "unexpected results may be encountered."
241
+ )
242
+
243
+ def forward(
244
+ self,
245
+ hidden_states: torch.Tensor,
246
+ attention_mask: Optional[torch.Tensor] = None,
247
+ position_ids: Optional[torch.LongTensor] = None,
248
+ past_key_value: Optional[Cache] = None,
249
+ output_attentions: Optional[bool] = False,
250
+ use_cache: Optional[bool] = False,
251
+ cache_position: Optional[torch.LongTensor] = None,
252
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
253
+ **kwargs: Unpack[FlashAttentionKwargs],
254
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
255
+ residual = hidden_states
256
+
257
+ hidden_states = self.input_layernorm(hidden_states)
258
+
259
+ # Self Attention
260
+ hidden_states, self_attn_weights = self.self_attn(
261
+ hidden_states=hidden_states,
262
+ attention_mask=attention_mask,
263
+ position_ids=position_ids,
264
+ past_key_value=past_key_value,
265
+ output_attentions=output_attentions,
266
+ use_cache=use_cache,
267
+ cache_position=cache_position,
268
+ position_embeddings=position_embeddings,
269
+ **kwargs,
270
+ )
271
+ hidden_states = residual + hidden_states
272
+
273
+ # Fully Connected
274
+ residual = hidden_states
275
+ hidden_states = self.post_attention_layernorm(hidden_states)
276
+ hidden_states = self.mlp(hidden_states)
277
+ hidden_states = residual + hidden_states
278
+
279
+ outputs = (hidden_states,)
280
+ if output_attentions:
281
+ outputs += (self_attn_weights,)
282
+
283
+ return outputs
284
+
285
+
286
+ class Qwen2RotaryEmbedding(nn.Module):
287
+ def __init__(self, config: Qwen2Config, device=None):
288
+ super().__init__()
289
+ # BC: "rope_type" was originally "type"
290
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
291
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
292
+ else:
293
+ self.rope_type = "default"
294
+ self.max_seq_len_cached = config.max_position_embeddings
295
+ self.original_max_seq_len = config.max_position_embeddings
296
+
297
+ self.config = config
298
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
299
+
300
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
301
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
302
+ self.original_inv_freq = self.inv_freq
303
+
304
+ def _dynamic_frequency_update(self, position_ids, device):
305
+ """
306
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
307
+ 1 - growing beyond the cached sequence length (allow scaling)
308
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
309
+ """
310
+ seq_len = torch.max(position_ids) + 1
311
+ if seq_len > self.max_seq_len_cached: # growth
312
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
313
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
314
+ self.max_seq_len_cached = seq_len
315
+
316
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
317
+ # This .to() is needed if the model has been moved to a device after being initialized (because
318
+ # the buffer is automatically moved, but not the original copy)
319
+ self.original_inv_freq = self.original_inv_freq.to(device)
320
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
321
+ self.max_seq_len_cached = self.original_max_seq_len
322
+
323
+ @torch.no_grad()
324
+ def forward(self, x, position_ids):
325
+ if "dynamic" in self.rope_type:
326
+ self._dynamic_frequency_update(position_ids, device=x.device)
327
+
328
+ # Core RoPE block
329
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
330
+ position_ids_expanded = position_ids[:, None, :].float()
331
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
332
+ device_type = x.device.type
333
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
334
+ with torch.autocast(device_type=device_type, enabled=False):
335
+ freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
336
+ emb = torch.cat((freqs, freqs), dim=-1)
337
+ cos = emb.cos()
338
+ sin = emb.sin()
339
+
340
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
341
+ cos = cos * self.attention_scaling
342
+ sin = sin * self.attention_scaling
343
+
344
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
345
+
346
+
347
+ QWEN2_START_DOCSTRING = r"""
348
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
349
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
350
+ etc.)
351
+
352
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
353
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
354
+ and behavior.
355
+
356
+ Parameters:
357
+ config ([`Qwen2Config`]):
358
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
359
+ load the weights associated with the model, only the configuration. Check out the
360
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
361
+ """
362
+
363
+
364
+ @add_start_docstrings(
365
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
366
+ QWEN2_START_DOCSTRING,
367
+ )
368
+ class Qwen2PreTrainedModel(PreTrainedModel):
369
+ config_class = Qwen2Config
370
+ base_model_prefix = "model"
371
+ supports_gradient_checkpointing = True
372
+ _no_split_modules = ["Qwen2DecoderLayer"]
373
+ _skip_keys_device_placement = ["past_key_values"]
374
+ _supports_flash_attn_2 = True
375
+ _supports_sdpa = True
376
+ _supports_flex_attn = True
377
+ _supports_cache_class = True
378
+ _supports_quantized_cache = True
379
+ _supports_static_cache = True
380
+ _supports_attention_backend = True
381
+
382
+ def _init_weights(self, module):
383
+ std = self.config.initializer_range
384
+ if isinstance(module, nn.Linear):
385
+ module.weight.data.normal_(mean=0.0, std=std)
386
+ if module.bias is not None:
387
+ module.bias.data.zero_()
388
+ elif isinstance(module, nn.Embedding):
389
+ module.weight.data.normal_(mean=0.0, std=std)
390
+ if module.padding_idx is not None:
391
+ module.weight.data[module.padding_idx].zero_()
392
+
393
+
394
+ QWEN2_INPUTS_DOCSTRING = r"""
395
+ Args:
396
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
397
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
398
+ it.
399
+
400
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
401
+ [`PreTrainedTokenizer.__call__`] for details.
402
+
403
+ [What are input IDs?](../glossary#input-ids)
404
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
405
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
406
+
407
+ - 1 for tokens that are **not masked**,
408
+ - 0 for tokens that are **masked**.
409
+
410
+ [What are attention masks?](../glossary#attention-mask)
411
+
412
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
413
+ [`PreTrainedTokenizer.__call__`] for details.
414
+
415
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
416
+ `past_key_values`).
417
+
418
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
419
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
420
+ information on the default strategy.
421
+
422
+ - 1 indicates the head is **not masked**,
423
+ - 0 indicates the head is **masked**.
424
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
425
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
426
+ config.n_positions - 1]`.
427
+
428
+ [What are position IDs?](../glossary#position-ids)
429
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
430
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
431
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
432
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
433
+
434
+ Two formats are allowed:
435
+ - a [`~cache_utils.Cache`] instance, see our
436
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
437
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
438
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
439
+ cache format.
440
+
441
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
442
+ legacy cache format will be returned.
443
+
444
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
445
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
446
+ of shape `(batch_size, sequence_length)`.
447
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
448
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
449
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
450
+ model's internal embedding lookup matrix.
451
+ use_cache (`bool`, *optional*):
452
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
453
+ `past_key_values`).
454
+ output_attentions (`bool`, *optional*):
455
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
456
+ tensors for more detail.
457
+ output_hidden_states (`bool`, *optional*):
458
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
459
+ more detail.
460
+ return_dict (`bool`, *optional*):
461
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
462
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
463
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
464
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
465
+ the complete sequence length.
466
+ """
467
+
468
+
469
+ @add_start_docstrings(
470
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
471
+ QWEN2_START_DOCSTRING,
472
+ )
473
+ class Qwen2Model(Qwen2PreTrainedModel):
474
+ """
475
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
476
+
477
+ Args:
478
+ config: Qwen2Config
479
+ """
480
+
481
+ def __init__(self, config: Qwen2Config):
482
+ super().__init__(config)
483
+ self.padding_idx = config.pad_token_id
484
+ self.vocab_size = config.vocab_size
485
+
486
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
487
+ self.layers = nn.ModuleList(
488
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
489
+ )
490
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
491
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
492
+ self.gradient_checkpointing = False
493
+
494
+ # Initialize weights and apply final processing
495
+ self.post_init()
496
+
497
+ def get_input_embeddings(self):
498
+ return self.embed_tokens
499
+
500
+ def set_input_embeddings(self, value):
501
+ self.embed_tokens = value
502
+
503
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
504
+ def forward(
505
+ self,
506
+ input_ids: torch.LongTensor = None,
507
+ attention_mask: Optional[torch.Tensor] = None,
508
+ position_ids: Optional[torch.LongTensor] = None,
509
+ past_key_values: Optional[Cache] = None,
510
+ inputs_embeds: Optional[torch.FloatTensor] = None,
511
+ use_cache: Optional[bool] = None,
512
+ output_attentions: Optional[bool] = None,
513
+ output_hidden_states: Optional[bool] = None,
514
+ return_dict: Optional[bool] = None,
515
+ cache_position: Optional[torch.LongTensor] = None,
516
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
517
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
518
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
519
+ output_hidden_states = (
520
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
521
+ )
522
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
523
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
524
+
525
+ if (input_ids is None) ^ (inputs_embeds is not None):
526
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
527
+
528
+ if self.gradient_checkpointing and self.training and use_cache:
529
+ logger.warning_once(
530
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
531
+ )
532
+ use_cache = False
533
+
534
+ if inputs_embeds is None:
535
+ inputs_embeds = self.embed_tokens(input_ids)
536
+
537
+ if use_cache and past_key_values is None:
538
+ past_key_values = DynamicCache()
539
+
540
+ if cache_position is None:
541
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
542
+ cache_position = torch.arange(
543
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
544
+ )
545
+
546
+ if position_ids is None:
547
+ position_ids = cache_position.unsqueeze(0)
548
+
549
+ causal_mask = self._update_causal_mask(
550
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
551
+ )
552
+
553
+ hidden_states = inputs_embeds
554
+
555
+ # create position embeddings to be shared across the decoder layers
556
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
557
+
558
+ # decoder layers
559
+ all_hidden_states = () if output_hidden_states else None
560
+ all_self_attns = () if output_attentions else None
561
+
562
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
563
+ if output_hidden_states:
564
+ all_hidden_states += (hidden_states,)
565
+
566
+ if self.gradient_checkpointing and self.training:
567
+ layer_outputs = self._gradient_checkpointing_func(
568
+ decoder_layer.__call__,
569
+ hidden_states,
570
+ causal_mask,
571
+ position_ids,
572
+ past_key_values,
573
+ output_attentions,
574
+ use_cache,
575
+ cache_position,
576
+ position_embeddings,
577
+ )
578
+ else:
579
+ layer_outputs = decoder_layer(
580
+ hidden_states,
581
+ attention_mask=causal_mask,
582
+ position_ids=position_ids,
583
+ past_key_value=past_key_values,
584
+ output_attentions=output_attentions,
585
+ use_cache=use_cache,
586
+ cache_position=cache_position,
587
+ position_embeddings=position_embeddings,
588
+ **flash_attn_kwargs,
589
+ )
590
+
591
+ hidden_states = layer_outputs[0]
592
+
593
+ if output_attentions:
594
+ all_self_attns += (layer_outputs[1],)
595
+
596
+ hidden_states = self.norm(hidden_states)
597
+
598
+ # add hidden states from the last decoder layer
599
+ if output_hidden_states:
600
+ all_hidden_states += (hidden_states,)
601
+
602
+ output = BaseModelOutputWithPast(
603
+ last_hidden_state=hidden_states,
604
+ past_key_values=past_key_values if use_cache else None,
605
+ hidden_states=all_hidden_states,
606
+ attentions=all_self_attns,
607
+ )
608
+ return output if return_dict else output.to_tuple()
609
+
610
+ def _update_causal_mask(
611
+ self,
612
+ attention_mask: torch.Tensor,
613
+ input_tensor: torch.Tensor,
614
+ cache_position: torch.Tensor,
615
+ past_key_values: Cache,
616
+ output_attentions: bool,
617
+ ):
618
+ if self.config._attn_implementation == "flash_attention_2":
619
+ if attention_mask is not None and past_key_values is not None:
620
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
621
+ if is_padding_right:
622
+ raise ValueError(
623
+ "You are attempting to perform batched generation with padding_side='right'"
624
+ " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
625
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
626
+ )
627
+ if attention_mask is not None and 0.0 in attention_mask:
628
+ return attention_mask
629
+ return None
630
+
631
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
632
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
633
+ # to infer the attention mask.
634
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
635
+ using_static_cache = isinstance(past_key_values, StaticCache)
636
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
637
+
638
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
639
+ if (
640
+ self.config._attn_implementation == "sdpa"
641
+ and not (using_static_cache or using_sliding_window_cache)
642
+ and not output_attentions
643
+ ):
644
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
645
+ attention_mask,
646
+ inputs_embeds=input_tensor,
647
+ past_key_values_length=past_seen_tokens,
648
+ sliding_window=self.config.sliding_window,
649
+ is_training=self.training,
650
+ ):
651
+ return None
652
+
653
+ dtype, device = input_tensor.dtype, input_tensor.device
654
+ min_dtype = torch.finfo(dtype).min
655
+ sequence_length = input_tensor.shape[1]
656
+ # SlidingWindowCache or StaticCache
657
+ if using_sliding_window_cache or using_static_cache:
658
+ target_length = past_key_values.get_max_cache_shape()
659
+ # DynamicCache or no cache
660
+ else:
661
+ target_length = (
662
+ attention_mask.shape[-1]
663
+ if isinstance(attention_mask, torch.Tensor)
664
+ else past_seen_tokens + sequence_length + 1
665
+ )
666
+
667
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
668
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
669
+ attention_mask,
670
+ sequence_length=sequence_length,
671
+ target_length=target_length,
672
+ dtype=dtype,
673
+ device=device,
674
+ cache_position=cache_position,
675
+ batch_size=input_tensor.shape[0],
676
+ config=self.config,
677
+ past_key_values=past_key_values,
678
+ )
679
+
680
+ if (
681
+ self.config._attn_implementation == "sdpa"
682
+ and attention_mask is not None
683
+ and attention_mask.device.type in ["cuda", "xpu"]
684
+ and not output_attentions
685
+ ):
686
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
687
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
688
+ # Details: https://github.com/pytorch/pytorch/issues/110213
689
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
690
+
691
+ return causal_mask
692
+
693
+ @staticmethod
694
+ def _prepare_4d_causal_attention_mask_with_cache_position(
695
+ attention_mask: torch.Tensor,
696
+ sequence_length: int,
697
+ target_length: int,
698
+ dtype: torch.dtype,
699
+ device: torch.device,
700
+ cache_position: torch.Tensor,
701
+ batch_size: int,
702
+ config: Qwen2Config,
703
+ past_key_values: Cache,
704
+ ):
705
+ """
706
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
707
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
708
+
709
+ Args:
710
+ attention_mask (`torch.Tensor`):
711
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
712
+ sequence_length (`int`):
713
+ The sequence length being processed.
714
+ target_length (`int`):
715
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
716
+ dtype (`torch.dtype`):
717
+ The dtype to use for the 4D attention mask.
718
+ device (`torch.device`):
719
+ The device to plcae the 4D attention mask on.
720
+ cache_position (`torch.Tensor`):
721
+ Indices depicting the position of the input sequence tokens in the sequence.
722
+ batch_size (`torch.Tensor`):
723
+ Batch size.
724
+ config (`Qwen2Config`):
725
+ The model's configuration class
726
+ past_key_values (`Cache`):
727
+ The cache class that is being used currently to generate
728
+ """
729
+ if attention_mask is not None and attention_mask.dim() == 4:
730
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
731
+ causal_mask = attention_mask
732
+ else:
733
+ min_dtype = torch.finfo(dtype).min
734
+ causal_mask = torch.full(
735
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
736
+ )
737
+ diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
738
+ if config.sliding_window is not None:
739
+ # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
740
+ # the check is needed to verify is current checkpoint was trained with sliding window or not
741
+ if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
742
+ sliding_attend_mask = torch.arange(target_length, device=device) <= (
743
+ cache_position.reshape(-1, 1) - config.sliding_window
744
+ )
745
+ diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
746
+ causal_mask *= diagonal_attend_mask
747
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
748
+ if attention_mask is not None:
749
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
750
+ if attention_mask.shape[-1] > target_length:
751
+ attention_mask = attention_mask[:, :target_length]
752
+ mask_length = attention_mask.shape[-1]
753
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
754
+ causal_mask.device
755
+ )
756
+ padding_mask = padding_mask == 0
757
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
758
+ padding_mask, min_dtype
759
+ )
760
+ return causal_mask
761
+
762
+
763
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
764
+
765
+
766
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
767
+ _tied_weights_keys = ["lm_head.weight"]
768
+ _tp_plan = {"lm_head": "colwise_rep"}
769
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
770
+
771
+ def __init__(self, config):
772
+ super().__init__(config)
773
+ self.model = Qwen2Model(config)
774
+ self.vocab_size = config.vocab_size
775
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
776
+
777
+ # Initialize weights and apply final processing
778
+ self.post_init()
779
+
780
+ def get_input_embeddings(self):
781
+ return self.model.embed_tokens
782
+
783
+ def set_input_embeddings(self, value):
784
+ self.model.embed_tokens = value
785
+
786
+ def get_output_embeddings(self):
787
+ return self.lm_head
788
+
789
+ def set_output_embeddings(self, new_embeddings):
790
+ self.lm_head = new_embeddings
791
+
792
+ def set_decoder(self, decoder):
793
+ self.model = decoder
794
+
795
+ def get_decoder(self):
796
+ return self.model
797
+
798
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
799
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
800
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
801
+ def forward(
802
+ self,
803
+ input_ids: torch.LongTensor = None,
804
+ attention_mask: Optional[torch.Tensor] = None,
805
+ position_ids: Optional[torch.LongTensor] = None,
806
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
807
+ inputs_embeds: Optional[torch.FloatTensor] = None,
808
+ labels: Optional[torch.LongTensor] = None,
809
+ use_cache: Optional[bool] = None,
810
+ output_attentions: Optional[bool] = None,
811
+ output_hidden_states: Optional[bool] = None,
812
+ return_dict: Optional[bool] = None,
813
+ cache_position: Optional[torch.LongTensor] = None,
814
+ logits_to_keep: Union[int, torch.Tensor] = 0,
815
+ **kwargs: Unpack[KwargsForCausalLM],
816
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
817
+ r"""
818
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
819
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
820
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
821
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
822
+
823
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
824
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
825
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
826
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
827
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
828
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
829
+
830
+ Returns:
831
+
832
+ Example:
833
+
834
+ ```python
835
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
836
+
837
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
838
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
839
+
840
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
841
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
842
+
843
+ >>> # Generate
844
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
845
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
846
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
847
+ ```"""
848
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
849
+ output_hidden_states = (
850
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
851
+ )
852
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
853
+
854
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
855
+ outputs = self.model(
856
+ input_ids=input_ids,
857
+ attention_mask=attention_mask,
858
+ position_ids=position_ids,
859
+ past_key_values=past_key_values,
860
+ inputs_embeds=inputs_embeds,
861
+ use_cache=use_cache,
862
+ output_attentions=output_attentions,
863
+ output_hidden_states=output_hidden_states,
864
+ return_dict=return_dict,
865
+ cache_position=cache_position,
866
+ **kwargs,
867
+ )
868
+
869
+ hidden_states = outputs[0]
870
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
871
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
872
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
873
+
874
+ loss = None
875
+ if labels is not None:
876
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
877
+
878
+ if not return_dict:
879
+ output = (logits,) + outputs[1:]
880
+ return (loss,) + output if loss is not None else output
881
+
882
+ return CausalLMOutputWithPast(
883
+ loss=loss,
884
+ logits=logits,
885
+ past_key_values=outputs.past_key_values,
886
+ hidden_states=outputs.hidden_states,
887
+ attentions=outputs.attentions,
888
+ )
889
+
890
+
891
+ @add_start_docstrings(
892
+ """
893
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
894
+
895
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
896
+ (e.g. GPT-2) do.
897
+
898
+ Since it does classification on the last token, it requires to know the position of the last token. If a
899
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
900
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
901
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
902
+ each row of the batch).
903
+ """,
904
+ QWEN2_START_DOCSTRING,
905
+ )
906
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
907
+ def __init__(self, config):
908
+ super().__init__(config)
909
+ self.num_labels = config.num_labels
910
+ self.model = Qwen2Model(config)
911
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
912
+
913
+ # Initialize weights and apply final processing
914
+ self.post_init()
915
+
916
+ def get_input_embeddings(self):
917
+ return self.model.embed_tokens
918
+
919
+ def set_input_embeddings(self, value):
920
+ self.model.embed_tokens = value
921
+
922
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
923
+ def forward(
924
+ self,
925
+ input_ids: Optional[torch.LongTensor] = None,
926
+ attention_mask: Optional[torch.Tensor] = None,
927
+ position_ids: Optional[torch.LongTensor] = None,
928
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
929
+ inputs_embeds: Optional[torch.FloatTensor] = None,
930
+ labels: Optional[torch.LongTensor] = None,
931
+ use_cache: Optional[bool] = None,
932
+ output_attentions: Optional[bool] = None,
933
+ output_hidden_states: Optional[bool] = None,
934
+ return_dict: Optional[bool] = None,
935
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
936
+ r"""
937
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
938
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
939
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
940
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
941
+ """
942
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
943
+
944
+ transformer_outputs = self.model(
945
+ input_ids,
946
+ attention_mask=attention_mask,
947
+ position_ids=position_ids,
948
+ past_key_values=past_key_values,
949
+ inputs_embeds=inputs_embeds,
950
+ use_cache=use_cache,
951
+ output_attentions=output_attentions,
952
+ output_hidden_states=output_hidden_states,
953
+ return_dict=return_dict,
954
+ )
955
+ hidden_states = transformer_outputs[0]
956
+ logits = self.score(hidden_states)
957
+
958
+ if input_ids is not None:
959
+ batch_size = input_ids.shape[0]
960
+ else:
961
+ batch_size = inputs_embeds.shape[0]
962
+
963
+ if self.config.pad_token_id is None and batch_size != 1:
964
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
965
+ if self.config.pad_token_id is None:
966
+ last_non_pad_token = -1
967
+ elif input_ids is not None:
968
+ # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
969
+ non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
970
+ token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
971
+ last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
972
+ else:
973
+ last_non_pad_token = -1
974
+ logger.warning_once(
975
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
976
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
977
+ )
978
+
979
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
980
+
981
+ loss = None
982
+ if labels is not None:
983
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
984
+
985
+ if not return_dict:
986
+ output = (pooled_logits,) + transformer_outputs[1:]
987
+ return ((loss,) + output) if loss is not None else output
988
+
989
+ return SequenceClassifierOutputWithPast(
990
+ loss=loss,
991
+ logits=pooled_logits,
992
+ past_key_values=transformer_outputs.past_key_values,
993
+ hidden_states=transformer_outputs.hidden_states,
994
+ attentions=transformer_outputs.attentions,
995
+ )
996
+
997
+
998
+ @add_start_docstrings(
999
+ """
1000
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1001
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1002
+ """,
1003
+ QWEN2_START_DOCSTRING,
1004
+ )
1005
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
1006
+ def __init__(self, config):
1007
+ super().__init__(config)
1008
+ self.num_labels = config.num_labels
1009
+ self.model = Qwen2Model(config)
1010
+ if getattr(config, "classifier_dropout", None) is not None:
1011
+ classifier_dropout = config.classifier_dropout
1012
+ elif getattr(config, "hidden_dropout", None) is not None:
1013
+ classifier_dropout = config.hidden_dropout
1014
+ else:
1015
+ classifier_dropout = 0.1
1016
+ self.dropout = nn.Dropout(classifier_dropout)
1017
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1018
+
1019
+ # Initialize weights and apply final processing
1020
+ self.post_init()
1021
+
1022
+ def get_input_embeddings(self):
1023
+ return self.model.embed_tokens
1024
+
1025
+ def set_input_embeddings(self, value):
1026
+ self.model.embed_tokens = value
1027
+
1028
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1029
+ @add_code_sample_docstrings(
1030
+ checkpoint=_CHECKPOINT_FOR_DOC,
1031
+ output_type=TokenClassifierOutput,
1032
+ config_class=_CONFIG_FOR_DOC,
1033
+ )
1034
+ def forward(
1035
+ self,
1036
+ input_ids: Optional[torch.LongTensor] = None,
1037
+ attention_mask: Optional[torch.Tensor] = None,
1038
+ position_ids: Optional[torch.LongTensor] = None,
1039
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1040
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1041
+ labels: Optional[torch.LongTensor] = None,
1042
+ use_cache: Optional[bool] = None,
1043
+ output_attentions: Optional[bool] = None,
1044
+ output_hidden_states: Optional[bool] = None,
1045
+ return_dict: Optional[bool] = None,
1046
+ ) -> Union[Tuple, TokenClassifierOutput]:
1047
+ r"""
1048
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1049
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1050
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1051
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1052
+ """
1053
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1054
+
1055
+ outputs = self.model(
1056
+ input_ids,
1057
+ attention_mask=attention_mask,
1058
+ position_ids=position_ids,
1059
+ past_key_values=past_key_values,
1060
+ inputs_embeds=inputs_embeds,
1061
+ use_cache=use_cache,
1062
+ output_attentions=output_attentions,
1063
+ output_hidden_states=output_hidden_states,
1064
+ return_dict=return_dict,
1065
+ )
1066
+ sequence_output = outputs[0]
1067
+ sequence_output = self.dropout(sequence_output)
1068
+ logits = self.score(sequence_output)
1069
+
1070
+ loss = None
1071
+ if labels is not None:
1072
+ loss = self.loss_function(logits, labels, self.config)
1073
+
1074
+ if not return_dict:
1075
+ output = (logits,) + outputs[2:]
1076
+ return ((loss,) + output) if loss is not None else output
1077
+
1078
+ return TokenClassifierOutput(
1079
+ loss=loss,
1080
+ logits=logits,
1081
+ hidden_states=outputs.hidden_states,
1082
+ attentions=outputs.attentions,
1083
+ )
1084
+
1085
+
1086
+ @add_start_docstrings(
1087
+ """
1088
+ The Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
1089
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1090
+ """,
1091
+ QWEN2_START_DOCSTRING,
1092
+ )
1093
+ class Qwen2ForQuestionAnswering(Qwen2PreTrainedModel):
1094
+ base_model_prefix = "transformer"
1095
+
1096
+ def __init__(self, config):
1097
+ super().__init__(config)
1098
+ self.transformer = Qwen2Model(config)
1099
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1100
+
1101
+ # Initialize weights and apply final processing
1102
+ self.post_init()
1103
+
1104
+ def get_input_embeddings(self):
1105
+ return self.transformer.embed_tokens
1106
+
1107
+ def set_input_embeddings(self, value):
1108
+ self.transformer.embed_tokens = value
1109
+
1110
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1111
+ def forward(
1112
+ self,
1113
+ input_ids: Optional[torch.LongTensor] = None,
1114
+ attention_mask: Optional[torch.FloatTensor] = None,
1115
+ position_ids: Optional[torch.LongTensor] = None,
1116
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1117
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1118
+ start_positions: Optional[torch.LongTensor] = None,
1119
+ end_positions: Optional[torch.LongTensor] = None,
1120
+ output_attentions: Optional[bool] = None,
1121
+ output_hidden_states: Optional[bool] = None,
1122
+ return_dict: Optional[bool] = None,
1123
+ **kwargs,
1124
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1125
+ r"""
1126
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1127
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1128
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1129
+ are not taken into account for computing the loss.
1130
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1131
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1132
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1133
+ are not taken into account for computing the loss.
1134
+ """
1135
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1136
+
1137
+ outputs = self.transformer(
1138
+ input_ids,
1139
+ attention_mask=attention_mask,
1140
+ position_ids=position_ids,
1141
+ past_key_values=past_key_values,
1142
+ inputs_embeds=inputs_embeds,
1143
+ output_attentions=output_attentions,
1144
+ output_hidden_states=output_hidden_states,
1145
+ return_dict=return_dict,
1146
+ )
1147
+
1148
+ sequence_output = outputs[0]
1149
+
1150
+ logits = self.qa_outputs(sequence_output)
1151
+ start_logits, end_logits = logits.split(1, dim=-1)
1152
+ start_logits = start_logits.squeeze(-1).contiguous()
1153
+ end_logits = end_logits.squeeze(-1).contiguous()
1154
+
1155
+ loss = None
1156
+ if start_positions is not None and end_positions is not None:
1157
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1158
+
1159
+ if not return_dict:
1160
+ output = (start_logits, end_logits) + outputs[2:]
1161
+ return ((loss,) + output) if loss is not None else output
1162
+
1163
+ return QuestionAnsweringModelOutput(
1164
+ loss=loss,
1165
+ start_logits=start_logits,
1166
+ end_logits=end_logits,
1167
+ hidden_states=outputs.hidden_states,
1168
+ attentions=outputs.attentions,
1169
+ )
models/modeling_whisper.py ADDED
@@ -0,0 +1,1770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This script is based on https://github.com/huggingface/transformers/blob/v4.29.1/src/transformers/models/whisper/modeling_whisper.py
2
+
3
+ """ PyTorch Whisper model."""
4
+
5
+ import math
6
+ import random
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.utils.checkpoint
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+
15
+ from transformers.activations import ACT2FN
16
+ from transformers.generation.logits_process import WhisperTimeStampLogitsProcessor
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutput,
19
+ BaseModelOutputWithPastAndCrossAttentions,
20
+ Seq2SeqLMOutput,
21
+ Seq2SeqModelOutput,
22
+ SequenceClassifierOutput,
23
+ )
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
26
+ from transformers.models.whisper.configuration_whisper import WhisperConfig
27
+ from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ _CONFIG_FOR_DOC = "WhisperConfig"
33
+ _CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
34
+
35
+
36
+ WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [
37
+ "openai/whisper-base",
38
+ # See all Whisper models at https://huggingface.co/models?filter=whisper
39
+ ]
40
+
41
+
42
+ # Copied from transformers.models.bart.modeling_bart.shift_tokens_right
43
+ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
44
+ """
45
+ Shift input ids one token to the right.
46
+ """
47
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
48
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
49
+ shifted_input_ids[:, 0] = decoder_start_token_id
50
+
51
+ if pad_token_id is None:
52
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
53
+ # replace possible -100 values in labels by `pad_token_id`
54
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
55
+
56
+ return shifted_input_ids
57
+
58
+
59
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
60
+ def _make_causal_mask(
61
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
62
+ ):
63
+ """
64
+ Make causal mask used for bi-directional self-attention.
65
+ """
66
+ bsz, tgt_len = input_ids_shape
67
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
68
+ mask_cond = torch.arange(mask.size(-1), device=device)
69
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
70
+ mask = mask.to(dtype)
71
+
72
+ if past_key_values_length > 0:
73
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
74
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
75
+
76
+
77
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
78
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
79
+ """
80
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
81
+ """
82
+ bsz, src_len = mask.size()
83
+ tgt_len = tgt_len if tgt_len is not None else src_len
84
+
85
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
86
+
87
+ inverted_mask = 1.0 - expanded_mask
88
+
89
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
90
+
91
+
92
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
93
+ def _compute_mask_indices(
94
+ shape: Tuple[int, int],
95
+ mask_prob: float,
96
+ mask_length: int,
97
+ attention_mask: Optional[torch.LongTensor] = None,
98
+ min_masks: int = 0,
99
+ ) -> np.ndarray:
100
+ """
101
+ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
102
+ ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
103
+ CPU as part of the preprocessing during training.
104
+
105
+ Args:
106
+ shape: The shape for which to compute masks. This should be of a tuple of size 2 where
107
+ the first element is the batch size and the second element is the length of the axis to span.
108
+ mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
109
+ independently generated mask spans of length `mask_length` is computed by
110
+ `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
111
+ actual percentage will be smaller.
112
+ mask_length: size of the mask
113
+ min_masks: minimum number of masked spans
114
+ attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
115
+ each batch dimension.
116
+ """
117
+ batch_size, sequence_length = shape
118
+
119
+ if mask_length < 1:
120
+ raise ValueError("`mask_length` has to be bigger than 0.")
121
+
122
+ if mask_length > sequence_length:
123
+ raise ValueError(
124
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
125
+ f" and `sequence_length`: {sequence_length}`"
126
+ )
127
+
128
+ # epsilon is used for probabilistic rounding
129
+ epsilon = np.random.rand(1).item()
130
+
131
+ def compute_num_masked_span(input_length):
132
+ """Given input length, compute how many spans should be masked"""
133
+ num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
134
+ num_masked_span = max(num_masked_span, min_masks)
135
+
136
+ # make sure num masked span <= sequence_length
137
+ if num_masked_span * mask_length > sequence_length:
138
+ num_masked_span = sequence_length // mask_length
139
+
140
+ # make sure num_masked span is also <= input_length - (mask_length - 1)
141
+ if input_length - (mask_length - 1) < num_masked_span:
142
+ num_masked_span = max(input_length - (mask_length - 1), 0)
143
+
144
+ return num_masked_span
145
+
146
+ # compute number of masked spans in batch
147
+ input_lengths = (
148
+ attention_mask.sum(-1).detach().tolist()
149
+ if attention_mask is not None
150
+ else [sequence_length for _ in range(batch_size)]
151
+ )
152
+
153
+ # SpecAugment mask to fill
154
+ spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
155
+ spec_aug_mask_idxs = []
156
+
157
+ max_num_masked_span = compute_num_masked_span(sequence_length)
158
+
159
+ if max_num_masked_span == 0:
160
+ return spec_aug_mask
161
+
162
+ for input_length in input_lengths:
163
+ # compute num of masked spans for this input
164
+ num_masked_span = compute_num_masked_span(input_length)
165
+
166
+ # get random indices to mask
167
+ spec_aug_mask_idx = np.random.choice(
168
+ np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
169
+ )
170
+
171
+ # pick first sampled index that will serve as a dummy index to pad vector
172
+ # to ensure same dimension for all batches due to probabilistic rounding
173
+ # Picking first sample just pads those vectors twice.
174
+ if len(spec_aug_mask_idx) == 0:
175
+ # this case can only happen if `input_length` is strictly smaller then
176
+ # `sequence_length` in which case the last token has to be a padding
177
+ # token which we can use as a dummy mask id
178
+ dummy_mask_idx = sequence_length - 1
179
+ else:
180
+ dummy_mask_idx = spec_aug_mask_idx[0]
181
+
182
+ spec_aug_mask_idx = np.concatenate(
183
+ [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
184
+ )
185
+ spec_aug_mask_idxs.append(spec_aug_mask_idx)
186
+
187
+ spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
188
+
189
+ # expand masked indices to masked spans
190
+ spec_aug_mask_idxs = np.broadcast_to(
191
+ spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
192
+ )
193
+ spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
194
+
195
+ # add offset to the starting indexes so that indexes now create a span
196
+ offsets = np.arange(mask_length)[None, None, :]
197
+ offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
198
+ batch_size, max_num_masked_span * mask_length
199
+ )
200
+ spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
201
+
202
+ # ensure that we cannot have indices larger than sequence_length
203
+ if spec_aug_mask_idxs.max() > sequence_length - 1:
204
+ spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
205
+
206
+ # scatter indices to mask
207
+ np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
208
+
209
+ return spec_aug_mask
210
+
211
+
212
+ class WhisperPositionalEmbedding(nn.Embedding):
213
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
214
+ super().__init__(num_positions, embedding_dim)
215
+
216
+ def forward(self, input_ids, past_key_values_length=0):
217
+ return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]]
218
+
219
+
220
+ class WhisperAttention(nn.Module):
221
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
222
+
223
+ def __init__(
224
+ self,
225
+ embed_dim: int,
226
+ num_heads: int,
227
+ dropout: float = 0.0,
228
+ is_decoder: bool = False,
229
+ bias: bool = True,
230
+ ):
231
+ super().__init__()
232
+ self.embed_dim = embed_dim
233
+ self.num_heads = num_heads
234
+ self.dropout = dropout
235
+ self.head_dim = embed_dim // num_heads
236
+
237
+ if (self.head_dim * num_heads) != self.embed_dim:
238
+ raise ValueError(
239
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
240
+ f" and `num_heads`: {num_heads})."
241
+ )
242
+ self.scaling = self.head_dim**-0.5
243
+ self.is_decoder = is_decoder
244
+
245
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
246
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
247
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
248
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
249
+
250
+ # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper
251
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
252
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
253
+
254
+ # Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper
255
+ def forward(
256
+ self,
257
+ hidden_states: torch.Tensor,
258
+ key_value_states: Optional[torch.Tensor] = None,
259
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
260
+ attention_mask: Optional[torch.Tensor] = None,
261
+ layer_head_mask: Optional[torch.Tensor] = None,
262
+ output_attentions: bool = False,
263
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
264
+ """Input shape: Batch x Time x Channel"""
265
+
266
+ # if key_value_states are provided this layer is used as a cross-attention layer
267
+ # for the decoder
268
+ is_cross_attention = key_value_states is not None
269
+
270
+ bsz, tgt_len, _ = hidden_states.size()
271
+
272
+ # get query proj
273
+ query_states = self.q_proj(hidden_states) * self.scaling
274
+ # get key, value proj
275
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
276
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
277
+ # the provided `key_value_states` to support prefix tuning
278
+ if (
279
+ is_cross_attention
280
+ and past_key_value is not None
281
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
282
+ ):
283
+ # reuse k,v, cross_attentions
284
+ key_states = past_key_value[0]
285
+ value_states = past_key_value[1]
286
+ elif is_cross_attention:
287
+ # cross_attentions
288
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
289
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
290
+ elif past_key_value is not None:
291
+ # reuse k, v, self_attention
292
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
293
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
294
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
295
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
296
+ else:
297
+ # self_attention
298
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
299
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
300
+
301
+ if self.is_decoder:
302
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
303
+ # Further calls to cross_attention layer can then reuse all cross-attention
304
+ # key/value_states (first "if" case)
305
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
306
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
307
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
308
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
309
+ past_key_value = (key_states, value_states)
310
+
311
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
312
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
313
+ key_states = key_states.reshape(*proj_shape)
314
+ value_states = value_states.reshape(*proj_shape)
315
+
316
+ src_len = key_states.size(1)
317
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
318
+
319
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
320
+ raise ValueError(
321
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
322
+ f" {attn_weights.size()}"
323
+ )
324
+
325
+ if attention_mask is not None:
326
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
327
+ raise ValueError(
328
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
329
+ )
330
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
331
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
332
+
333
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
334
+
335
+ if layer_head_mask is not None:
336
+ if layer_head_mask.size() != (self.num_heads,):
337
+ raise ValueError(
338
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
339
+ f" {layer_head_mask.size()}"
340
+ )
341
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
342
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
343
+
344
+ if output_attentions:
345
+ # this operation is a bit awkward, but it's required to
346
+ # make sure that attn_weights keeps its gradient.
347
+ # In order to do so, attn_weights have to be reshaped
348
+ # twice and have to be reused in the following
349
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
350
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
351
+ else:
352
+ attn_weights_reshaped = None
353
+
354
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
355
+
356
+ attn_output = torch.bmm(attn_probs, value_states)
357
+
358
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
359
+ raise ValueError(
360
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
361
+ f" {attn_output.size()}"
362
+ )
363
+
364
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
365
+ attn_output = attn_output.transpose(1, 2)
366
+
367
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
368
+ # partitioned across GPUs when using tensor-parallelism.
369
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
370
+
371
+ attn_output = self.out_proj(attn_output)
372
+
373
+ return attn_output, attn_weights_reshaped, past_key_value
374
+
375
+
376
+ # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper
377
+ class WhisperEncoderLayer(nn.Module):
378
+ def __init__(self, config: WhisperConfig):
379
+ super().__init__()
380
+ self.embed_dim = config.d_model
381
+ self.self_attn = WhisperAttention(
382
+ embed_dim=self.embed_dim,
383
+ num_heads=config.encoder_attention_heads,
384
+ dropout=config.attention_dropout,
385
+ )
386
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
387
+ self.dropout = config.dropout
388
+ self.activation_fn = ACT2FN[config.activation_function]
389
+ self.activation_dropout = config.activation_dropout
390
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
391
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
392
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
393
+
394
+ def forward(
395
+ self,
396
+ hidden_states: torch.Tensor,
397
+ attention_mask: torch.Tensor,
398
+ layer_head_mask: torch.Tensor,
399
+ output_attentions: bool = False,
400
+ ) -> torch.Tensor:
401
+ """
402
+ Args:
403
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
404
+ attention_mask (`torch.FloatTensor`): attention mask of size
405
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
406
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
407
+ `(encoder_attention_heads,)`.
408
+ output_attentions (`bool`, *optional*):
409
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
410
+ returned tensors for more detail.
411
+ """
412
+ residual = hidden_states
413
+ hidden_states = self.self_attn_layer_norm(hidden_states)
414
+ hidden_states, attn_weights, _ = self.self_attn(
415
+ hidden_states=hidden_states,
416
+ attention_mask=attention_mask,
417
+ layer_head_mask=layer_head_mask,
418
+ output_attentions=output_attentions,
419
+ )
420
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
421
+ hidden_states = residual + hidden_states
422
+
423
+ residual = hidden_states
424
+ hidden_states = self.final_layer_norm(hidden_states)
425
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
426
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
427
+ hidden_states = self.fc2(hidden_states)
428
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
429
+ hidden_states = residual + hidden_states
430
+
431
+ if hidden_states.dtype == torch.float16 and (
432
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
433
+ ):
434
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
435
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
436
+
437
+ outputs = (hidden_states,)
438
+
439
+ if output_attentions:
440
+ outputs += (attn_weights,)
441
+
442
+ return outputs
443
+
444
+
445
+ # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Whisper
446
+ class WhisperDecoderLayer(nn.Module):
447
+ def __init__(self, config: WhisperConfig):
448
+ super().__init__()
449
+ self.embed_dim = config.d_model
450
+
451
+ self.self_attn = WhisperAttention(
452
+ embed_dim=self.embed_dim,
453
+ num_heads=config.decoder_attention_heads,
454
+ dropout=config.attention_dropout,
455
+ is_decoder=True,
456
+ )
457
+ self.dropout = config.dropout
458
+ self.activation_fn = ACT2FN[config.activation_function]
459
+ self.activation_dropout = config.activation_dropout
460
+
461
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
462
+ self.encoder_attn = WhisperAttention(
463
+ self.embed_dim,
464
+ config.decoder_attention_heads,
465
+ dropout=config.attention_dropout,
466
+ is_decoder=True,
467
+ )
468
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
469
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
470
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
471
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
472
+
473
+ def forward(
474
+ self,
475
+ hidden_states: torch.Tensor,
476
+ attention_mask: Optional[torch.Tensor] = None,
477
+ encoder_hidden_states: Optional[torch.Tensor] = None,
478
+ encoder_attention_mask: Optional[torch.Tensor] = None,
479
+ layer_head_mask: Optional[torch.Tensor] = None,
480
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
481
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
482
+ output_attentions: Optional[bool] = False,
483
+ use_cache: Optional[bool] = True,
484
+ ) -> torch.Tensor:
485
+ """
486
+ Args:
487
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
488
+ attention_mask (`torch.FloatTensor`): attention mask of size
489
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
490
+ encoder_hidden_states (`torch.FloatTensor`):
491
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
492
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
493
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
494
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
495
+ `(encoder_attention_heads,)`.
496
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
497
+ size `(decoder_attention_heads,)`.
498
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
499
+ output_attentions (`bool`, *optional*):
500
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
501
+ returned tensors for more detail.
502
+ """
503
+ residual = hidden_states
504
+ hidden_states = self.self_attn_layer_norm(hidden_states)
505
+
506
+ # Self Attention
507
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
508
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
509
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
510
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
511
+ hidden_states=hidden_states,
512
+ past_key_value=self_attn_past_key_value,
513
+ attention_mask=attention_mask,
514
+ layer_head_mask=layer_head_mask,
515
+ output_attentions=output_attentions,
516
+ )
517
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
518
+ hidden_states = residual + hidden_states
519
+
520
+ # Cross-Attention Block
521
+ cross_attn_present_key_value = None
522
+ cross_attn_weights = None
523
+ if encoder_hidden_states is not None:
524
+ residual = hidden_states
525
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
526
+
527
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
528
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
529
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
530
+ hidden_states=hidden_states,
531
+ key_value_states=encoder_hidden_states,
532
+ attention_mask=encoder_attention_mask,
533
+ layer_head_mask=cross_attn_layer_head_mask,
534
+ past_key_value=cross_attn_past_key_value,
535
+ output_attentions=output_attentions,
536
+ )
537
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
538
+ hidden_states = residual + hidden_states
539
+
540
+ # add cross-attn to positions 3,4 of present_key_value tuple
541
+ present_key_value = present_key_value + cross_attn_present_key_value
542
+
543
+ # Fully Connected
544
+ residual = hidden_states
545
+ hidden_states = self.final_layer_norm(hidden_states)
546
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
547
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
548
+ hidden_states = self.fc2(hidden_states)
549
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
550
+ hidden_states = residual + hidden_states
551
+
552
+ outputs = (hidden_states,)
553
+
554
+ if output_attentions:
555
+ outputs += (self_attn_weights, cross_attn_weights)
556
+
557
+ if use_cache:
558
+ outputs += (present_key_value,)
559
+
560
+ return outputs
561
+
562
+
563
+ class WhisperPreTrainedModel(PreTrainedModel):
564
+ config_class = WhisperConfig
565
+ base_model_prefix = "model"
566
+ main_input_name = "input_features"
567
+ supports_gradient_checkpointing = True
568
+ _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"]
569
+
570
+ def _init_weights(self, module):
571
+ std = self.config.init_std
572
+ if isinstance(module, (nn.Linear, nn.Conv1d)):
573
+ module.weight.data.normal_(mean=0.0, std=std)
574
+ if module.bias is not None:
575
+ module.bias.data.zero_()
576
+ elif isinstance(module, nn.Embedding):
577
+ module.weight.data.normal_(mean=0.0, std=std)
578
+ if module.padding_idx is not None:
579
+ module.weight.data[module.padding_idx].zero_()
580
+
581
+ def _set_gradient_checkpointing(self, module, value=False):
582
+ if isinstance(module, (WhisperDecoder, WhisperEncoder)):
583
+ module.gradient_checkpointing = value
584
+
585
+ def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
586
+ """
587
+ Computes the output length of the convolutional layers
588
+ """
589
+ input_lengths = (input_lengths - 1) // 2 + 1
590
+
591
+ return input_lengths
592
+
593
+
594
+ WHISPER_START_DOCSTRING = r"""
595
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
596
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
597
+ etc.)
598
+
599
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
600
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
601
+ and behavior.
602
+
603
+ Parameters:
604
+ config ([`WhisperConfig`]):
605
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
606
+ load the weights associated with the model, only the configuration. Check out the
607
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
608
+ """
609
+
610
+ WHISPER_INPUTS_DOCSTRING = r"""
611
+ Args:
612
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
613
+ Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
614
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
615
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
616
+ [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
617
+ tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
618
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
619
+ Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in
620
+ `[0, 1]`:
621
+
622
+ - 1 for tokens that are **not masked**,
623
+ - 0 for tokens that are **masked**.
624
+
625
+ [What are attention masks?](../glossary#attention-mask)
626
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
627
+ Indices of decoder input sequence tokens in the vocabulary.
628
+
629
+ Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
630
+ [`PreTrainedTokenizer.__call__`] for details.
631
+
632
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
633
+
634
+ Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
635
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
636
+ `past_key_values`).
637
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
638
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
639
+ be used by default.
640
+
641
+ If you want to change padding behavior, you should read
642
+ [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
643
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
644
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
645
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
646
+
647
+ - 1 indicates the head is **not masked**,
648
+ - 0 indicates the head is **masked**.
649
+
650
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
651
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
652
+
653
+ - 1 indicates the head is **not masked**,
654
+ - 0 indicates the head is **masked**.
655
+
656
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
657
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
658
+
659
+ - 1 indicates the head is **not masked**,
660
+ - 0 indicates the head is **masked**.
661
+
662
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
663
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
664
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
665
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
666
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
667
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
668
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
669
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
670
+
671
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
672
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
673
+
674
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
675
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
676
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
677
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
678
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
679
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
680
+ input (see `past_key_values`). This is useful if you want more control over how to convert
681
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
682
+ use_cache (`bool`, *optional*):
683
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
684
+ `past_key_values`).
685
+ output_attentions (`bool`, *optional*):
686
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
687
+ tensors for more detail.
688
+ output_hidden_states (`bool`, *optional*):
689
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
690
+ more detail.
691
+ return_dict (`bool`, *optional*):
692
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
693
+ """
694
+
695
+ WHISPER_ENCODER_INPUTS_DOCSTRING = r"""
696
+ Args:
697
+ input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
698
+ Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
699
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
700
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
701
+ [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
702
+ tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
703
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
704
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
705
+
706
+ - 1 indicates the head is **not masked**,
707
+ - 0 indicates the head is **masked**.
708
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
709
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
710
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
711
+ hidden-states at the output of the last layer of the encoder.
712
+ output_attentions (`bool`, *optional*):
713
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
714
+ tensors for more detail.
715
+ output_hidden_states (`bool`, *optional*):
716
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
717
+ more detail.
718
+ return_dict (`bool`, *optional*):
719
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
720
+ """
721
+
722
+
723
+ class WhisperEncoder(WhisperPreTrainedModel):
724
+ """
725
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
726
+ [`WhisperEncoderLayer`].
727
+
728
+ Args:
729
+ config: WhisperConfig
730
+ """
731
+
732
+ def __init__(self, config: WhisperConfig):
733
+ super().__init__(config)
734
+ self.dropout = config.dropout
735
+ self.layerdrop = config.encoder_layerdrop
736
+
737
+ embed_dim = config.d_model
738
+ self.num_mel_bins = config.num_mel_bins
739
+ self.padding_idx = config.pad_token_id
740
+ self.max_source_positions = config.max_source_positions
741
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
742
+
743
+ self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
744
+ self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
745
+
746
+ self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
747
+
748
+ self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
749
+ self.layer_norm = nn.LayerNorm(config.d_model)
750
+
751
+ self.gradient_checkpointing = False
752
+ # Initialize weights and apply final processing
753
+ self.post_init()
754
+
755
+ def _freeze_parameters(self):
756
+ for param in self.parameters():
757
+ param.requires_grad = False
758
+ self._requires_grad = False
759
+
760
+ def get_input_embeddings(self) -> nn.Module:
761
+ return self.conv1
762
+
763
+ def set_input_embeddings(self, value: nn.Module):
764
+ self.conv1 = value
765
+
766
+ def forward(
767
+ self,
768
+ input_features,
769
+ attention_mask=None,
770
+ head_mask=None,
771
+ output_attentions=None,
772
+ output_hidden_states=None,
773
+ return_dict=None,
774
+ ):
775
+ r"""
776
+ Args:
777
+ input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
778
+ Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
779
+ obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
780
+ `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
781
+ `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
782
+ and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
783
+ attention_mask (`torch.Tensor`)`, *optional*):
784
+ Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
785
+ but it is not used. By default the silence in the input log mel spectrogram are ignored.
786
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
787
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
788
+
789
+ - 1 indicates the head is **not masked**,
790
+ - 0 indicates the head is **masked**.
791
+ output_attentions (`bool`, *optional*):
792
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
793
+ returned tensors for more detail.
794
+ output_hidden_states (`bool`, *optional*):
795
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
796
+ for more detail.
797
+ return_dict (`bool`, *optional*):
798
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
799
+ """
800
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
801
+ output_hidden_states = (
802
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
803
+ )
804
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
805
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
806
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
807
+
808
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
809
+ embed_pos = self.embed_positions.weight
810
+
811
+ hidden_states = inputs_embeds + embed_pos
812
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
813
+
814
+ encoder_states = () if output_hidden_states else None
815
+ all_attentions = () if output_attentions else None
816
+
817
+ # check if head_mask has a correct number of layers specified if desired
818
+ if head_mask is not None:
819
+ assert head_mask.size()[0] == (
820
+ len(self.layers)
821
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
822
+
823
+ for idx, encoder_layer in enumerate(self.layers):
824
+ if output_hidden_states:
825
+ encoder_states = encoder_states + (hidden_states,)
826
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
827
+ dropout_probability = random.uniform(0, 1)
828
+ if self.training and (dropout_probability < self.layerdrop): # skip the layer
829
+ layer_outputs = (None, None)
830
+ else:
831
+ if self.gradient_checkpointing and self.training:
832
+
833
+ def create_custom_forward(module):
834
+ def custom_forward(*inputs):
835
+ return module(*inputs, output_attentions)
836
+
837
+ return custom_forward
838
+
839
+ layer_outputs = torch.utils.checkpoint.checkpoint(
840
+ create_custom_forward(encoder_layer),
841
+ hidden_states,
842
+ None,
843
+ (head_mask[idx] if head_mask is not None else None),
844
+ )
845
+ else:
846
+ layer_outputs = encoder_layer(
847
+ hidden_states,
848
+ None,
849
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
850
+ output_attentions=output_attentions,
851
+ )
852
+
853
+ hidden_states = layer_outputs[0]
854
+
855
+ if output_attentions:
856
+ all_attentions = all_attentions + (layer_outputs[1],)
857
+
858
+ hidden_states = self.layer_norm(hidden_states)
859
+ if output_hidden_states:
860
+ encoder_states = encoder_states + (hidden_states,)
861
+
862
+ if not return_dict:
863
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
864
+ return BaseModelOutput(
865
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
866
+ )
867
+
868
+
869
+ class WhisperDecoder(WhisperPreTrainedModel):
870
+ """
871
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`]
872
+
873
+ Args:
874
+ config: WhisperConfig
875
+ """
876
+
877
+ def __init__(self, config: WhisperConfig):
878
+ super().__init__(config)
879
+ self.dropout = config.dropout
880
+ self.layerdrop = config.decoder_layerdrop
881
+ self.padding_idx = config.pad_token_id
882
+ self.max_target_positions = config.max_target_positions
883
+ self.max_source_positions = config.max_source_positions
884
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
885
+
886
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
887
+ self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model)
888
+
889
+ self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)])
890
+
891
+ self.layer_norm = nn.LayerNorm(config.d_model)
892
+
893
+ self.gradient_checkpointing = False
894
+ # Initialize weights and apply final processing
895
+ self.post_init()
896
+
897
+ def get_input_embeddings(self):
898
+ return self.embed_tokens
899
+
900
+ def set_input_embeddings(self, value):
901
+ self.embed_tokens = value
902
+
903
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
904
+ # create causal mask
905
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
906
+ combined_attention_mask = None
907
+
908
+ if input_shape[-1] > 1:
909
+ combined_attention_mask = _make_causal_mask(
910
+ input_shape,
911
+ inputs_embeds.dtype,
912
+ device=inputs_embeds.device,
913
+ past_key_values_length=past_key_values_length,
914
+ )
915
+
916
+ if attention_mask is not None:
917
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
918
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
919
+ combined_attention_mask = (
920
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
921
+ )
922
+
923
+ return combined_attention_mask
924
+
925
+ def forward(
926
+ self,
927
+ input_ids=None,
928
+ attention_mask=None,
929
+ encoder_hidden_states=None,
930
+ head_mask=None,
931
+ cross_attn_head_mask=None,
932
+ past_key_values=None,
933
+ inputs_embeds=None,
934
+ use_cache=None,
935
+ output_attentions=None,
936
+ output_hidden_states=None,
937
+ return_dict=None,
938
+ ):
939
+ r"""
940
+ Args:
941
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
942
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
943
+ provide it.
944
+
945
+ Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
946
+ [`PreTrainedTokenizer.__call__`] for details.
947
+
948
+ [What are input IDs?](../glossary#input-ids)
949
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
950
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
951
+
952
+ - 1 for tokens that are **not masked**,
953
+ - 0 for tokens that are **masked**.
954
+
955
+ [What are attention masks?](../glossary#attention-mask)
956
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
957
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
958
+ of the decoder.
959
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
960
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
961
+
962
+ - 1 indicates the head is **not masked**,
963
+ - 0 indicates the head is **masked**.
964
+
965
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
966
+ Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
967
+ on hidden heads. Mask values selected in `[0, 1]`:
968
+
969
+ - 1 indicates the head is **not masked**,
970
+ - 0 indicates the head is **masked**.
971
+
972
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
973
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
974
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
975
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
976
+
977
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
978
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
979
+
980
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
981
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
982
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
983
+ shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
984
+ `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
985
+ control over how to convert `input_ids` indices into associated vectors than the model's internal
986
+ embedding lookup matrix.
987
+ output_attentions (`bool`, *optional*):
988
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
989
+ returned tensors for more detail.
990
+ output_hidden_states (`bool`, *optional*):
991
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
992
+ for more detail.
993
+ return_dict (`bool`, *optional*):
994
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
995
+ """
996
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
997
+ output_hidden_states = (
998
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
999
+ )
1000
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1001
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1002
+
1003
+ # retrieve input_ids and inputs_embeds
1004
+ if input_ids is not None and inputs_embeds is not None:
1005
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1006
+ elif input_ids is not None:
1007
+ input_shape = input_ids.size()
1008
+ input_ids = input_ids.view(-1, input_shape[-1])
1009
+ elif inputs_embeds is not None:
1010
+ input_shape = inputs_embeds.size()[:-1]
1011
+ else:
1012
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1013
+
1014
+ # past_key_values_length
1015
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1016
+
1017
+ if inputs_embeds is None:
1018
+ inputs_embeds = self.embed_tokens(input_ids)
1019
+
1020
+ attention_mask = self._prepare_decoder_attention_mask(
1021
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
1022
+ )
1023
+
1024
+ # embed positions
1025
+ if input_ids is not None:
1026
+ positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
1027
+ else:
1028
+ positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length)
1029
+
1030
+ hidden_states = inputs_embeds + positions
1031
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1032
+
1033
+ if self.gradient_checkpointing and self.training:
1034
+ if use_cache:
1035
+ logger.warning_once(
1036
+ "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
1037
+ )
1038
+ use_cache = False
1039
+ # decoder layers
1040
+ all_hidden_states = () if output_hidden_states else None
1041
+ all_self_attns = () if output_attentions else None
1042
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
1043
+ next_decoder_cache = () if use_cache else None
1044
+
1045
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
1046
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
1047
+ if attn_mask is not None:
1048
+ assert attn_mask.size()[0] == (len(self.layers)), (
1049
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
1050
+ f" {head_mask.size()[0]}."
1051
+ )
1052
+ for idx, decoder_layer in enumerate(self.layers):
1053
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1054
+ if output_hidden_states:
1055
+ all_hidden_states += (hidden_states,)
1056
+ dropout_probability = random.uniform(0, 1)
1057
+ if self.training and (dropout_probability < self.layerdrop):
1058
+ continue
1059
+
1060
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1061
+
1062
+ if self.gradient_checkpointing and self.training:
1063
+
1064
+ def create_custom_forward(module):
1065
+ def custom_forward(*inputs):
1066
+ # None for past_key_value
1067
+ return module(*inputs, output_attentions, use_cache)
1068
+
1069
+ return custom_forward
1070
+
1071
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1072
+ create_custom_forward(decoder_layer),
1073
+ hidden_states,
1074
+ attention_mask,
1075
+ encoder_hidden_states,
1076
+ None, # encoder attention mask
1077
+ head_mask[idx] if head_mask is not None else None,
1078
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1079
+ None, # past_key_value
1080
+ )
1081
+ else:
1082
+ layer_outputs = decoder_layer(
1083
+ hidden_states,
1084
+ attention_mask=attention_mask,
1085
+ encoder_hidden_states=encoder_hidden_states,
1086
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1087
+ cross_attn_layer_head_mask=(
1088
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
1089
+ ),
1090
+ past_key_value=past_key_value,
1091
+ output_attentions=output_attentions,
1092
+ use_cache=use_cache,
1093
+ )
1094
+ hidden_states = layer_outputs[0]
1095
+
1096
+ if use_cache:
1097
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
1098
+
1099
+ if output_attentions:
1100
+ all_self_attns += (layer_outputs[1],)
1101
+
1102
+ if encoder_hidden_states is not None:
1103
+ all_cross_attentions += (layer_outputs[2],)
1104
+
1105
+ hidden_states = self.layer_norm(hidden_states)
1106
+ # add hidden states from the last decoder layer
1107
+ if output_hidden_states:
1108
+ all_hidden_states += (hidden_states,)
1109
+
1110
+ next_cache = next_decoder_cache if use_cache else None
1111
+ if not return_dict:
1112
+ return tuple(
1113
+ v
1114
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
1115
+ if v is not None
1116
+ )
1117
+ return BaseModelOutputWithPastAndCrossAttentions(
1118
+ last_hidden_state=hidden_states,
1119
+ past_key_values=next_cache,
1120
+ hidden_states=all_hidden_states,
1121
+ attentions=all_self_attns,
1122
+ cross_attentions=all_cross_attentions,
1123
+ )
1124
+
1125
+
1126
+ @add_start_docstrings(
1127
+ "The bare Whisper Model outputting raw hidden-states without any specific head on top.",
1128
+ WHISPER_START_DOCSTRING,
1129
+ )
1130
+ class WhisperModel(WhisperPreTrainedModel):
1131
+ _keys_to_ignore_on_load_missing = [r"proj_out.weight"]
1132
+
1133
+ def __init__(self, config: WhisperConfig):
1134
+ super().__init__(config)
1135
+
1136
+ self.encoder = WhisperEncoder(config)
1137
+ self.decoder = WhisperDecoder(config)
1138
+ # Initialize weights and apply final processing
1139
+ self.post_init()
1140
+
1141
+ def get_input_embeddings(self):
1142
+ return self.decoder.embed_tokens
1143
+
1144
+ def set_input_embeddings(self, value):
1145
+ self.decoder.embed_tokens = value
1146
+
1147
+ def get_encoder(self):
1148
+ return self.encoder
1149
+
1150
+ def get_decoder(self):
1151
+ return self.decoder
1152
+
1153
+ def freeze_encoder(self):
1154
+ """
1155
+ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
1156
+ not be updated during training.
1157
+ """
1158
+ self.encoder._freeze_parameters()
1159
+
1160
+ def _mask_input_features(
1161
+ self,
1162
+ input_features: torch.FloatTensor,
1163
+ attention_mask: Optional[torch.LongTensor] = None,
1164
+ ):
1165
+ """
1166
+ Masks extracted features along time axis and/or along feature axis according to
1167
+ [SpecAugment](https://arxiv.org/abs/1904.08779).
1168
+ """
1169
+
1170
+ # `config.apply_spec_augment` can set masking to False
1171
+ if not getattr(self.config, "apply_spec_augment", True):
1172
+ return input_features
1173
+
1174
+ # generate indices & apply SpecAugment along time axis
1175
+ batch_size, hidden_size, sequence_length = input_features.size()
1176
+
1177
+ if self.config.mask_time_prob > 0 and self.training:
1178
+ # generate indices & apply SpecAugment along time axis
1179
+ mask_time_indices = _compute_mask_indices(
1180
+ (batch_size, sequence_length),
1181
+ mask_prob=self.config.mask_time_prob,
1182
+ mask_length=self.config.mask_time_length,
1183
+ attention_mask=attention_mask,
1184
+ min_masks=self.config.mask_time_min_masks,
1185
+ )
1186
+ mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
1187
+ mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
1188
+ input_features[mask_time_indices] = 0
1189
+
1190
+ if self.config.mask_feature_prob > 0 and self.training:
1191
+ # generate indices & apply SpecAugment along feature axis
1192
+ mask_feature_indices = _compute_mask_indices(
1193
+ (batch_size, hidden_size),
1194
+ mask_prob=self.config.mask_feature_prob,
1195
+ mask_length=self.config.mask_feature_length,
1196
+ min_masks=self.config.mask_feature_min_masks,
1197
+ )
1198
+ mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
1199
+ input_features[mask_feature_indices] = 0
1200
+
1201
+ return input_features
1202
+
1203
+ @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
1204
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
1205
+ def forward(
1206
+ self,
1207
+ input_features: Optional[torch.FloatTensor] = None,
1208
+ attention_mask: Optional[torch.LongTensor] = None,
1209
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1210
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1211
+ head_mask: Optional[torch.Tensor] = None,
1212
+ decoder_head_mask: Optional[torch.Tensor] = None,
1213
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1214
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1215
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1216
+ decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
1217
+ use_cache: Optional[bool] = None,
1218
+ output_attentions: Optional[bool] = None,
1219
+ output_hidden_states: Optional[bool] = None,
1220
+ return_dict: Optional[bool] = None,
1221
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
1222
+ r"""
1223
+ Returns:
1224
+
1225
+ Example:
1226
+ ```python
1227
+ >>> import torch
1228
+ >>> from transformers import AutoFeatureExtractor, WhisperModel
1229
+ >>> from datasets import load_dataset
1230
+
1231
+ >>> model = WhisperModel.from_pretrained("openai/whisper-base")
1232
+ >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
1233
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1234
+ >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
1235
+ >>> input_features = inputs.input_features
1236
+ >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
1237
+ >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
1238
+ >>> list(last_hidden_state.shape)
1239
+ [1, 2, 512]
1240
+ ```"""
1241
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1242
+ output_hidden_states = (
1243
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1244
+ )
1245
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1246
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1247
+
1248
+ if encoder_outputs is None:
1249
+ input_features = self._mask_input_features(input_features, attention_mask=attention_mask)
1250
+
1251
+ encoder_outputs = self.encoder(
1252
+ input_features,
1253
+ head_mask=head_mask,
1254
+ output_attentions=output_attentions,
1255
+ output_hidden_states=output_hidden_states,
1256
+ return_dict=return_dict,
1257
+ )
1258
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1259
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1260
+ encoder_outputs = BaseModelOutput(
1261
+ last_hidden_state=encoder_outputs[0],
1262
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1263
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1264
+ )
1265
+
1266
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1267
+ decoder_outputs = self.decoder(
1268
+ input_ids=decoder_input_ids,
1269
+ attention_mask=decoder_attention_mask,
1270
+ encoder_hidden_states=encoder_outputs[0],
1271
+ head_mask=decoder_head_mask,
1272
+ cross_attn_head_mask=cross_attn_head_mask,
1273
+ past_key_values=past_key_values,
1274
+ inputs_embeds=decoder_inputs_embeds,
1275
+ use_cache=use_cache,
1276
+ output_attentions=output_attentions,
1277
+ output_hidden_states=output_hidden_states,
1278
+ return_dict=return_dict,
1279
+ )
1280
+
1281
+ if not return_dict:
1282
+ return decoder_outputs + encoder_outputs
1283
+
1284
+ return Seq2SeqModelOutput(
1285
+ last_hidden_state=decoder_outputs.last_hidden_state,
1286
+ past_key_values=decoder_outputs.past_key_values,
1287
+ decoder_hidden_states=decoder_outputs.hidden_states,
1288
+ decoder_attentions=decoder_outputs.attentions,
1289
+ cross_attentions=decoder_outputs.cross_attentions,
1290
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1291
+ encoder_hidden_states=encoder_outputs.hidden_states,
1292
+ encoder_attentions=encoder_outputs.attentions,
1293
+ )
1294
+
1295
+
1296
+ @add_start_docstrings(
1297
+ "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
1298
+ WHISPER_START_DOCSTRING,
1299
+ )
1300
+ class WhisperForConditionalGeneration(WhisperPreTrainedModel):
1301
+ base_model_prefix = "model"
1302
+ _keys_to_ignore_on_load_missing = [
1303
+ r"encoder.version",
1304
+ r"decoder.version",
1305
+ r"proj_out.weight",
1306
+ ]
1307
+ _keys_to_ignore_on_save = [
1308
+ r"proj_out.weight",
1309
+ ]
1310
+
1311
+ def __init__(self, config: WhisperConfig):
1312
+ super().__init__(config)
1313
+ self.model = WhisperModel(config)
1314
+ self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
1315
+
1316
+ # Initialize weights and apply final processing
1317
+ self.post_init()
1318
+
1319
+ def get_encoder(self):
1320
+ return self.model.get_encoder()
1321
+
1322
+ def get_decoder(self):
1323
+ return self.model.get_decoder()
1324
+
1325
+ def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
1326
+ new_embeddings = super().resize_token_embeddings(new_num_tokens)
1327
+ return new_embeddings
1328
+
1329
+ def get_output_embeddings(self):
1330
+ return self.proj_out
1331
+
1332
+ def set_output_embeddings(self, new_embeddings):
1333
+ self.proj_out = new_embeddings
1334
+
1335
+ def get_input_embeddings(self) -> nn.Module:
1336
+ return self.model.get_input_embeddings()
1337
+
1338
+ def freeze_encoder(self):
1339
+ """
1340
+ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
1341
+ not be updated during training.
1342
+ """
1343
+ self.model.encoder._freeze_parameters()
1344
+
1345
+ @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
1346
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1347
+ def forward(
1348
+ self,
1349
+ input_features: Optional[torch.FloatTensor] = None,
1350
+ attention_mask: Optional[torch.LongTensor] = None,
1351
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1352
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1353
+ head_mask: Optional[torch.Tensor] = None,
1354
+ decoder_head_mask: Optional[torch.Tensor] = None,
1355
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1356
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1357
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1358
+ decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
1359
+ labels: Optional[torch.LongTensor] = None,
1360
+ use_cache: Optional[bool] = None,
1361
+ output_attentions: Optional[bool] = None,
1362
+ output_hidden_states: Optional[bool] = None,
1363
+ return_dict: Optional[bool] = None,
1364
+ ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
1365
+ r"""
1366
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1367
+ Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
1368
+ or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
1369
+ only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1370
+
1371
+ Returns:
1372
+
1373
+ Example:
1374
+
1375
+ ```python
1376
+ >>> import torch
1377
+ >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
1378
+ >>> from datasets import load_dataset
1379
+
1380
+ >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
1381
+ >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
1382
+
1383
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1384
+
1385
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
1386
+ >>> input_features = inputs.input_features
1387
+
1388
+ >>> generated_ids = model.generate(inputs=input_features)
1389
+
1390
+ >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
1391
+ >>> transcription
1392
+ ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
1393
+ ```"""
1394
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1395
+
1396
+ if labels is not None:
1397
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1398
+ decoder_input_ids = shift_tokens_right(
1399
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1400
+ )
1401
+
1402
+ outputs = self.model(
1403
+ input_features,
1404
+ attention_mask=attention_mask,
1405
+ decoder_input_ids=decoder_input_ids,
1406
+ encoder_outputs=encoder_outputs,
1407
+ decoder_attention_mask=decoder_attention_mask,
1408
+ head_mask=head_mask,
1409
+ decoder_head_mask=decoder_head_mask,
1410
+ cross_attn_head_mask=cross_attn_head_mask,
1411
+ past_key_values=past_key_values,
1412
+ decoder_inputs_embeds=decoder_inputs_embeds,
1413
+ use_cache=use_cache,
1414
+ output_attentions=output_attentions,
1415
+ output_hidden_states=output_hidden_states,
1416
+ return_dict=return_dict,
1417
+ )
1418
+ lm_logits = self.proj_out(outputs[0])
1419
+
1420
+ loss = None
1421
+ if labels is not None:
1422
+ loss_fct = CrossEntropyLoss()
1423
+ # move labels to correct device to enable PP
1424
+ labels = labels.to(lm_logits.device)
1425
+ loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1))
1426
+
1427
+ if not return_dict:
1428
+ output = (lm_logits,) + outputs[1:]
1429
+ return ((loss,) + output) if loss is not None else output
1430
+
1431
+ return Seq2SeqLMOutput(
1432
+ loss=loss,
1433
+ logits=lm_logits,
1434
+ past_key_values=outputs.past_key_values,
1435
+ decoder_hidden_states=outputs.decoder_hidden_states,
1436
+ decoder_attentions=outputs.decoder_attentions,
1437
+ cross_attentions=outputs.cross_attentions,
1438
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1439
+ encoder_hidden_states=outputs.encoder_hidden_states,
1440
+ encoder_attentions=outputs.encoder_attentions,
1441
+ )
1442
+
1443
+ def generate(
1444
+ self,
1445
+ inputs: Optional[torch.Tensor] = None,
1446
+ generation_config=None,
1447
+ logits_processor=None,
1448
+ stopping_criteria=None,
1449
+ prefix_allowed_tokens_fn=None,
1450
+ synced_gpus=False,
1451
+ return_timestamps=None,
1452
+ task=None,
1453
+ language=None,
1454
+ is_multilingual=None,
1455
+ **kwargs,
1456
+ ):
1457
+ """
1458
+
1459
+ Generates sequences of token ids for models with a language modeling head.
1460
+
1461
+ <Tip warning={true}>
1462
+
1463
+ Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
1464
+ model's default generation configuration. You can override any `generation_config` by passing the corresponding
1465
+ parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1466
+
1467
+ For an overview of generation strategies and code examples, check out the [following
1468
+ guide](./generation_strategies).
1469
+
1470
+ </Tip>
1471
+
1472
+ Parameters:
1473
+ inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
1474
+ The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
1475
+ method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
1476
+ should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
1477
+ `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1478
+ generation_config (`~generation.GenerationConfig`, *optional*):
1479
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
1480
+ passed to generate matching the attributes of `generation_config` will override them. If
1481
+ `generation_config` is not provided, the default will be used, which had the following loading
1482
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
1483
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
1484
+ default values, whose documentation should be checked to parameterize generation.
1485
+ logits_processor (`LogitsProcessorList`, *optional*):
1486
+ Custom logits processors that complement the default logits processors built from arguments and
1487
+ generation config. If a logit processor is passed that is already created with the arguments or a
1488
+ generation config an error is thrown. This feature is intended for advanced users.
1489
+ stopping_criteria (`StoppingCriteriaList`, *optional*):
1490
+ Custom stopping criteria that complement the default stopping criteria built from arguments and a
1491
+ generation config. If a stopping criteria is passed that is already created with the arguments or a
1492
+ generation config an error is thrown. This feature is intended for advanced users.
1493
+ prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
1494
+ If provided, this function constraints the beam search to allowed tokens only at each step. If not
1495
+ provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
1496
+ `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
1497
+ on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
1498
+ for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
1499
+ Retrieval](https://arxiv.org/abs/2010.00904).
1500
+ synced_gpus (`bool`, *optional*, defaults to `False`):
1501
+ Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
1502
+ return_timestamps (`bool`, *optional*):
1503
+ Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`.
1504
+ task (`bool`, *optional*):
1505
+ Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids`
1506
+ will be updated accordingly.
1507
+ language (`bool`, *optional*):
1508
+ Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can
1509
+ find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary.
1510
+ is_multilingual (`bool`, *optional*):
1511
+ Whether or not the model is multilingual.
1512
+ kwargs:
1513
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
1514
+ forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
1515
+ specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1516
+
1517
+ Return:
1518
+ [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
1519
+ or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
1520
+
1521
+ If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
1522
+ [`~utils.ModelOutput`] types are:
1523
+
1524
+ - [`~generation.GreedySearchDecoderOnlyOutput`],
1525
+ - [`~generation.SampleDecoderOnlyOutput`],
1526
+ - [`~generation.BeamSearchDecoderOnlyOutput`],
1527
+ - [`~generation.BeamSampleDecoderOnlyOutput`]
1528
+
1529
+ If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
1530
+ [`~utils.ModelOutput`] types are:
1531
+
1532
+ - [`~generation.GreedySearchEncoderDecoderOutput`],
1533
+ - [`~generation.SampleEncoderDecoderOutput`],
1534
+ - [`~generation.BeamSearchEncoderDecoderOutput`],
1535
+ - [`~generation.BeamSampleEncoderDecoderOutput`]
1536
+ """
1537
+ if generation_config is None:
1538
+ generation_config = self.generation_config
1539
+
1540
+ if return_timestamps is not None:
1541
+ if not hasattr(generation_config, "no_timestamps_token_id"):
1542
+ raise ValueError(
1543
+ "You are trying to return timestamps, but the generation config is not properly set."
1544
+ "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`."
1545
+ "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363"
1546
+ )
1547
+
1548
+ generation_config.return_timestamps = return_timestamps
1549
+ else:
1550
+ generation_config.return_timestamps = False
1551
+
1552
+ if language is not None:
1553
+ language = language.lower()
1554
+ generation_config.language = language
1555
+ if task is not None:
1556
+ generation_config.task = task
1557
+
1558
+ forced_decoder_ids = []
1559
+ if task is not None or language is not None:
1560
+ if hasattr(generation_config, "language"):
1561
+ if generation_config.language in generation_config.lang_to_id.keys():
1562
+ language_token = generation_config.language
1563
+ elif generation_config.language in TO_LANGUAGE_CODE.keys():
1564
+ language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>"
1565
+ elif generation_config.language in TO_LANGUAGE_CODE.values():
1566
+ language_token = f"<|{generation_config.language}|>"
1567
+ else:
1568
+ is_language_code = len(generation_config.language) == 2
1569
+ raise ValueError(
1570
+ f"Unsupported language: {generation_config.language}. Language should be one of:"
1571
+ f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
1572
+ )
1573
+ forced_decoder_ids.append((1, generation_config.lang_to_id[language_token]))
1574
+ else:
1575
+ forced_decoder_ids.append((1, None)) # automatically detect the language
1576
+
1577
+ if hasattr(generation_config, "task"):
1578
+ if generation_config.task in TASK_IDS:
1579
+ forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task]))
1580
+ else:
1581
+ raise ValueError(
1582
+ f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`"
1583
+ )
1584
+ else:
1585
+ forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe
1586
+ if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps:
1587
+ idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
1588
+ forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))
1589
+
1590
+ # Legacy code for backward compatibility
1591
+ elif hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None:
1592
+ forced_decoder_ids = self.config.forced_decoder_ids
1593
+ elif (
1594
+ hasattr(self.generation_config, "forced_decoder_ids")
1595
+ and self.generation_config.forced_decoder_ids is not None
1596
+ ):
1597
+ forced_decoder_ids = self.generation_config.forced_decoder_ids
1598
+
1599
+ if generation_config.return_timestamps:
1600
+ logits_processor = [WhisperTimeStampLogitsProcessor(generation_config)]
1601
+
1602
+ if len(forced_decoder_ids) > 0:
1603
+ generation_config.forced_decoder_ids = forced_decoder_ids
1604
+
1605
+ return super().generate(
1606
+ inputs,
1607
+ generation_config,
1608
+ logits_processor,
1609
+ stopping_criteria,
1610
+ prefix_allowed_tokens_fn,
1611
+ synced_gpus,
1612
+ **kwargs,
1613
+ )
1614
+
1615
+ def prepare_inputs_for_generation(
1616
+ self,
1617
+ decoder_input_ids,
1618
+ past_key_values=None,
1619
+ use_cache=None,
1620
+ encoder_outputs=None,
1621
+ attention_mask=None,
1622
+ **kwargs,
1623
+ ):
1624
+ # cut decoder_input_ids if past is used
1625
+ if past_key_values is not None:
1626
+ decoder_input_ids = decoder_input_ids[:, -1:]
1627
+
1628
+ return {
1629
+ "encoder_outputs": encoder_outputs,
1630
+ "past_key_values": past_key_values,
1631
+ "decoder_input_ids": decoder_input_ids,
1632
+ "use_cache": use_cache,
1633
+ "decoder_attention_mask": None,
1634
+ }
1635
+
1636
+ #
1637
+ @staticmethod
1638
+ def _reorder_cache(past_key_values, beam_idx):
1639
+ reordered_past = ()
1640
+ for layer_past in past_key_values:
1641
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1642
+ return reordered_past
1643
+
1644
+
1645
+ @add_start_docstrings(
1646
+ """
1647
+ Whisper Encoder Model with a sequence classification head on top (a linear layer over the pooled output) for tasks
1648
+ like SUPERB Keyword Spotting.
1649
+ """,
1650
+ WHISPER_ENCODER_INPUTS_DOCSTRING,
1651
+ )
1652
+ class WhisperForAudioClassification(WhisperPreTrainedModel):
1653
+ def __init__(self, config):
1654
+ super().__init__(config)
1655
+
1656
+ self.encoder = WhisperEncoder(config)
1657
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
1658
+ if config.use_weighted_layer_sum:
1659
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
1660
+ self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
1661
+ self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
1662
+
1663
+ # Initialize weights and apply final processing
1664
+ self.post_init()
1665
+
1666
+ def freeze_encoder(self):
1667
+ """
1668
+ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
1669
+ not be updated during training. Only the projection layers and classification head will be updated.
1670
+ """
1671
+ self.encoder._freeze_parameters()
1672
+
1673
+ def get_input_embeddings(self) -> nn.Module:
1674
+ return self.encoder.get_input_embeddings()
1675
+
1676
+ def set_input_embeddings(self, value: nn.Module):
1677
+ self.encoder.set_input_embeddings(value)
1678
+
1679
+ @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING)
1680
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
1681
+ def forward(
1682
+ self,
1683
+ input_features: Optional[torch.LongTensor] = None,
1684
+ head_mask: Optional[torch.Tensor] = None,
1685
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
1686
+ labels: Optional[torch.LongTensor] = None,
1687
+ output_attentions: Optional[bool] = None,
1688
+ output_hidden_states: Optional[bool] = None,
1689
+ return_dict: Optional[bool] = None,
1690
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1691
+ r"""
1692
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1693
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1694
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1695
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1696
+
1697
+ Returns:
1698
+
1699
+ Example:
1700
+
1701
+ ```python
1702
+ >>> import torch
1703
+ >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification
1704
+ >>> from datasets import load_dataset
1705
+
1706
+ >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
1707
+ >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
1708
+
1709
+ >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True)
1710
+ >>> sample = next(iter(ds))
1711
+
1712
+ >>> inputs = feature_extractor(
1713
+ ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt"
1714
+ ... )
1715
+ >>> input_features = inputs.input_features
1716
+
1717
+ >>> with torch.no_grad():
1718
+ ... logits = model(input_features).logits
1719
+
1720
+ >>> predicted_class_ids = torch.argmax(logits).item()
1721
+ >>> predicted_label = model.config.id2label[predicted_class_ids]
1722
+ >>> predicted_label
1723
+ 'af_za'
1724
+ ```"""
1725
+
1726
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1727
+ output_hidden_states = (
1728
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1729
+ )
1730
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1731
+
1732
+ if encoder_outputs is None:
1733
+ encoder_outputs = self.encoder(
1734
+ input_features,
1735
+ head_mask=head_mask,
1736
+ output_attentions=output_attentions,
1737
+ output_hidden_states=output_hidden_states,
1738
+ return_dict=return_dict,
1739
+ )
1740
+
1741
+ if self.config.use_weighted_layer_sum:
1742
+ hidden_states = torch.stack(encoder_outputs, dim=1)
1743
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
1744
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
1745
+ else:
1746
+ hidden_states = encoder_outputs[0]
1747
+
1748
+ hidden_states = self.projector(hidden_states)
1749
+ pooled_output = hidden_states.mean(dim=1)
1750
+
1751
+ logits = self.classifier(pooled_output)
1752
+
1753
+ loss = None
1754
+
1755
+ if labels is not None:
1756
+ loss_fct = CrossEntropyLoss()
1757
+ # move labels to correct device to enable PP
1758
+ labels = labels.to(logits.device)
1759
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
1760
+
1761
+ if not return_dict:
1762
+ output = (logits,) + encoder_outputs[1:]
1763
+ return ((loss,) + output) if loss is not None else output
1764
+
1765
+ return SequenceClassifierOutput(
1766
+ loss=loss,
1767
+ logits=logits,
1768
+ hidden_states=encoder_outputs.hidden_states,
1769
+ attentions=encoder_outputs.attentions,
1770
+ )
models/tinyoctopus.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+ import json
17
+ import contextlib
18
+ import random
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+ from transformers import LlamaTokenizer, StoppingCriteriaList
24
+ from peft import LoraConfig, TaskType, get_peft_model
25
+
26
+ from .Qformer import BertConfig, BertLMHeadModel
27
+ from .modeling_llama import LlamaForCausalLM
28
+ from .modeling_whisper import WhisperModel
29
+ from .beats.BEATs import BEATsConfig, BEATs
30
+ from .utils import StoppingCriteriaSub
31
+
32
+
33
+ class TINYOCTOPUS(nn.Module):
34
+ @classmethod
35
+ def init_speech_Qformer(cls, num_query_token, speech_width, num_hidden_layers=2):
36
+ encoder_config = BertConfig.from_pretrained("bert-base-uncased")
37
+ encoder_config.num_hidden_layers = num_hidden_layers
38
+ encoder_config.encoder_width = speech_width
39
+ # insert cross-attention layer every other block
40
+ encoder_config.add_cross_attention = True
41
+ encoder_config.cross_attention_freq = 1
42
+ encoder_config.query_length = num_query_token
43
+ Qformer = BertLMHeadModel(config=encoder_config)
44
+ query_tokens = nn.Parameter(
45
+ torch.zeros(1, num_query_token, encoder_config.hidden_size)
46
+ )
47
+ query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
48
+ return Qformer, query_tokens
49
+
50
+ @property
51
+ def device(self):
52
+ return list(self.parameters())[0].device
53
+
54
+ def maybe_autocast(self, dtype=torch.float16):
55
+ # if on cpu, don't use autocast
56
+ # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
57
+ enable_autocast = self.device != torch.device("cpu")
58
+
59
+ if enable_autocast:
60
+ return torch.cuda.amp.autocast(dtype=dtype)
61
+ else:
62
+ return contextlib.nullcontext()
63
+
64
+ def __init__(
65
+ self,
66
+ llama_path="",
67
+ whisper_path="",
68
+ freeze_whisper=True,
69
+ beats_path="",
70
+ freeze_beats=True,
71
+
72
+ use_speech_Qformer=True,
73
+ num_speech_query_token=1,
74
+ freeze_speech_QFormer=False,
75
+ window_level_Qformer=True,
76
+ second_per_window=0.333333,
77
+ second_stride=0.333333,
78
+
79
+ speech_llama_proj_model="",
80
+ freeze_speech_llama_proj=False,
81
+
82
+ lora=True,
83
+ lora_rank=8,
84
+ lora_alpha=32,
85
+ lora_dropout=0.1,
86
+
87
+ multi_prompt=False,
88
+ prompt_path="",
89
+ prompt_template="",
90
+ max_txt_len=128,
91
+ end_sym="</s>",
92
+ low_resource=False, # use 8 bit
93
+ device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
94
+ ):
95
+ super().__init__()
96
+
97
+ self.beats_path = beats_path
98
+ self.use_speech_Qformer = use_speech_Qformer
99
+ self.window_level_Qformer = window_level_Qformer
100
+ self.second_per_window = second_per_window
101
+ self.second_stride = second_stride
102
+ self.lora = lora
103
+ self.multi_prompt = multi_prompt
104
+ self.max_txt_len = max_txt_len
105
+ self.end_sym = end_sym
106
+ self.low_resource = low_resource
107
+
108
+ logging.info('Loading LLaMA Tokenizer')
109
+ self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_path, use_fast=False)
110
+ self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
111
+ self.llama_tokenizer.padding_side = "right"
112
+
113
+ logging.info('Loading LLaMA Model')
114
+ if self.low_resource:
115
+ self.llama_model = LlamaForCausalLM.from_pretrained(
116
+ llama_path,
117
+ torch_dtype=torch.float16,
118
+ load_in_8bit=True,
119
+ device_map={"": device_8bit},
120
+ )
121
+ else:
122
+ self.llama_model = LlamaForCausalLM.from_pretrained(
123
+ llama_path,
124
+ torch_dtype=torch.float16,
125
+ )
126
+
127
+ self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
128
+ for name, param in self.llama_model.named_parameters():
129
+ param.requires_grad = False
130
+ logging.info('Loading LLaMA Done')
131
+
132
+ if self.lora:
133
+ self.peft_config = LoraConfig(
134
+ task_type=TaskType.CAUSAL_LM,
135
+ inference_mode=False,
136
+ r=lora_rank,
137
+ lora_alpha=lora_alpha,
138
+ lora_dropout=lora_dropout,
139
+ )
140
+ self.llama_model = get_peft_model(self.llama_model, self.peft_config)
141
+ self.llama_model.print_trainable_parameters()
142
+ logging.info('LoRA Training')
143
+
144
+ assert whisper_path
145
+ logging.info('Loading Whisper Model')
146
+ self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder
147
+ self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model)
148
+ if freeze_whisper:
149
+ for name, param in self.speech_encoder.named_parameters():
150
+ param.requires_grad = False
151
+ self.speech_encoder.eval()
152
+ logging.info("freeze Whisper")
153
+
154
+ if self.beats_path:
155
+ logging.info("Loading BEATs Model")
156
+ beats_ckpt = torch.load(self.beats_path, map_location='cpu')
157
+ beats_cfg = BEATsConfig(beats_ckpt['cfg'])
158
+ self.beats = BEATs(beats_cfg)
159
+ self.beats.load_state_dict(beats_ckpt['model'])
160
+ self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
161
+ if freeze_beats:
162
+ for name, param in self.beats.named_parameters():
163
+ param.requires_grad = False
164
+ self.beats.eval()
165
+ logging.info("freeze BEATs")
166
+
167
+ if self.use_speech_Qformer:
168
+ if self.beats_path:
169
+ self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
170
+ num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim
171
+ )
172
+ else:
173
+ self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
174
+ num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model
175
+ )
176
+ self.speech_Qformer.bert.embeddings.word_embeddings = None
177
+ self.speech_Qformer.bert.embeddings.position_embeddings = None
178
+ for layer in self.speech_Qformer.bert.encoder.layer:
179
+ layer.output = None
180
+ layer.intermediate = None
181
+ self.speech_Qformer.cls = None
182
+ if freeze_speech_QFormer:
183
+ for name, param in self.speech_Qformer.named_parameters():
184
+ param.requires_grad = False
185
+ self.speech_Qformer.eval()
186
+ self.speech_query_tokens.requires_grad = False
187
+ logging.info("freeze Speech QFormer")
188
+
189
+ logging.info('Loading speech LLAMA proj')
190
+ self.speech_llama_proj = nn.Linear(
191
+ self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size
192
+ )
193
+ if speech_llama_proj_model:
194
+ logging.info("Loading speech LLAMA proj from {}".format(speech_llama_proj_model))
195
+ speech_llama_proj_weight = torch.load(speech_llama_proj_model, map_location="cpu")
196
+ self.load_state_dict(speech_llama_proj_weight['model'], strict=False)
197
+ if freeze_speech_llama_proj:
198
+ for name, param in self.speech_llama_proj.named_parameters():
199
+ param.requires_grad = False
200
+ self.speech_llama_proj.eval()
201
+ logging.info("freeze speech LLAMA proj")
202
+ else:
203
+ # feel free to add other aligners here
204
+ raise NotImplementedError
205
+
206
+ # prepare prompts
207
+ self.prompt_dict = {}
208
+ if prompt_path:
209
+ try:
210
+ raw_prompts = json.load(open(prompt_path, "r"))
211
+ except:
212
+ print("Failed to load prompt! Try to use utf-8 encoding.")
213
+ raw_prompts = json.load(open(prompt_path, "r", encoding='utf-8'))
214
+ for task in raw_prompts.keys():
215
+ filted_prompts = [raw_prompt for raw_prompt in raw_prompts[task] if "<SpeechHere>" in raw_prompt]
216
+ self.prompt_dict[task] = [prompt_template.format(p) for p in filted_prompts]
217
+ print("Loading training prompts done!")
218
+
219
+ def _encode_auditory_feature(self, speech_embeds, audio_embeds=None):
220
+ with self.maybe_autocast():
221
+ if self.use_speech_Qformer:
222
+ speech_embeds = self.ln_speech(speech_embeds)
223
+ if audio_embeds is not None:
224
+ audio_embeds = self.ln_audio(audio_embeds)
225
+ if audio_embeds.size(1) < speech_embeds.size(1):
226
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1)))
227
+ elif audio_embeds.size(1) > speech_embeds.size(1):
228
+ speech_embeds = F.pad(speech_embeds, (0, 0, 0, audio_embeds.size(1) - speech_embeds.size(1)))
229
+ speech_embeds = torch.cat((speech_embeds, audio_embeds), dim=-1)
230
+ speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)
231
+
232
+ if self.window_level_Qformer:
233
+ B, T, C = speech_embeds.shape
234
+ kernel = round(1500 * self.second_per_window / 30.0)
235
+ stride = round(1500 * self.second_stride / 30.0)
236
+ kernel = (1, kernel)
237
+ stride = (1, stride)
238
+ speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2)
239
+ speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
240
+ _, _, L = speech_embeds_overlap.shape
241
+ speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
242
+ speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
243
+ speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C)
244
+ speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device)
245
+
246
+ query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1)
247
+ query_output = self.speech_Qformer.bert(
248
+ query_embeds=query_tokens,
249
+ encoder_hidden_states=speech_embeds,
250
+ encoder_attention_mask=speech_atts,
251
+ return_dict=True,
252
+ )
253
+ speech_embeds = self.speech_llama_proj(query_output.last_hidden_state)
254
+
255
+ if self.window_level_Qformer:
256
+ speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous()
257
+
258
+ speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)
259
+ else:
260
+ raise NotImplementedError
261
+
262
+ return speech_embeds, speech_atts
263
+
264
+ def encode_speech(self, spectrogram, raw_wav=None, audio_padding_mask=None):
265
+ with self.maybe_autocast():
266
+ speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state
267
+
268
+ if self.beats_path and raw_wav is not None:
269
+ audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True)
270
+ else:
271
+ audio_embeds = None
272
+
273
+ return self._encode_auditory_feature(speech_embeds, audio_embeds=audio_embeds)
274
+
275
+ def prompt_wrap(self, embeds, atts, prompt, multi_prompt=False):
276
+ if prompt:
277
+ if multi_prompt:
278
+ p_before = []
279
+ p_after = []
280
+ for i, p in enumerate(prompt):
281
+ b, a = p.split("<SpeechHere>")
282
+ p_before.append(b)
283
+ p_after.append(a)
284
+
285
+ p_before_tokens = self.llama_tokenizer(
286
+ p_before, return_tensors="pt", add_special_tokens=False
287
+ ).to(embeds.device)
288
+ p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids)
289
+
290
+ # speech_embeds wrapped with prompts_embeds are padded to the same length here
291
+ p_after_tokens = self.llama_tokenizer(
292
+ p_after, return_tensors="pt", padding="longest", add_special_tokens=False
293
+ ).to(embeds.device)
294
+ p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids)
295
+
296
+ wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
297
+ wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
298
+ else:
299
+ batch_size = embeds.shape[0]
300
+ p_before, p_after = prompt.split("<SpeechHere>")
301
+
302
+ p_before_tokens = self.llama_tokenizer(
303
+ p_before, return_tensors="pt", add_special_tokens=False
304
+ ).to(embeds.device)
305
+ p_after_tokens = self.llama_tokenizer(
306
+ p_after, return_tensors="pt", add_special_tokens=False
307
+ ).to(embeds.device)
308
+ p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
309
+ p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
310
+
311
+ wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
312
+ wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
313
+ return wrapped_embeds, wrapped_atts
314
+ else:
315
+ return embeds, atts
316
+
317
+ def forward(self, samples, verbose=False):
318
+ # detect whether there are multi tasks in this batch
319
+ task = list(set(samples["task"]))
320
+ if len(task) > 1 or "QA" in task:
321
+ self.multi_prompt = True
322
+
323
+ # prepare prompts
324
+ if self.prompt_dict:
325
+ if self.multi_prompt:
326
+ prompt = [random.choice(self.prompt_dict[task]) for task in samples["task"]]
327
+ if "Q" in samples:
328
+ prompt = [p.format(q) if '{}' in p else p for p, q in zip(prompt, samples["Q"]) ]
329
+ else:
330
+ prompt = random.choice(self.prompt_dict[samples["task"][0]])
331
+
332
+ # use speech/audio encoder to encode speech/audio
333
+ spectrogram = samples["spectrogram"]
334
+ raw_wav = samples.get("raw_wav", None)
335
+ # print(raw_wav)
336
+ audio_padding_mask = samples.get("padding_mask", None)
337
+
338
+ speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)
339
+
340
+ # wrap speech_embeds with prompts
341
+ if self.prompt_dict:
342
+ speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompt, multi_prompt=self.multi_prompt)
343
+
344
+ # prepare inputs for LLM
345
+ text = [t + self.end_sym for t in samples["text"]]
346
+ to_regress_tokens = self.llama_tokenizer(
347
+ text,
348
+ return_tensors="pt",
349
+ padding="longest",
350
+ truncation=True,
351
+ max_length=self.max_txt_len,
352
+ add_special_tokens=False
353
+ ).to(spectrogram.device)
354
+ to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(to_regress_tokens.input_ids)
355
+ targets = to_regress_tokens.input_ids.masked_fill(
356
+ to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
357
+ )
358
+ empty_targets = (
359
+ torch.ones(
360
+ [speech_atts.shape[0], speech_atts.shape[1] + 1],
361
+ dtype=torch.long
362
+ ).to(spectrogram.device).fill_(-100)
363
+ )
364
+ targets = torch.cat([empty_targets, targets], dim=1)
365
+
366
+ batch_size = speech_embeds.shape[0]
367
+ bos = torch.ones(
368
+ [batch_size, 1],
369
+ dtype=to_regress_tokens.input_ids.dtype,
370
+ device=to_regress_tokens.input_ids.device,
371
+ ) * self.llama_tokenizer.bos_token_id
372
+ bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
373
+ atts_bos = speech_atts[:, :1]
374
+
375
+ inputs_embeds = torch.cat([bos_embeds, speech_embeds, to_regress_embeds], dim=1)
376
+ attention_mask = torch.cat([atts_bos, speech_atts, to_regress_tokens.attention_mask], dim=1)
377
+
378
+ # calulate loss
379
+ with self.maybe_autocast():
380
+ outputs = self.llama_model(
381
+ inputs_embeds=inputs_embeds,
382
+ attention_mask=attention_mask,
383
+ return_dict=True,
384
+ labels=targets,
385
+ )
386
+ loss = outputs.loss
387
+
388
+ if verbose:
389
+ nvocab = self.llama_model.config.vocab_size
390
+ results = outputs.logits[:, empty_targets.size(1) - 1: -1, :].contiguous().view(-1, nvocab).argmax(dim=-1)
391
+ labels = targets[:, empty_targets.size(1):].contiguous().view(-1)
392
+ mask = (labels != -100)
393
+ correct = (results[mask] == labels[mask]).float().sum()
394
+ total = len(labels[mask])
395
+
396
+ if verbose:
397
+ return {"loss": loss, "correct": correct, "total": total}
398
+
399
+ return {"loss": loss}
400
+
401
+ def generate(self, samples, generate_cfg, prompts=None):
402
+ batch_size = samples["spectrogram"].shape[0]
403
+
404
+ spectrogram = samples["spectrogram"]
405
+ raw_wav = samples.get("raw_wav", None)
406
+ audio_padding_mask = samples.get("padding_mask", None)
407
+
408
+ speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)
409
+
410
+ if prompts is not None:
411
+ speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompts, multi_prompt=True)
412
+
413
+ bos = torch.ones(
414
+ [batch_size, 1],
415
+ dtype=torch.int32,
416
+ device=speech_embeds.device,
417
+ ) * self.llama_tokenizer.bos_token_id
418
+ bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
419
+ atts_bos = speech_atts[:, :1]
420
+
421
+ embeds = torch.cat([bos_embeds, speech_embeds], dim=1)
422
+ attns = torch.cat([atts_bos, speech_atts], dim=1)
423
+
424
+ stop_words_ids = [torch.tensor([2]).cuda()]
425
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
426
+ outputs = self.llama_model.generate(
427
+ inputs_embeds=embeds,
428
+ max_new_tokens=generate_cfg.get("max_new_tokens", 200),
429
+ stopping_criteria=stopping_criteria,
430
+ num_beams=generate_cfg.get("num_beams", 4),
431
+ do_sample=generate_cfg.get("do_sample", False),
432
+ min_length=generate_cfg.get("min_length", 1),
433
+ temperature=generate_cfg.get("temperature", 1.0),
434
+ top_p=generate_cfg.get("top_p", 0.9),
435
+ repetition_penalty=generate_cfg.get("repetition_penalty", 1.0),
436
+ length_penalty=generate_cfg.get("length_penalty", 1.0),
437
+ attention_mask=attns,
438
+ )
439
+ text = self.llama_tokenizer.batch_decode(outputs, add_special_tokens=False)
440
+
441
+ return text
442
+
443
+ @classmethod
444
+ def from_config(cls, config):
445
+ llama_path = config.get("llama_path")
446
+ whisper_path = config.get("whisper_path")
447
+ freeze_whisper = config.get("freeze_whisper", True)
448
+ beats_path = config.get("beats_path", "")
449
+ freeze_beats = config.get("freeze_beats", True)
450
+
451
+ use_speech_Qformer = config.get("use_speech_Qformer", True)
452
+ num_speech_query_token = config.get("num_speech_query_token", 1)
453
+ freeze_speech_QFormer = config.get("freeze_speech_QFormer", False)
454
+ window_level_Qformer = config.get("window_level_Qformer", True)
455
+ second_per_window = config.get("second_per_window", 0.333333)
456
+ second_stride = config.get("second_stride", 0.333333)
457
+
458
+ speech_llama_proj_model = config.get("speech_llama_proj_model", "")
459
+ freeze_speech_llama_proj = config.get("freeze_speech_llama_proj", False)
460
+
461
+ lora = config.get("lora", True)
462
+ lora_rank = config.get("lora_rank", 8)
463
+ lora_alpha = config.get("lora_alpha", 32)
464
+ lora_dropout = config.get("lora_dropout", 0.1)
465
+
466
+ multi_prompt = config.get("multi_prompt", False)
467
+ prompt_path = config.get("prompt_path", "")
468
+ prompt_template = config.get("prompt_template", "")
469
+ max_txt_len = config.get("max_txt_len", 128)
470
+ end_sym = config.get("end_sym", "</s>")
471
+ low_resource = config.get("low_resource", False)
472
+ device_8bit = config.get("device_8bit", 0)
473
+
474
+ model = cls(
475
+ llama_path=llama_path,
476
+ whisper_path=whisper_path,
477
+ freeze_whisper=freeze_whisper,
478
+ beats_path=beats_path,
479
+ freeze_beats=freeze_beats,
480
+ use_speech_Qformer=use_speech_Qformer,
481
+ num_speech_query_token=num_speech_query_token,
482
+ freeze_speech_QFormer=freeze_speech_QFormer,
483
+ window_level_Qformer=window_level_Qformer,
484
+ second_per_window=second_per_window,
485
+ second_stride=second_stride,
486
+ speech_llama_proj_model=speech_llama_proj_model,
487
+ freeze_speech_llama_proj=freeze_speech_llama_proj,
488
+ lora=lora,
489
+ lora_rank=lora_rank,
490
+ lora_alpha=lora_alpha,
491
+ lora_dropout=lora_dropout,
492
+ multi_prompt=multi_prompt,
493
+ prompt_path=prompt_path,
494
+ prompt_template=prompt_template,
495
+ max_txt_len=max_txt_len,
496
+ end_sym=end_sym,
497
+ low_resource=low_resource,
498
+ device_8bit=device_8bit,
499
+ )
500
+
501
+ ckpt_path = config.get("ckpt", "")
502
+ if ckpt_path:
503
+ logging.info("Load TinyOctopus ckpt from: {}".format(ckpt_path))
504
+ ckpt = torch.load(ckpt_path, map_location="cpu")
505
+ model.load_state_dict(ckpt['model'], strict=False)
506
+
507
+ return model
models/utils.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ from transformers import StoppingCriteria
17
+
18
+
19
+ class StoppingCriteriaSub(StoppingCriteria):
20
+
21
+ def __init__(self, stops=[], encounters=1):
22
+ super().__init__()
23
+ self.stops = stops
24
+
25
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
26
+ for stop in self.stops:
27
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
28
+ return True
29
+
30
+ return False
utils.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+ import time
17
+
18
+ import torch
19
+ from torch.utils.data import DataLoader, DistributedSampler
20
+ import soundfile as sf
21
+ import numpy as np
22
+
23
+ from dist_utils import is_main_process, get_world_size, get_rank
24
+
25
+
26
+ def now():
27
+ from datetime import datetime
28
+
29
+ return datetime.now().strftime("%Y%m%d%H%M")
30
+
31
+
32
+ def setup_logger():
33
+ logging.basicConfig(
34
+ level=logging.INFO if is_main_process() else logging.WARN,
35
+ format="%(asctime)s [%(levelname)s] %(message)s",
36
+ handlers=[logging.StreamHandler()],
37
+ )
38
+
39
+
40
+ def get_dataloader(dataset, config, is_train=True, use_distributed=True):
41
+ if use_distributed:
42
+ sampler = DistributedSampler(
43
+ dataset,
44
+ shuffle=is_train,
45
+ num_replicas=get_world_size(),
46
+ rank=get_rank()
47
+ )
48
+ else:
49
+ sampler = None
50
+
51
+ loader = DataLoader(
52
+ dataset,
53
+ batch_size=config.batch_size_train if is_train else config.batch_size_eval,
54
+ num_workers=config.num_workers,
55
+ pin_memory=True,
56
+ sampler=sampler,
57
+ shuffle=sampler is None and is_train,
58
+ collate_fn=dataset.collater,
59
+ drop_last=is_train,
60
+ )
61
+
62
+ if is_train:
63
+ loader = IterLoader(loader, use_distributed=use_distributed)
64
+
65
+ return loader
66
+
67
+
68
+ def apply_to_sample(f, sample):
69
+ if len(sample) == 0:
70
+ return {}
71
+
72
+ def _apply(x):
73
+ if torch.is_tensor(x):
74
+ return f(x)
75
+ elif isinstance(x, dict):
76
+ return {key: _apply(value) for key, value in x.items()}
77
+ elif isinstance(x, list):
78
+ return [_apply(x) for x in x]
79
+ else:
80
+ return x
81
+
82
+ return _apply(sample)
83
+
84
+
85
+ def move_to_cuda(sample):
86
+ def _move_to_cuda(tensor):
87
+ return tensor.cuda()
88
+
89
+ return apply_to_sample(_move_to_cuda, sample)
90
+
91
+
92
+ def prepare_sample(samples, cuda_enabled=True):
93
+ if cuda_enabled:
94
+ samples = move_to_cuda(samples)
95
+
96
+ # TODO fp16 support
97
+
98
+ return samples
99
+
100
+
101
+ class IterLoader:
102
+ """
103
+ A wrapper to convert DataLoader as an infinite iterator.
104
+
105
+ Modified from:
106
+ https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
107
+ """
108
+
109
+ def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
110
+ self._dataloader = dataloader
111
+ self.iter_loader = iter(self._dataloader)
112
+ self._use_distributed = use_distributed
113
+ self._epoch = 0
114
+
115
+ @property
116
+ def epoch(self) -> int:
117
+ return self._epoch
118
+
119
+ def __next__(self):
120
+ try:
121
+ data = next(self.iter_loader)
122
+ except StopIteration:
123
+ self._epoch += 1
124
+ if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
125
+ self._dataloader.sampler.set_epoch(self._epoch)
126
+ time.sleep(2) # Prevent possible deadlock during epoch transition
127
+ self.iter_loader = iter(self._dataloader)
128
+ data = next(self.iter_loader)
129
+
130
+ return data
131
+
132
+ def __iter__(self):
133
+ return self
134
+
135
+ def __len__(self):
136
+ return len(self._dataloader)
137
+
138
+
139
+ def prepare_one_sample(wav_path, wav_processor, cuda_enabled=True):
140
+ audio, sr = sf.read(wav_path)
141
+ if len(audio.shape) == 2: # stereo to mono
142
+ audio = audio[:, 0]
143
+ if len(audio) < sr: # pad audio to at least 1s
144
+ sil = np.zeros(sr - len(audio), dtype=float)
145
+ audio = np.concatenate((audio, sil), axis=0)
146
+ audio = audio[: sr * 30] # truncate audio to at most 30s
147
+
148
+ spectrogram = wav_processor(audio, sampling_rate=sr, return_tensors="pt")["input_features"]
149
+
150
+ samples = {
151
+ "spectrogram": spectrogram,
152
+ "raw_wav": torch.from_numpy(audio).unsqueeze(0),
153
+ "padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
154
+ }
155
+ if cuda_enabled:
156
+ samples = move_to_cuda(samples)
157
+
158
+ return samples