SatCat commited on
Commit
dc5d9b1
1 Parent(s): 957f41a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1274.68 +/- 257.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f3bee6b22e086268441ffa03772766dbd3c1a3b337b9cc106cf7751982c772f
3
+ size 128761
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F067916EE0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F067916F70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F06791B040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F06791B0D0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000001F06791B160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000001F06791B1F0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F06791B280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x000001F06791B310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F06791B3A0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F06791B430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F06791B4C0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x000001F067919C80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1674089239605998678,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": null,
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVnQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMa0M6XFVzZXJzXFNBXEFwcERhdGFcTG9jYWxcci1taW5pY29uZGFcZW52c1xyLXJldGljdWxhdGVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzyqz4FIGo/mbCnPpFeEz9cbxO9bnweOhIJAL9OYDK/MqBzPcgXCb99kQM+Uo8MQOc0PL8jXKm/j3RJP4ItljxYu1w/ZIWIvwm/5b6pfXQ8cV4lv4ai7Twov4a+26Q1wKazn78eivu/me4BP9splb/PiEy+GgSJPycPaz6wfRI/ESwPPUrZJ785Fxq/uOKJv7WcJz+kjHO8h0chvxvY2r/i0KC/i7/KPnqFST+GLfC6nYiOvTZaIj8H48Y+MXwcv//mHb+jjhA9YbYNv1cVpz+ms5+/EEUCP5nuAT/bKZW/oh82PsaCST8HHsk+hsPDPxAso77MlgG/wwkmveSqfL9n+7u+Lk0lv0zFYj/rCE8/gmBPv59b779mEDU/n96PvjhzFb8j74q/X18oPyJQ4j9v2iW/ziU/PXX2bL+zfpPAti5NPx6K+7+Z7gE/2ymVv8Uzl79GeJ8/c9q9PdrhnL4Y0b8/NSNDvuS9DL62ZDs/oxYqvrlq5b8un12/zn1bvMFbi7+yUlg92L3JPiwmD7/1fJk/unf7Pzn+wT4IPhM/vBYlv1lIVzw74/C+sTGlvqazn78QRQI/gzH8v6utWz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKrTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz1eMPQAAAAAnO/y/AAAAAMHssbsAAAAAe6TpPwAAAADws0C9AAAAABxe8z8AAAAAwuleuwAAAADUX+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATsyXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUdWL0AAAAA36r1vwAAAAAUSTK9AAAAAPmw5T8AAAAA6+DUvQAAAAATRQBAAAAAAEkKTb0AAAAAXc/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwF+rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANRgI9AAAAANu98b8AAAAAtu2dvQAAAAD/r/c/AAAAAAJbsz0AAAAADTvwPwAAAAB15+a6AAAAAL74+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxrB42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/mIgvQAAAAC6uey/AAAAAA+h0z0AAAAA7mPZPwAAAACb25c7AAAAABTo/T8AAAAA/lRKPQAAAAA4TO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqxyfZmI0uMAWyUTegDjAF0lEdAqOl4qVhTfnV9lChoBkdAeakWC2+fy2gHTegDaAhHQKjsXdqL0jF1fZQoaAZHQJuOhnDiwStoB03oA2gIR0Co7M+UQkHEdX2UKGgGR0CYv49XtBv8aAdN6ANoCEdAqO/RYeT3ZnV9lChoBkdAmzMHXZoPCmgHTegDaAhHQKj2FR2KVIJ1fZQoaAZHQJX/16jWTX9oB03oA2gIR0Co+PrM9r44dX2UKGgGR0B3Ah/J/5LzaAdN6ANoCEdAqPl6OPvKEHV9lChoBkdAmaN9qHoHLWgHTegDaAhHQKj8iKF7D2t1fZQoaAZHQJodkuVX3g1oB03oA2gIR0CpAvJUgjhUdX2UKGgGR0CYEVXNC7btaAdN6ANoCEdAqQXcXizcAXV9lChoBkdAmQgbEtNBW2gHTegDaAhHQKkGU/PgNw11fZQoaAZHQJxcQz1schloB03oA2gIR0CpCVZkCmuUdX2UKGgGR0Cbo6k7wKBvaAdN6ANoCEdAqQ/IvtdAxHV9lChoBkdAk0JsT8HfM2gHTegDaAhHQKkSyhFmWdF1fZQoaAZHQJB5nJkoWpJoB03oA2gIR0CpE0L/82rGdX2UKGgGR0CaVJv3ai9JaAdN6ANoCEdAqRZIcghbGHV9lChoBkdAhe3p6hQFcWgHTegDaAhHQKkc5APd2xJ1fZQoaAZHQHYTOQlruYxoB03oA2gIR0CpH/ZD7ZWadX2UKGgGR0BwecLQXyiFaAdN6ANoCEdAqSB3AwfyPXV9lChoBkdAhFmRmbsniWgHTegDaAhHQKkjj/Nqxkd1fZQoaAZHQHm4UTDfm9xoB03oA2gIR0CpKinC4z7/dX2UKGgGR0CTVVFkxyn2aAdN6ANoCEdAqS24XIlt0nV9lChoBkdAls4y3CsOomgHTegDaAhHQKkuc0D2alV1fZQoaAZHQJFLfpQk5ZNoB03oA2gIR0CpM02hh6SldX2UKGgGR0CTRaQUYbbUaAdN6ANoCEdAqTtGGZeAu3V9lChoBkdAkSwvmcOLBWgHTegDaAhHQKk+NBLPD511fZQoaAZHQJJJfjn3cpNoB03oA2gIR0CpPqh1Tzd2dX2UKGgGR0ByO6rQw9JSaAdN6ANoCEdAqUGfChvitXV9lChoBkdAnaL2qPwNLGgHTegDaAhHQKlH5GOMl1N1fZQoaAZHQJr0qaH9FWpoB03oA2gIR0CpSsx8lXzUdX2UKGgGR0CXvlZ6Uqx1aAdN6ANoCEdAqUtCxLTQV3V9lChoBkdAY8Voakyk9GgHTegDaAhHQKlOP889wFV1fZQoaAZHQJsBQIC2c8VoB03oA2gIR0CpVKrBTGYKdX2UKGgGR0CeeOVN5+pgaAdN6ANoCEdAqVe6JGe+VXV9lChoBkdAm60hWT5ft2gHTegDaAhHQKlYL+z+m3x1fZQoaAZHQJ28cQxvegtoB03oA2gIR0CpWzdXtBv8dX2UKGgGR0CchVwblzU7aAdN6ANoCEdAqWGGy3Td+HV9lChoBkdAnO3NMXaakWgHTegDaAhHQKlkgdyT6i11fZQoaAZHQIEOpWRzRx9oB03oA2gIR0CpZPpkf9xZdX2UKGgGR0CarozxgAp8aAdN6ANoCEdAqWf/rUsnRnV9lChoBkdAe7WoH9m6G2gHTegDaAhHQKlud1nM+vB1fZQoaAZHQJl7cUlAu7JoB03oA2gIR0CpcXJ8v24/dX2UKGgGR0CYkV4BFNL2aAdN6ANoCEdAqXHm8scyWXV9lChoBkdAnU4Uy+HrQmgHTegDaAhHQKl04q/dqL11fZQoaAZHQJgGpg5R0ltoB03oA2gIR0Cpe2j6eoUBdX2UKGgGR0CbQXaLGaQWaAdN6ANoCEdAqX5Ot8uzyHV9lChoBkdAm01E96kZaWgHTegDaAhHQKl+y10knkV1fZQoaAZHQJtCP/T9bX9oB03oA2gIR0CpgcL1uivgdX2UKGgGR0CRplIhQm/naAdN6ANoCEdAqYgvQMQVbnV9lChoBkdAe01cSoOx0WgHTegDaAhHQKmLKNx2jfx1fZQoaAZHQI+yvh86V+toB03oA2gIR0Cpi6eEAYHgdX2UKGgGR0CUDmsIE8q4aAdN6ANoCEdAqY630h/y5XV9lChoBkdAjJ3hPj4pMGgHTegDaAhHQKmVSVYZEUl1fZQoaAZHQIe+AB1cMVloB03oA2gIR0CpmEX6Q/5ddX2UKGgGR0CWjZuG9HtnaAdN6ANoCEdAqZjCG34KyHV9lChoBkdAgFZIjOcDsGgHTegDaAhHQKmb1bkfcN91fZQoaAZHQJqjGwJPZZloB03oA2gIR0CpomKur6tUdX2UKGgGR0CX0frNW2gGaAdN6ANoCEdAqaVUEeQuEnV9lChoBkdAlGOZx3mmtWgHTegDaAhHQKmlx/7zkIZ1fZQoaAZHQJp74nOSntRoB03oA2gIR0CpqLhuGbkPdX2UKGgGR0CZ/EKRMewLaAdN6ANoCEdAqa8iwMYuTXV9lChoBkdAlrnWC2+fy2gHTegDaAhHQKmyKhwEQoV1fZQoaAZHQJrAb8IiTt9oB03oA2gIR0CpsqJcPe54dX2UKGgGR0CZhEZuhsZYaAdN6ANoCEdAqbXPetSydHV9lChoBkdAli0ng5zYEmgHTegDaAhHQKm8Njtoi9t1fZQoaAZHQJyKxOGj9GZoB03oA2gIR0Cpvx1LBbfQdX2UKGgGR0CaYjylvZRLaAdN6ANoCEdAqb+aXWvr4XV9lChoBkdAjnqatT1kD2gHTegDaAhHQKnCuGlANXp1fZQoaAZHQJaEPAj6eoVoB03oA2gIR0CpySJtix3WdX2UKGgGR0CRHZKneiztaAdN6ANoCEdAqcwIouwos3V9lChoBkdAlP841He7+WgHTegDaAhHQKnMiEpRXOp1fZQoaAZHQJGZ85eZ5RloB03oA2gIR0Cpz7WCuloEdX2UKGgGR0CTNNAnlXA/aAdN6ANoCEdAqdYdjd56dHV9lChoBkdAksUAuRLbpWgHTegDaAhHQKnZEJVsDW91fZQoaAZHQJge2yWzF/BoB03oA2gIR0Cp2ZHJLdvbdX2UKGgGR0CSO/JBPbfxaAdN6ANoCEdAqdylkauOj3V9lChoBkdAk9onI+4b0mgHTegDaAhHQKnjJMewLVp1fZQoaAZHQJNjo5IYm9hoB03oA2gIR0Cp5iHEVFhHdX2UKGgGR0CTJg7MPjGUaAdN6ANoCEdAqeaYtYjjaXV9lChoBkdAgXJd3Sro4mgHTegDaAhHQKnpo2+fywx1fZQoaAZHQJkMfakAPupoB03oA2gIR0Cp8CuearmydX2UKGgGR0CWt10vXbudaAdN6ANoCEdAqfMONBF/hHV9lChoBkdAmS0rutwJgWgHTegDaAhHQKnzgrKeTV51fZQoaAZHQJvsbsKLKmtoB03oA2gIR0Cp9nyDyvs7dX2UKGgGR0CceC+H8CPqaAdN6ANoCEdAqfy0DhcZ+HV9lChoBkdAmi8SBClabGgHTegDaAhHQKn/mYwZflZ1fZQoaAZHQJ2k8n/kvK5oB03oA2gIR0CqAAyLqD9PdX2UKGgGR0Caxdh9srNGaAdN6ANoCEdAqgMOxfOUuHV9lChoBkdAlGUw9/z8QGgHTegDaAhHQKoJe1NQCS11fZQoaAZHQJIyQGMXJo1oB03oA2gIR0CqDIHBDXvqdX2UKGgGR0CO0rFirksCaAdN6ANoCEdAqgz6zRhMJ3V9lChoBkdAjSq6ZH/cWWgHTegDaAhHQKoP9xEv0yx1fZQoaAZHQJTZliWmgrZoB03oA2gIR0CqFn3a8Hv+dX2UKGgGR0CM3LCWu5jIaAdN6ANoCEdAqhl3R1HOKXV9lChoBkdAkCF4hpxm02gHTegDaAhHQKoZ7tJnQIF1fZQoaAZHQJHB431jAi5oB03oA2gIR0CqHPpWmxdIdX2UKGgGR0CWzZ+OOsDGaAdN6ANoCEdAqiOG4LCvYHV9lChoBkdAlaBnXumaY2gHTegDaAhHQKomiNOM2m51fZQoaAZHQJUsd94NZvFoB03oA2gIR0CqJwD1wo9cdX2UKGgGR0CU3pQTmGM5aAdN6ANoCEdAqioVByCFsnVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d0320a5781e4a05b87b280813cafdc3d8f205dbb922f09e708bdd6e29d0ccf4
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f811a43d1adcba6c0fd5dc0efe8099a1457af9cd72080c8070ff318c5f308c6
3
+ size 56638
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19044-SP0 10.0.19044
2
+ Python: 3.9.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.24.1
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F067916EE0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F067916F70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F06791B040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F06791B0D0>", "_build": "<function ActorCriticPolicy._build at 0x000001F06791B160>", "forward": "<function ActorCriticPolicy.forward at 0x000001F06791B1F0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F06791B280>", "_predict": "<function ActorCriticPolicy._predict at 0x000001F06791B310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F06791B3A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F06791B430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F06791B4C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001F067919C80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674089239605998678, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMa0M6XFVzZXJzXFNBXEFwcERhdGFcTG9jYWxcci1taW5pY29uZGFcZW52c1xyLXJldGljdWxhdGVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzyqz4FIGo/mbCnPpFeEz9cbxO9bnweOhIJAL9OYDK/MqBzPcgXCb99kQM+Uo8MQOc0PL8jXKm/j3RJP4ItljxYu1w/ZIWIvwm/5b6pfXQ8cV4lv4ai7Twov4a+26Q1wKazn78eivu/me4BP9splb/PiEy+GgSJPycPaz6wfRI/ESwPPUrZJ785Fxq/uOKJv7WcJz+kjHO8h0chvxvY2r/i0KC/i7/KPnqFST+GLfC6nYiOvTZaIj8H48Y+MXwcv//mHb+jjhA9YbYNv1cVpz+ms5+/EEUCP5nuAT/bKZW/oh82PsaCST8HHsk+hsPDPxAso77MlgG/wwkmveSqfL9n+7u+Lk0lv0zFYj/rCE8/gmBPv59b779mEDU/n96PvjhzFb8j74q/X18oPyJQ4j9v2iW/ziU/PXX2bL+zfpPAti5NPx6K+7+Z7gE/2ymVv8Uzl79GeJ8/c9q9PdrhnL4Y0b8/NSNDvuS9DL62ZDs/oxYqvrlq5b8un12/zn1bvMFbi7+yUlg92L3JPiwmD7/1fJk/unf7Pzn+wT4IPhM/vBYlv1lIVzw74/C+sTGlvqazn78QRQI/gzH8v6utWz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKrTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz1eMPQAAAAAnO/y/AAAAAMHssbsAAAAAe6TpPwAAAADws0C9AAAAABxe8z8AAAAAwuleuwAAAADUX+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATsyXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUdWL0AAAAA36r1vwAAAAAUSTK9AAAAAPmw5T8AAAAA6+DUvQAAAAATRQBAAAAAAEkKTb0AAAAAXc/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwF+rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANRgI9AAAAANu98b8AAAAAtu2dvQAAAAD/r/c/AAAAAAJbsz0AAAAADTvwPwAAAAB15+a6AAAAAL74+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxrB42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/mIgvQAAAAC6uey/AAAAAA+h0z0AAAAA7mPZPwAAAACb25c7AAAAABTo/T8AAAAA/lRKPQAAAAA4TO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqxyfZmI0uMAWyUTegDjAF0lEdAqOl4qVhTfnV9lChoBkdAeakWC2+fy2gHTegDaAhHQKjsXdqL0jF1fZQoaAZHQJuOhnDiwStoB03oA2gIR0Co7M+UQkHEdX2UKGgGR0CYv49XtBv8aAdN6ANoCEdAqO/RYeT3ZnV9lChoBkdAmzMHXZoPCmgHTegDaAhHQKj2FR2KVIJ1fZQoaAZHQJX/16jWTX9oB03oA2gIR0Co+PrM9r44dX2UKGgGR0B3Ah/J/5LzaAdN6ANoCEdAqPl6OPvKEHV9lChoBkdAmaN9qHoHLWgHTegDaAhHQKj8iKF7D2t1fZQoaAZHQJodkuVX3g1oB03oA2gIR0CpAvJUgjhUdX2UKGgGR0CYEVXNC7btaAdN6ANoCEdAqQXcXizcAXV9lChoBkdAmQgbEtNBW2gHTegDaAhHQKkGU/PgNw11fZQoaAZHQJxcQz1schloB03oA2gIR0CpCVZkCmuUdX2UKGgGR0Cbo6k7wKBvaAdN6ANoCEdAqQ/IvtdAxHV9lChoBkdAk0JsT8HfM2gHTegDaAhHQKkSyhFmWdF1fZQoaAZHQJB5nJkoWpJoB03oA2gIR0CpE0L/82rGdX2UKGgGR0CaVJv3ai9JaAdN6ANoCEdAqRZIcghbGHV9lChoBkdAhe3p6hQFcWgHTegDaAhHQKkc5APd2xJ1fZQoaAZHQHYTOQlruYxoB03oA2gIR0CpH/ZD7ZWadX2UKGgGR0BwecLQXyiFaAdN6ANoCEdAqSB3AwfyPXV9lChoBkdAhFmRmbsniWgHTegDaAhHQKkjj/Nqxkd1fZQoaAZHQHm4UTDfm9xoB03oA2gIR0CpKinC4z7/dX2UKGgGR0CTVVFkxyn2aAdN6ANoCEdAqS24XIlt0nV9lChoBkdAls4y3CsOomgHTegDaAhHQKkuc0D2alV1fZQoaAZHQJFLfpQk5ZNoB03oA2gIR0CpM02hh6SldX2UKGgGR0CTRaQUYbbUaAdN6ANoCEdAqTtGGZeAu3V9lChoBkdAkSwvmcOLBWgHTegDaAhHQKk+NBLPD511fZQoaAZHQJJJfjn3cpNoB03oA2gIR0CpPqh1Tzd2dX2UKGgGR0ByO6rQw9JSaAdN6ANoCEdAqUGfChvitXV9lChoBkdAnaL2qPwNLGgHTegDaAhHQKlH5GOMl1N1fZQoaAZHQJr0qaH9FWpoB03oA2gIR0CpSsx8lXzUdX2UKGgGR0CXvlZ6Uqx1aAdN6ANoCEdAqUtCxLTQV3V9lChoBkdAY8Voakyk9GgHTegDaAhHQKlOP889wFV1fZQoaAZHQJsBQIC2c8VoB03oA2gIR0CpVKrBTGYKdX2UKGgGR0CeeOVN5+pgaAdN6ANoCEdAqVe6JGe+VXV9lChoBkdAm60hWT5ft2gHTegDaAhHQKlYL+z+m3x1fZQoaAZHQJ28cQxvegtoB03oA2gIR0CpWzdXtBv8dX2UKGgGR0CchVwblzU7aAdN6ANoCEdAqWGGy3Td+HV9lChoBkdAnO3NMXaakWgHTegDaAhHQKlkgdyT6i11fZQoaAZHQIEOpWRzRx9oB03oA2gIR0CpZPpkf9xZdX2UKGgGR0CarozxgAp8aAdN6ANoCEdAqWf/rUsnRnV9lChoBkdAe7WoH9m6G2gHTegDaAhHQKlud1nM+vB1fZQoaAZHQJl7cUlAu7JoB03oA2gIR0CpcXJ8v24/dX2UKGgGR0CYkV4BFNL2aAdN6ANoCEdAqXHm8scyWXV9lChoBkdAnU4Uy+HrQmgHTegDaAhHQKl04q/dqL11fZQoaAZHQJgGpg5R0ltoB03oA2gIR0Cpe2j6eoUBdX2UKGgGR0CbQXaLGaQWaAdN6ANoCEdAqX5Ot8uzyHV9lChoBkdAm01E96kZaWgHTegDaAhHQKl+y10knkV1fZQoaAZHQJtCP/T9bX9oB03oA2gIR0CpgcL1uivgdX2UKGgGR0CRplIhQm/naAdN6ANoCEdAqYgvQMQVbnV9lChoBkdAe01cSoOx0WgHTegDaAhHQKmLKNx2jfx1fZQoaAZHQI+yvh86V+toB03oA2gIR0Cpi6eEAYHgdX2UKGgGR0CUDmsIE8q4aAdN6ANoCEdAqY630h/y5XV9lChoBkdAjJ3hPj4pMGgHTegDaAhHQKmVSVYZEUl1fZQoaAZHQIe+AB1cMVloB03oA2gIR0CpmEX6Q/5ddX2UKGgGR0CWjZuG9HtnaAdN6ANoCEdAqZjCG34KyHV9lChoBkdAgFZIjOcDsGgHTegDaAhHQKmb1bkfcN91fZQoaAZHQJqjGwJPZZloB03oA2gIR0CpomKur6tUdX2UKGgGR0CX0frNW2gGaAdN6ANoCEdAqaVUEeQuEnV9lChoBkdAlGOZx3mmtWgHTegDaAhHQKmlx/7zkIZ1fZQoaAZHQJp74nOSntRoB03oA2gIR0CpqLhuGbkPdX2UKGgGR0CZ/EKRMewLaAdN6ANoCEdAqa8iwMYuTXV9lChoBkdAlrnWC2+fy2gHTegDaAhHQKmyKhwEQoV1fZQoaAZHQJrAb8IiTt9oB03oA2gIR0CpsqJcPe54dX2UKGgGR0CZhEZuhsZYaAdN6ANoCEdAqbXPetSydHV9lChoBkdAli0ng5zYEmgHTegDaAhHQKm8Njtoi9t1fZQoaAZHQJyKxOGj9GZoB03oA2gIR0Cpvx1LBbfQdX2UKGgGR0CaYjylvZRLaAdN6ANoCEdAqb+aXWvr4XV9lChoBkdAjnqatT1kD2gHTegDaAhHQKnCuGlANXp1fZQoaAZHQJaEPAj6eoVoB03oA2gIR0CpySJtix3WdX2UKGgGR0CRHZKneiztaAdN6ANoCEdAqcwIouwos3V9lChoBkdAlP841He7+WgHTegDaAhHQKnMiEpRXOp1fZQoaAZHQJGZ85eZ5RloB03oA2gIR0Cpz7WCuloEdX2UKGgGR0CTNNAnlXA/aAdN6ANoCEdAqdYdjd56dHV9lChoBkdAksUAuRLbpWgHTegDaAhHQKnZEJVsDW91fZQoaAZHQJge2yWzF/BoB03oA2gIR0Cp2ZHJLdvbdX2UKGgGR0CSO/JBPbfxaAdN6ANoCEdAqdylkauOj3V9lChoBkdAk9onI+4b0mgHTegDaAhHQKnjJMewLVp1fZQoaAZHQJNjo5IYm9hoB03oA2gIR0Cp5iHEVFhHdX2UKGgGR0CTJg7MPjGUaAdN6ANoCEdAqeaYtYjjaXV9lChoBkdAgXJd3Sro4mgHTegDaAhHQKnpo2+fywx1fZQoaAZHQJkMfakAPupoB03oA2gIR0Cp8CuearmydX2UKGgGR0CWt10vXbudaAdN6ANoCEdAqfMONBF/hHV9lChoBkdAmS0rutwJgWgHTegDaAhHQKnzgrKeTV51fZQoaAZHQJvsbsKLKmtoB03oA2gIR0Cp9nyDyvs7dX2UKGgGR0CceC+H8CPqaAdN6ANoCEdAqfy0DhcZ+HV9lChoBkdAmi8SBClabGgHTegDaAhHQKn/mYwZflZ1fZQoaAZHQJ2k8n/kvK5oB03oA2gIR0CqAAyLqD9PdX2UKGgGR0Caxdh9srNGaAdN6ANoCEdAqgMOxfOUuHV9lChoBkdAlGUw9/z8QGgHTegDaAhHQKoJe1NQCS11fZQoaAZHQJIyQGMXJo1oB03oA2gIR0CqDIHBDXvqdX2UKGgGR0CO0rFirksCaAdN6ANoCEdAqgz6zRhMJ3V9lChoBkdAjSq6ZH/cWWgHTegDaAhHQKoP9xEv0yx1fZQoaAZHQJTZliWmgrZoB03oA2gIR0CqFn3a8Hv+dX2UKGgGR0CM3LCWu5jIaAdN6ANoCEdAqhl3R1HOKXV9lChoBkdAkCF4hpxm02gHTegDaAhHQKoZ7tJnQIF1fZQoaAZHQJHB431jAi5oB03oA2gIR0CqHPpWmxdIdX2UKGgGR0CWzZ+OOsDGaAdN6ANoCEdAqiOG4LCvYHV9lChoBkdAlaBnXumaY2gHTegDaAhHQKomiNOM2m51fZQoaAZHQJUsd94NZvFoB03oA2gIR0CqJwD1wo9cdX2UKGgGR0CU3pQTmGM5aAdN6ANoCEdAqioVByCFsnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (874 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1274.6759634128562, "std_reward": 257.5040234537927, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T14:44:37.030717"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b9ee3ddc0ed44d3126ffecab00fd3a5c1ea49e1e28fe43919a2d46807d7c406
3
+ size 2136