Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1274.68 +/- 257.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f3bee6b22e086268441ffa03772766dbd3c1a3b337b9cc106cf7751982c772f
|
3 |
+
size 128761
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000001F067916EE0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F067916F70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F06791B040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F06791B0D0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000001F06791B160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000001F06791B1F0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F06791B280>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000001F06791B310>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F06791B3A0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F06791B430>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F06791B4C0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001F067919C80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1674089239605998678,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": null,
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVnQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMa0M6XFVzZXJzXFNBXEFwcERhdGFcTG9jYWxcci1taW5pY29uZGFcZW52c1xyLXJldGljdWxhdGVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzyqz4FIGo/mbCnPpFeEz9cbxO9bnweOhIJAL9OYDK/MqBzPcgXCb99kQM+Uo8MQOc0PL8jXKm/j3RJP4ItljxYu1w/ZIWIvwm/5b6pfXQ8cV4lv4ai7Twov4a+26Q1wKazn78eivu/me4BP9splb/PiEy+GgSJPycPaz6wfRI/ESwPPUrZJ785Fxq/uOKJv7WcJz+kjHO8h0chvxvY2r/i0KC/i7/KPnqFST+GLfC6nYiOvTZaIj8H48Y+MXwcv//mHb+jjhA9YbYNv1cVpz+ms5+/EEUCP5nuAT/bKZW/oh82PsaCST8HHsk+hsPDPxAso77MlgG/wwkmveSqfL9n+7u+Lk0lv0zFYj/rCE8/gmBPv59b779mEDU/n96PvjhzFb8j74q/X18oPyJQ4j9v2iW/ziU/PXX2bL+zfpPAti5NPx6K+7+Z7gE/2ymVv8Uzl79GeJ8/c9q9PdrhnL4Y0b8/NSNDvuS9DL62ZDs/oxYqvrlq5b8un12/zn1bvMFbi7+yUlg92L3JPiwmD7/1fJk/unf7Pzn+wT4IPhM/vBYlv1lIVzw74/C+sTGlvqazn78QRQI/gzH8v6utWz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKrTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz1eMPQAAAAAnO/y/AAAAAMHssbsAAAAAe6TpPwAAAADws0C9AAAAABxe8z8AAAAAwuleuwAAAADUX+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATsyXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUdWL0AAAAA36r1vwAAAAAUSTK9AAAAAPmw5T8AAAAA6+DUvQAAAAATRQBAAAAAAEkKTb0AAAAAXc/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwF+rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANRgI9AAAAANu98b8AAAAAtu2dvQAAAAD/r/c/AAAAAAJbsz0AAAAADTvwPwAAAAB15+a6AAAAAL74+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxrB42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/mIgvQAAAAC6uey/AAAAAA+h0z0AAAAA7mPZPwAAAACb25c7AAAAABTo/T8AAAAA/lRKPQAAAAA4TO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqxyfZmI0uMAWyUTegDjAF0lEdAqOl4qVhTfnV9lChoBkdAeakWC2+fy2gHTegDaAhHQKjsXdqL0jF1fZQoaAZHQJuOhnDiwStoB03oA2gIR0Co7M+UQkHEdX2UKGgGR0CYv49XtBv8aAdN6ANoCEdAqO/RYeT3ZnV9lChoBkdAmzMHXZoPCmgHTegDaAhHQKj2FR2KVIJ1fZQoaAZHQJX/16jWTX9oB03oA2gIR0Co+PrM9r44dX2UKGgGR0B3Ah/J/5LzaAdN6ANoCEdAqPl6OPvKEHV9lChoBkdAmaN9qHoHLWgHTegDaAhHQKj8iKF7D2t1fZQoaAZHQJodkuVX3g1oB03oA2gIR0CpAvJUgjhUdX2UKGgGR0CYEVXNC7btaAdN6ANoCEdAqQXcXizcAXV9lChoBkdAmQgbEtNBW2gHTegDaAhHQKkGU/PgNw11fZQoaAZHQJxcQz1schloB03oA2gIR0CpCVZkCmuUdX2UKGgGR0Cbo6k7wKBvaAdN6ANoCEdAqQ/IvtdAxHV9lChoBkdAk0JsT8HfM2gHTegDaAhHQKkSyhFmWdF1fZQoaAZHQJB5nJkoWpJoB03oA2gIR0CpE0L/82rGdX2UKGgGR0CaVJv3ai9JaAdN6ANoCEdAqRZIcghbGHV9lChoBkdAhe3p6hQFcWgHTegDaAhHQKkc5APd2xJ1fZQoaAZHQHYTOQlruYxoB03oA2gIR0CpH/ZD7ZWadX2UKGgGR0BwecLQXyiFaAdN6ANoCEdAqSB3AwfyPXV9lChoBkdAhFmRmbsniWgHTegDaAhHQKkjj/Nqxkd1fZQoaAZHQHm4UTDfm9xoB03oA2gIR0CpKinC4z7/dX2UKGgGR0CTVVFkxyn2aAdN6ANoCEdAqS24XIlt0nV9lChoBkdAls4y3CsOomgHTegDaAhHQKkuc0D2alV1fZQoaAZHQJFLfpQk5ZNoB03oA2gIR0CpM02hh6SldX2UKGgGR0CTRaQUYbbUaAdN6ANoCEdAqTtGGZeAu3V9lChoBkdAkSwvmcOLBWgHTegDaAhHQKk+NBLPD511fZQoaAZHQJJJfjn3cpNoB03oA2gIR0CpPqh1Tzd2dX2UKGgGR0ByO6rQw9JSaAdN6ANoCEdAqUGfChvitXV9lChoBkdAnaL2qPwNLGgHTegDaAhHQKlH5GOMl1N1fZQoaAZHQJr0qaH9FWpoB03oA2gIR0CpSsx8lXzUdX2UKGgGR0CXvlZ6Uqx1aAdN6ANoCEdAqUtCxLTQV3V9lChoBkdAY8Voakyk9GgHTegDaAhHQKlOP889wFV1fZQoaAZHQJsBQIC2c8VoB03oA2gIR0CpVKrBTGYKdX2UKGgGR0CeeOVN5+pgaAdN6ANoCEdAqVe6JGe+VXV9lChoBkdAm60hWT5ft2gHTegDaAhHQKlYL+z+m3x1fZQoaAZHQJ28cQxvegtoB03oA2gIR0CpWzdXtBv8dX2UKGgGR0CchVwblzU7aAdN6ANoCEdAqWGGy3Td+HV9lChoBkdAnO3NMXaakWgHTegDaAhHQKlkgdyT6i11fZQoaAZHQIEOpWRzRx9oB03oA2gIR0CpZPpkf9xZdX2UKGgGR0CarozxgAp8aAdN6ANoCEdAqWf/rUsnRnV9lChoBkdAe7WoH9m6G2gHTegDaAhHQKlud1nM+vB1fZQoaAZHQJl7cUlAu7JoB03oA2gIR0CpcXJ8v24/dX2UKGgGR0CYkV4BFNL2aAdN6ANoCEdAqXHm8scyWXV9lChoBkdAnU4Uy+HrQmgHTegDaAhHQKl04q/dqL11fZQoaAZHQJgGpg5R0ltoB03oA2gIR0Cpe2j6eoUBdX2UKGgGR0CbQXaLGaQWaAdN6ANoCEdAqX5Ot8uzyHV9lChoBkdAm01E96kZaWgHTegDaAhHQKl+y10knkV1fZQoaAZHQJtCP/T9bX9oB03oA2gIR0CpgcL1uivgdX2UKGgGR0CRplIhQm/naAdN6ANoCEdAqYgvQMQVbnV9lChoBkdAe01cSoOx0WgHTegDaAhHQKmLKNx2jfx1fZQoaAZHQI+yvh86V+toB03oA2gIR0Cpi6eEAYHgdX2UKGgGR0CUDmsIE8q4aAdN6ANoCEdAqY630h/y5XV9lChoBkdAjJ3hPj4pMGgHTegDaAhHQKmVSVYZEUl1fZQoaAZHQIe+AB1cMVloB03oA2gIR0CpmEX6Q/5ddX2UKGgGR0CWjZuG9HtnaAdN6ANoCEdAqZjCG34KyHV9lChoBkdAgFZIjOcDsGgHTegDaAhHQKmb1bkfcN91fZQoaAZHQJqjGwJPZZloB03oA2gIR0CpomKur6tUdX2UKGgGR0CX0frNW2gGaAdN6ANoCEdAqaVUEeQuEnV9lChoBkdAlGOZx3mmtWgHTegDaAhHQKmlx/7zkIZ1fZQoaAZHQJp74nOSntRoB03oA2gIR0CpqLhuGbkPdX2UKGgGR0CZ/EKRMewLaAdN6ANoCEdAqa8iwMYuTXV9lChoBkdAlrnWC2+fy2gHTegDaAhHQKmyKhwEQoV1fZQoaAZHQJrAb8IiTt9oB03oA2gIR0CpsqJcPe54dX2UKGgGR0CZhEZuhsZYaAdN6ANoCEdAqbXPetSydHV9lChoBkdAli0ng5zYEmgHTegDaAhHQKm8Njtoi9t1fZQoaAZHQJyKxOGj9GZoB03oA2gIR0Cpvx1LBbfQdX2UKGgGR0CaYjylvZRLaAdN6ANoCEdAqb+aXWvr4XV9lChoBkdAjnqatT1kD2gHTegDaAhHQKnCuGlANXp1fZQoaAZHQJaEPAj6eoVoB03oA2gIR0CpySJtix3WdX2UKGgGR0CRHZKneiztaAdN6ANoCEdAqcwIouwos3V9lChoBkdAlP841He7+WgHTegDaAhHQKnMiEpRXOp1fZQoaAZHQJGZ85eZ5RloB03oA2gIR0Cpz7WCuloEdX2UKGgGR0CTNNAnlXA/aAdN6ANoCEdAqdYdjd56dHV9lChoBkdAksUAuRLbpWgHTegDaAhHQKnZEJVsDW91fZQoaAZHQJge2yWzF/BoB03oA2gIR0Cp2ZHJLdvbdX2UKGgGR0CSO/JBPbfxaAdN6ANoCEdAqdylkauOj3V9lChoBkdAk9onI+4b0mgHTegDaAhHQKnjJMewLVp1fZQoaAZHQJNjo5IYm9hoB03oA2gIR0Cp5iHEVFhHdX2UKGgGR0CTJg7MPjGUaAdN6ANoCEdAqeaYtYjjaXV9lChoBkdAgXJd3Sro4mgHTegDaAhHQKnpo2+fywx1fZQoaAZHQJkMfakAPupoB03oA2gIR0Cp8CuearmydX2UKGgGR0CWt10vXbudaAdN6ANoCEdAqfMONBF/hHV9lChoBkdAmS0rutwJgWgHTegDaAhHQKnzgrKeTV51fZQoaAZHQJvsbsKLKmtoB03oA2gIR0Cp9nyDyvs7dX2UKGgGR0CceC+H8CPqaAdN6ANoCEdAqfy0DhcZ+HV9lChoBkdAmi8SBClabGgHTegDaAhHQKn/mYwZflZ1fZQoaAZHQJ2k8n/kvK5oB03oA2gIR0CqAAyLqD9PdX2UKGgGR0Caxdh9srNGaAdN6ANoCEdAqgMOxfOUuHV9lChoBkdAlGUw9/z8QGgHTegDaAhHQKoJe1NQCS11fZQoaAZHQJIyQGMXJo1oB03oA2gIR0CqDIHBDXvqdX2UKGgGR0CO0rFirksCaAdN6ANoCEdAqgz6zRhMJ3V9lChoBkdAjSq6ZH/cWWgHTegDaAhHQKoP9xEv0yx1fZQoaAZHQJTZliWmgrZoB03oA2gIR0CqFn3a8Hv+dX2UKGgGR0CM3LCWu5jIaAdN6ANoCEdAqhl3R1HOKXV9lChoBkdAkCF4hpxm02gHTegDaAhHQKoZ7tJnQIF1fZQoaAZHQJHB431jAi5oB03oA2gIR0CqHPpWmxdIdX2UKGgGR0CWzZ+OOsDGaAdN6ANoCEdAqiOG4LCvYHV9lChoBkdAlaBnXumaY2gHTegDaAhHQKomiNOM2m51fZQoaAZHQJUsd94NZvFoB03oA2gIR0CqJwD1wo9cdX2UKGgGR0CU3pQTmGM5aAdN6ANoCEdAqioVByCFsnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d0320a5781e4a05b87b280813cafdc3d8f205dbb922f09e708bdd6e29d0ccf4
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f811a43d1adcba6c0fd5dc0efe8099a1457af9cd72080c8070ff318c5f308c6
|
3 |
+
size 56638
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.19044-SP0 10.0.19044
|
2 |
+
Python: 3.9.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.24.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F067916EE0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F067916F70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F06791B040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F06791B0D0>", "_build": "<function ActorCriticPolicy._build at 0x000001F06791B160>", "forward": "<function ActorCriticPolicy.forward at 0x000001F06791B1F0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F06791B280>", "_predict": "<function ActorCriticPolicy._predict at 0x000001F06791B310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F06791B3A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F06791B430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F06791B4C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001F067919C80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674089239605998678, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMa0M6XFVzZXJzXFNBXEFwcERhdGFcTG9jYWxcci1taW5pY29uZGFcZW52c1xyLXJldGljdWxhdGVcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPzyqz4FIGo/mbCnPpFeEz9cbxO9bnweOhIJAL9OYDK/MqBzPcgXCb99kQM+Uo8MQOc0PL8jXKm/j3RJP4ItljxYu1w/ZIWIvwm/5b6pfXQ8cV4lv4ai7Twov4a+26Q1wKazn78eivu/me4BP9splb/PiEy+GgSJPycPaz6wfRI/ESwPPUrZJ785Fxq/uOKJv7WcJz+kjHO8h0chvxvY2r/i0KC/i7/KPnqFST+GLfC6nYiOvTZaIj8H48Y+MXwcv//mHb+jjhA9YbYNv1cVpz+ms5+/EEUCP5nuAT/bKZW/oh82PsaCST8HHsk+hsPDPxAso77MlgG/wwkmveSqfL9n+7u+Lk0lv0zFYj/rCE8/gmBPv59b779mEDU/n96PvjhzFb8j74q/X18oPyJQ4j9v2iW/ziU/PXX2bL+zfpPAti5NPx6K+7+Z7gE/2ymVv8Uzl79GeJ8/c9q9PdrhnL4Y0b8/NSNDvuS9DL62ZDs/oxYqvrlq5b8un12/zn1bvMFbi7+yUlg92L3JPiwmD7/1fJk/unf7Pzn+wT4IPhM/vBYlv1lIVzw74/C+sTGlvqazn78QRQI/gzH8v6utWz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKrTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz1eMPQAAAAAnO/y/AAAAAMHssbsAAAAAe6TpPwAAAADws0C9AAAAABxe8z8AAAAAwuleuwAAAADUX+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATsyXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLUdWL0AAAAA36r1vwAAAAAUSTK9AAAAAPmw5T8AAAAA6+DUvQAAAAATRQBAAAAAAEkKTb0AAAAAXc/xvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwF+rQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIANRgI9AAAAANu98b8AAAAAtu2dvQAAAAD/r/c/AAAAAAJbsz0AAAAADTvwPwAAAAB15+a6AAAAAL74+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxrB42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/mIgvQAAAAC6uey/AAAAAA+h0z0AAAAA7mPZPwAAAACb25c7AAAAABTo/T8AAAAA/lRKPQAAAAA4TO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqxyfZmI0uMAWyUTegDjAF0lEdAqOl4qVhTfnV9lChoBkdAeakWC2+fy2gHTegDaAhHQKjsXdqL0jF1fZQoaAZHQJuOhnDiwStoB03oA2gIR0Co7M+UQkHEdX2UKGgGR0CYv49XtBv8aAdN6ANoCEdAqO/RYeT3ZnV9lChoBkdAmzMHXZoPCmgHTegDaAhHQKj2FR2KVIJ1fZQoaAZHQJX/16jWTX9oB03oA2gIR0Co+PrM9r44dX2UKGgGR0B3Ah/J/5LzaAdN6ANoCEdAqPl6OPvKEHV9lChoBkdAmaN9qHoHLWgHTegDaAhHQKj8iKF7D2t1fZQoaAZHQJodkuVX3g1oB03oA2gIR0CpAvJUgjhUdX2UKGgGR0CYEVXNC7btaAdN6ANoCEdAqQXcXizcAXV9lChoBkdAmQgbEtNBW2gHTegDaAhHQKkGU/PgNw11fZQoaAZHQJxcQz1schloB03oA2gIR0CpCVZkCmuUdX2UKGgGR0Cbo6k7wKBvaAdN6ANoCEdAqQ/IvtdAxHV9lChoBkdAk0JsT8HfM2gHTegDaAhHQKkSyhFmWdF1fZQoaAZHQJB5nJkoWpJoB03oA2gIR0CpE0L/82rGdX2UKGgGR0CaVJv3ai9JaAdN6ANoCEdAqRZIcghbGHV9lChoBkdAhe3p6hQFcWgHTegDaAhHQKkc5APd2xJ1fZQoaAZHQHYTOQlruYxoB03oA2gIR0CpH/ZD7ZWadX2UKGgGR0BwecLQXyiFaAdN6ANoCEdAqSB3AwfyPXV9lChoBkdAhFmRmbsniWgHTegDaAhHQKkjj/Nqxkd1fZQoaAZHQHm4UTDfm9xoB03oA2gIR0CpKinC4z7/dX2UKGgGR0CTVVFkxyn2aAdN6ANoCEdAqS24XIlt0nV9lChoBkdAls4y3CsOomgHTegDaAhHQKkuc0D2alV1fZQoaAZHQJFLfpQk5ZNoB03oA2gIR0CpM02hh6SldX2UKGgGR0CTRaQUYbbUaAdN6ANoCEdAqTtGGZeAu3V9lChoBkdAkSwvmcOLBWgHTegDaAhHQKk+NBLPD511fZQoaAZHQJJJfjn3cpNoB03oA2gIR0CpPqh1Tzd2dX2UKGgGR0ByO6rQw9JSaAdN6ANoCEdAqUGfChvitXV9lChoBkdAnaL2qPwNLGgHTegDaAhHQKlH5GOMl1N1fZQoaAZHQJr0qaH9FWpoB03oA2gIR0CpSsx8lXzUdX2UKGgGR0CXvlZ6Uqx1aAdN6ANoCEdAqUtCxLTQV3V9lChoBkdAY8Voakyk9GgHTegDaAhHQKlOP889wFV1fZQoaAZHQJsBQIC2c8VoB03oA2gIR0CpVKrBTGYKdX2UKGgGR0CeeOVN5+pgaAdN6ANoCEdAqVe6JGe+VXV9lChoBkdAm60hWT5ft2gHTegDaAhHQKlYL+z+m3x1fZQoaAZHQJ28cQxvegtoB03oA2gIR0CpWzdXtBv8dX2UKGgGR0CchVwblzU7aAdN6ANoCEdAqWGGy3Td+HV9lChoBkdAnO3NMXaakWgHTegDaAhHQKlkgdyT6i11fZQoaAZHQIEOpWRzRx9oB03oA2gIR0CpZPpkf9xZdX2UKGgGR0CarozxgAp8aAdN6ANoCEdAqWf/rUsnRnV9lChoBkdAe7WoH9m6G2gHTegDaAhHQKlud1nM+vB1fZQoaAZHQJl7cUlAu7JoB03oA2gIR0CpcXJ8v24/dX2UKGgGR0CYkV4BFNL2aAdN6ANoCEdAqXHm8scyWXV9lChoBkdAnU4Uy+HrQmgHTegDaAhHQKl04q/dqL11fZQoaAZHQJgGpg5R0ltoB03oA2gIR0Cpe2j6eoUBdX2UKGgGR0CbQXaLGaQWaAdN6ANoCEdAqX5Ot8uzyHV9lChoBkdAm01E96kZaWgHTegDaAhHQKl+y10knkV1fZQoaAZHQJtCP/T9bX9oB03oA2gIR0CpgcL1uivgdX2UKGgGR0CRplIhQm/naAdN6ANoCEdAqYgvQMQVbnV9lChoBkdAe01cSoOx0WgHTegDaAhHQKmLKNx2jfx1fZQoaAZHQI+yvh86V+toB03oA2gIR0Cpi6eEAYHgdX2UKGgGR0CUDmsIE8q4aAdN6ANoCEdAqY630h/y5XV9lChoBkdAjJ3hPj4pMGgHTegDaAhHQKmVSVYZEUl1fZQoaAZHQIe+AB1cMVloB03oA2gIR0CpmEX6Q/5ddX2UKGgGR0CWjZuG9HtnaAdN6ANoCEdAqZjCG34KyHV9lChoBkdAgFZIjOcDsGgHTegDaAhHQKmb1bkfcN91fZQoaAZHQJqjGwJPZZloB03oA2gIR0CpomKur6tUdX2UKGgGR0CX0frNW2gGaAdN6ANoCEdAqaVUEeQuEnV9lChoBkdAlGOZx3mmtWgHTegDaAhHQKmlx/7zkIZ1fZQoaAZHQJp74nOSntRoB03oA2gIR0CpqLhuGbkPdX2UKGgGR0CZ/EKRMewLaAdN6ANoCEdAqa8iwMYuTXV9lChoBkdAlrnWC2+fy2gHTegDaAhHQKmyKhwEQoV1fZQoaAZHQJrAb8IiTt9oB03oA2gIR0CpsqJcPe54dX2UKGgGR0CZhEZuhsZYaAdN6ANoCEdAqbXPetSydHV9lChoBkdAli0ng5zYEmgHTegDaAhHQKm8Njtoi9t1fZQoaAZHQJyKxOGj9GZoB03oA2gIR0Cpvx1LBbfQdX2UKGgGR0CaYjylvZRLaAdN6ANoCEdAqb+aXWvr4XV9lChoBkdAjnqatT1kD2gHTegDaAhHQKnCuGlANXp1fZQoaAZHQJaEPAj6eoVoB03oA2gIR0CpySJtix3WdX2UKGgGR0CRHZKneiztaAdN6ANoCEdAqcwIouwos3V9lChoBkdAlP841He7+WgHTegDaAhHQKnMiEpRXOp1fZQoaAZHQJGZ85eZ5RloB03oA2gIR0Cpz7WCuloEdX2UKGgGR0CTNNAnlXA/aAdN6ANoCEdAqdYdjd56dHV9lChoBkdAksUAuRLbpWgHTegDaAhHQKnZEJVsDW91fZQoaAZHQJge2yWzF/BoB03oA2gIR0Cp2ZHJLdvbdX2UKGgGR0CSO/JBPbfxaAdN6ANoCEdAqdylkauOj3V9lChoBkdAk9onI+4b0mgHTegDaAhHQKnjJMewLVp1fZQoaAZHQJNjo5IYm9hoB03oA2gIR0Cp5iHEVFhHdX2UKGgGR0CTJg7MPjGUaAdN6ANoCEdAqeaYtYjjaXV9lChoBkdAgXJd3Sro4mgHTegDaAhHQKnpo2+fywx1fZQoaAZHQJkMfakAPupoB03oA2gIR0Cp8CuearmydX2UKGgGR0CWt10vXbudaAdN6ANoCEdAqfMONBF/hHV9lChoBkdAmS0rutwJgWgHTegDaAhHQKnzgrKeTV51fZQoaAZHQJvsbsKLKmtoB03oA2gIR0Cp9nyDyvs7dX2UKGgGR0CceC+H8CPqaAdN6ANoCEdAqfy0DhcZ+HV9lChoBkdAmi8SBClabGgHTegDaAhHQKn/mYwZflZ1fZQoaAZHQJ2k8n/kvK5oB03oA2gIR0CqAAyLqD9PdX2UKGgGR0Caxdh9srNGaAdN6ANoCEdAqgMOxfOUuHV9lChoBkdAlGUw9/z8QGgHTegDaAhHQKoJe1NQCS11fZQoaAZHQJIyQGMXJo1oB03oA2gIR0CqDIHBDXvqdX2UKGgGR0CO0rFirksCaAdN6ANoCEdAqgz6zRhMJ3V9lChoBkdAjSq6ZH/cWWgHTegDaAhHQKoP9xEv0yx1fZQoaAZHQJTZliWmgrZoB03oA2gIR0CqFn3a8Hv+dX2UKGgGR0CM3LCWu5jIaAdN6ANoCEdAqhl3R1HOKXV9lChoBkdAkCF4hpxm02gHTegDaAhHQKoZ7tJnQIF1fZQoaAZHQJHB431jAi5oB03oA2gIR0CqHPpWmxdIdX2UKGgGR0CWzZ+OOsDGaAdN6ANoCEdAqiOG4LCvYHV9lChoBkdAlaBnXumaY2gHTegDaAhHQKomiNOM2m51fZQoaAZHQJUsd94NZvFoB03oA2gIR0CqJwD1wo9cdX2UKGgGR0CU3pQTmGM5aAdN6ANoCEdAqioVByCFsnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (874 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1274.6759634128562, "std_reward": 257.5040234537927, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T14:44:37.030717"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b9ee3ddc0ed44d3126ffecab00fd3a5c1ea49e1e28fe43919a2d46807d7c406
|
3 |
+
size 2136
|