{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f193b0fa200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f193b0fa290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f193b0fa320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f193b0fa3b0>", "_build": "<function ActorCriticPolicy._build at 0x7f193b0fa440>", "forward": "<function ActorCriticPolicy.forward at 0x7f193b0fa4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f193b0fa560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f193b0fa5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f193b0fa680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f193b0fa710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f193b0fa7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f193b13dc60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660635572.5798519, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA5Lmgv1yq7T7NjQU/y+aDPl+lwD6woz4/QRMkvhp1NT9kJY0/FlIwu5FzV789YRE/B2x/v+eneT9yMvs+EbLfvdBDDD/qNqU/aIHgPtKqLD+Hyo2/EPDIPQnzGL9CLos9aZ6qv4RG3T7Swh3AFNhAP4RmXD81vas+f0kLP8CSiz+WvpE/E0ZVP9Tfwz/1qpy+AvKJPl5glr/joTe/uD+aP8Tebb6PgBO/qaqev8Q4AEB3ifW9+HbhvUJ6MT/96q086pOOv0jXOzzd9e++puUVv2meqr9AFhTA4bTPPhTYQD8f6aW/pqQKP2myAD9/2hu/mwitPvVloz7pFFU+D1YcP7T0iz9HkpS+XO4Lv07XTj7Eqou/Yrs1v/Mnij4GvZa+loRuP4t+ur47eR8/NQV3PiI6ib86MGg+Afpov928gz3KDUA/hEbdPuG0zz5w66m/xOq+v+50Hj+2gvU+7Vduv1bAfD1Y34Q9P9CAPc2biT/Wxk8/5osdPPSVU78TsH68GEpLv4JSYzylkZ8+fHQIPZv/TT+Tnmm64+zNPlSZAz2wro6/nBtTOzvXZr/uDJy8yg1AP4RG3T7htM8+FNhAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAArqiLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAwmbs9AAAAAAbL9L8AAAAApqNSvQAAAADxxto/AAAAABFmOj0AAAAAXyHfPwAAAADjZ6M9AAAAADNq7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXK8m1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA29rmPQAAAAB2k+G/AAAAAG8Szz0AAAAABGniPwAAAADauwg9AAAAAHbW+D8AAAAAyL25PQAAAAD9+fy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlvM6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNgeBj0AAAAAVZLZvwAAAAD565+8AAAAAFl03D8AAAAAk34PPgAAAABY+uc/AAAAAJl3FL0AAAAAcP/ivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANrIaTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB/I4w5AAAAAGsu378AAAAAKt6KPQAAAAAFIv0/AAAAAK0rojsAAAAAxEPoPwAAAACLExo9AAAAAPNr978AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIER+hIvrW2MAWyUTegDjAF0lEdAqQLlLDhtL3V9lChoBkdAkheWHUMG5mgHTegDaAhHQKkFeBtDUmV1fZQoaAZHQJFKCaOPvKFoB03oA2gIR0CpCY2/BWPtdX2UKGgGR0CHkZLKV6eHaAdN6ANoCEdAqQ5CeyzHCHV9lChoBkdAkwBzTBqKxmgHTegDaAhHQKkP8xmkFfR1fZQoaAZHQIeyCgTRIBloB03oA2gIR0CpEncnVoYfdX2UKGgGR0CRWxIqbz9TaAdN6ANoCEdAqRaMfJV81HV9lChoBkdAkL30bo8p1GgHTegDaAhHQKkbUIN3GGV1fZQoaAZHQICuknuy/sVoB03oA2gIR0CpHP5KODJ2dX2UKGgGR0CMv634Kx9oaAdN6ANoCEdAqR+Mq4H5anV9lChoBkdAiUAd4/u9e2gHTegDaAhHQKkjlttQ9A51fZQoaAZHQJE3m23KB/ZoB03oA2gIR0CpKD0Od5IIdX2UKGgGR0CSv6p/wy6+aAdN6ANoCEdAqSnk3bVSXXV9lChoBkdAk0U5s9B8hWgHTegDaAhHQKksdleWv8t1fZQoaAZHQJEYBjvuw5hoB03oA2gIR0CpMJLronrqdX2UKGgGR0B0rnjDKoycaAdNlQJoCEdAqTUgJmdy1nV9lChoBkdAkHbeuNgjQmgHTegDaAhHQKk1SxpL26F1fZQoaAZHP+fk/bCaZx9oB0sUaAhHQKk1jx7zCk51fZQoaAZHQJAc5hKDkENoB03oA2gIR0CpNv6W5YozdX2UKGgGR0CBR6OhkAggaAdN6ANoCEdAqT28qaw2VHV9lChoBkdAjCXMVDa4+mgHTegDaAhHQKlCRcBU70Z1fZQoaAZHQIlbCews5GVoB03oA2gIR0CpQrTfixVydX2UKGgGR0CG7VL0SRKZaAdN6ANoCEdAqUQXrSmZVnV9lChoBkdAgZ1iLuQZGmgHTegDaAhHQKlK28cMmWt1fZQoaAZHQIUuOAiFCcBoB03oA2gIR0CpT3VqFh5PdX2UKGgGR0CB0eRmK64EaAdN6ANoCEdAqU/laB7NS3V9lChoBkdAh7bH+IdlumgHTegDaAhHQKlRTu0CzTp1fZQoaAZHQIiLa7yxzJZoB03oA2gIR0CpV/kdFOO9dX2UKGgGR0CAMifdyksSaAdN6ANoCEdAqVyJuO0b+HV9lChoBkdAimFZksjFAGgHTegDaAhHQKlc/3YcvM91fZQoaAZHQIRV4nMMZxdoB03oA2gIR0CpXmcE3bVSdX2UKGgGR0CNA6maYu01aAdN6ANoCEdAqWUcDdP+GXV9lChoBkdAi+/8ma6ST2gHTegDaAhHQKlpqa72+PB1fZQoaAZHQI7DAhGH58BoB03oA2gIR0CpahhrFfiQdX2UKGgGR0CMrkpfhMrVaAdN6ANoCEdAqWuOSMcZL3V9lChoBkdAfjwBmwqy4WgHTegDaAhHQKlySxIJ7cB1fZQoaAZHQIqgdTUAks1oB03oA2gIR0CpduYMF2V3dX2UKGgGR0CKlkGKQ7tBaAdN6ANoCEdAqXdY42jwhHV9lChoBkdAh0L3We6I32gHTegDaAhHQKl4vVcUuct1fZQoaAZHQIxSOf029+RoB03oA2gIR0Cpf2apPykLdX2UKGgGR0CHQQih37k5aAdN6ANoCEdAqYQEuctoSXV9lChoBkdAiHgEhJRO12gHTegDaAhHQKmEcsz2vjh1fZQoaAZHQIdp6GQCCBhoB03oA2gIR0CphdexfOUudX2UKGgGR0COXKmk30f6aAdN6ANoCEdAqYxu9QGfPHV9lChoBkdAiCAETYdyUGgHTegDaAhHQKmQ8TnJT2p1fZQoaAZHQIPgWBe5WiloB03oA2gIR0CpkWC1y/9HdX2UKGgGR0CR4TAOavzOaAdN6ANoCEdAqZLBfICEH3V9lChoBkdAj8ZgzHjp92gHTegDaAhHQKmZYwHqu8t1fZQoaAZHQIVrsLH+6y1oB03oA2gIR0CpnfgUtZmqdX2UKGgGR0CLCespXp4baAdN6ANoCEdAqZ5mZAprlHV9lChoBkdAj1GRGc4HX2gHTegDaAhHQKmf2ETQE6l1fZQoaAZHQIiEDpX6qKhoB03oA2gIR0Cppl61LJ0XdX2UKGgGR0COvzG/etSyaAdN6ANoCEdAqartutOmBXV9lChoBkdAkNv+vhZQpGgHTegDaAhHQKmrX0dRzil1fZQoaAZHQJCxd0vGp/BoB03oA2gIR0CprMOZkTYedX2UKGgGR0COe84Ia99MaAdN6ANoCEdAqbNwsI3R5XV9lChoBkdAjXUKebutwWgHTegDaAhHQKm3+lO45Lh1fZQoaAZHQIX3+lj3EhtoB03oA2gIR0CpuG4hEBsAdX2UKGgGR0CJIDas6q82aAdN6ANoCEdAqbnd18stkHV9lChoBkdAkI6DaCcwxmgHTegDaAhHQKnAfcqOLix1fZQoaAZHQI++BBw++uhoB03oA2gIR0CpxQnBDXvqdX2UKGgGR0CMhOe+23KCaAdN6ANoCEdAqcV1ruYx+XV9lChoBkdAkZLd4JNTLmgHTegDaAhHQKnG5/7zkIZ1fZQoaAZHQJSvJjhDPWxoB03oA2gIR0CpzZO/+Kj0dX2UKGgGR0CM2DSUC7sfaAdN6ANoCEdAqdIcLWqcVnV9lChoBkdAjWPIToMa0mgHTegDaAhHQKnSjNSqEOB1fZQoaAZHQJIVOUNayKNoB03oA2gIR0Cp0/iGetjkdX2UKGgGR0CGvVeC04R3aAdN6ANoCEdAqdqXeYUnHHV9lChoBkdAkSCrIkqto2gHTegDaAhHQKnfFZf2K2t1fZQoaAZHQJCJTxri2lVoB03oA2gIR0Cp34Ma0hNedX2UKGgGR0CQL2JKJ2t/aAdN6ANoCEdAqeDoa1kUbnV9lChoBkdAkqsOe8PFvWgHTegDaAhHQKnnd127nPp1fZQoaAZHQJF2jJ4jbBZoB03oA2gIR0Cp7Aa7/XGwdX2UKGgGR0CK9OGwiaAnaAdN6ANoCEdAqex1kUbkwXV9lChoBkdAkD0OYc/+sGgHTegDaAhHQKnt5+fh/Al1fZQoaAZHQJSSuqKgqVhoB03oA2gIR0Cp9IWB8QZodX2UKGgGR0CGrbWT5ftyaAdN6ANoCEdAqfkSHmA9V3V9lChoBkdAkda1ktmL+GgHTegDaAhHQKn5h1mrbQF1fZQoaAZHQJQof4REnb9oB03oA2gIR0Cp+u6RZEDydX2UKGgGR0CTJFow22ofaAdN6ANoCEdAqgGUERrad3V9lChoBkdAk1WZsbedkWgHTegDaAhHQKoG2ruIAOt1fZQoaAZHQJRm38dgfEJoB03oA2gIR0CqB3ffXPJJdX2UKGgGR0CVs9fNzKcNaAdN6ANoCEdAqglFO6/Zd3V9lChoBkdAj/aBsANoamgHTegDaAhHQKoP5g1FYuF1fZQoaAZHQJVuD9rGipNoB03oA2gIR0CqFGdxAB1cdX2UKGgGR0CXZhscABDHaAdN6ANoCEdAqhTV27nPmnV9lChoBkdAkpROpjtojGgHTegDaAhHQKoWPcGkep51fZQoaAZHQJMxlTR6WxBoB03oA2gIR0CqHMVQ66redX2UKGgGR0CUuuY5ksjFaAdN6ANoCEdAqiFTPppvgnV9lChoBkdAlNz5O8Cgb2gHTegDaAhHQKohxWmxdIJ1fZQoaAZHQJbqT9n9NvhoB03oA2gIR0CqIzOFg2IgdX2UKGgGR0CWfWYht+CsaAdN6ANoCEdAqinPHYHxBnV9lChoBkdAlXOTOHFglWgHTegDaAhHQKouYT0xubZ1fZQoaAZHQJStsENe+mFoB03oA2gIR0CqLtXk5p8GdX2UKGgGR0CS9z06HTJAaAdN6ANoCEdAqjBDjPv8ZXV9lChoBkdAkiGQY+B6KWgHTegDaAhHQKo3BrOZ9eB1fZQoaAZHQI5viprDZUVoB03oA2gIR0CqO42qDK5kdX2UKGgGR0CTwceQMhHLaAdN6ANoCEdAqjv/jQzDXXV9lChoBkdAkpFyh8IAwWgHTegDaAhHQKo9aPEsJ6Z1fZQoaAZHQJJGwyULUkRoB03oA2gIR0CqQ/79ycTbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |