Total-1M4-train-steps commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.44 +/- 0.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bd0d840551b480053a43a87c47abfc8c16398fe740ca230188c8d53225f34b6
|
3 |
+
size 108093
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f124f5e3550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f124f5e0480>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 400000,
|
45 |
+
"_total_timesteps": 400000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674104183404813056,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2JY0PyTIjb+qyCy/CjfBv4jx3D8v2dq/BqAKPXo+rD4RDZu/+ZiXvyRsNT+N7L8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]]",
|
60 |
+
"desired_goal": "[[ 0.7054267 -1.1076703 -0.6749369 ]\n [-1.5094922 1.726121 -1.7097529 ]\n [ 0.03384402 0.33641416 -1.2113363 ]\n [-1.1843559 0.70868134 0.3748516 ]]",
|
61 |
+
"observation": "[[ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANlHhvdGih71cBgw+xj1FPQDDqTv8WC0+BxTWPXDH4L3mRh0+UWjvvVcWDz6+2wA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.11001818 -0.06622852 0.13674301]\n [ 0.04815461 0.00518072 0.16928476]\n [ 0.10453039 -0.1097554 0.15359077]\n [-0.11689819 0.13973366 0.12583825]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/oAHBhA+5r+UhpRSlIwBbJRLMowBdJRHQI+VcP8Q7Ld1fZQoaAZoCWgPQwjaqbncYCjhv5SGlFKUaBVLMmgWR0CPlHM9r434dX2UKGgGaAloD0MIoMVSJF8J3r+UhpRSlGgVSzJoFkdAj5N/KISDiHV9lChoBmgJaA9DCIHNOXgmNOW/lIaUUpRoFUsyaBZHQI+SY4jrzGx1fZQoaAZoCWgPQwie0sH6P4fjv5SGlFKUaBVLMmgWR0CPmecDr7fpdX2UKGgGaAloD0MI2Ne61Aj93b+UhpRSlGgVSzJoFkdAj5jpMg2ZRnV9lChoBmgJaA9DCLzMsFHWb+S/lIaUUpRoFUsyaBZHQI+X9RpDeCV1fZQoaAZoCWgPQwjcgTrl0Y3cv5SGlFKUaBVLMmgWR0CPltkz41xbdX2UKGgGaAloD0MIoMGmzqPi3r+UhpRSlGgVSzJoFkdAj55hhH9WIXV9lChoBmgJaA9DCOOKi6NyE9e/lIaUUpRoFUsyaBZHQI+dY1YQrc11fZQoaAZoCWgPQwhtHLEWnwLkv5SGlFKUaBVLMmgWR0CPnG8zQ/ordX2UKGgGaAloD0MIiUShZd0/3b+UhpRSlGgVSzJoFkdAj5tTnaFmF3V9lChoBmgJaA9DCH8UdeYeEte/lIaUUpRoFUsyaBZHQI+jFLYf4h51fZQoaAZoCWgPQwjp7c9FQ8bcv5SGlFKUaBVLMmgWR0CPoheD3/PxdX2UKGgGaAloD0MIkBK7trdb4r+UhpRSlGgVSzJoFkdAj6EkGiYb83V9lChoBmgJaA9DCBoaTwRxHtu/lIaUUpRoFUsyaBZHQI+gCVv/BFd1fZQoaAZoCWgPQwi71t6nqtDgv5SGlFKUaBVLMmgWR0CPp4hL5AQhdX2UKGgGaAloD0MIMbd7uU+O3b+UhpRSlGgVSzJoFkdAj6aJ+UhV2nV9lChoBmgJaA9DCLrdy31ylOG/lIaUUpRoFUsyaBZHQI+llfeDWbx1fZQoaAZoCWgPQwgMycnErYLfv5SGlFKUaBVLMmgWR0CPpHqcEvCedX2UKGgGaAloD0MIuAGfH0YI0b+UhpRSlGgVSzJoFkdAj6wWa+evp3V9lChoBmgJaA9DCIlccAZ/P+O/lIaUUpRoFUsyaBZHQI+rGDjBEa51fZQoaAZoCWgPQwiQSrGjcajYv5SGlFKUaBVLMmgWR0CPqiOU+s5odX2UKGgGaAloD0MIl/26050n17+UhpRSlGgVSzJoFkdAj6kIGQjlgnV9lChoBmgJaA9DCIC77Ned7tq/lIaUUpRoFUsyaBZHQI+wZh+fAbh1fZQoaAZoCWgPQwjDfeTWpNvdv5SGlFKUaBVLMmgWR0CPr2lANXo1dX2UKGgGaAloD0MIw/Ln24Kl1b+UhpRSlGgVSzJoFkdAj651aOgg5nV9lChoBmgJaA9DCFVpi2t8Jtq/lIaUUpRoFUsyaBZHQI+tWaBqbjN1fZQoaAZoCWgPQwgwn6wYrg7ev5SGlFKUaBVLMmgWR0CPtObQTmGNdX2UKGgGaAloD0MIUwPN59zt0L+UhpRSlGgVSzJoFkdAj7PouGsV+XV9lChoBmgJaA9DCAFsQIS4cuW/lIaUUpRoFUsyaBZHQI+y9I5HVgB1fZQoaAZoCWgPQwifAIqRJfPhv5SGlFKUaBVLMmgWR0CPsdlJYkmhdX2UKGgGaAloD0MIZXH/kenQ1b+UhpRSlGgVSzJoFkdAj7k0dBBzFXV9lChoBmgJaA9DCKjlB67yBNO/lIaUUpRoFUsyaBZHQI+4NinYQJ51fZQoaAZoCWgPQwg/rDdqhenWv5SGlFKUaBVLMmgWR0CPt0HPeHi4dX2UKGgGaAloD0MIZoLhXMMMz7+UhpRSlGgVSzJoFkdAj7YmOlwcYXV9lChoBmgJaA9DCIcUAySaQN+/lIaUUpRoFUsyaBZHQI+9vYraufV1fZQoaAZoCWgPQwjIzXADPj/Tv5SGlFKUaBVLMmgWR0CPvL+85CF9dX2UKGgGaAloD0MI75BigEQTzr+UhpRSlGgVSzJoFkdAj7vL+PzWgHV9lChoBmgJaA9DCI2z6Qjg5uS/lIaUUpRoFUsyaBZHQI+6sFEAo5R1fZQoaAZoCWgPQwjdXPxtT5DSv5SGlFKUaBVLMmgWR0CPwg/XXiBHdX2UKGgGaAloD0MIGHyakxeZzr+UhpRSlGgVSzJoFkdAj8ESGi5/b3V9lChoBmgJaA9DCF4QkZp2MdW/lIaUUpRoFUsyaBZHQI/AHiYLLIR1fZQoaAZoCWgPQwhanZyhuOPhv5SGlFKUaBVLMmgWR0CPvwK+i8FqdX2UKGgGaAloD0MI91rQe2MI3r+UhpRSlGgVSzJoFkdAj8aZ6+nIhnV9lChoBmgJaA9DCG3GaYgq/NG/lIaUUpRoFUsyaBZHQI/Fm/QBxPx1fZQoaAZoCWgPQwhTQUXVr3Thv5SGlFKUaBVLMmgWR0CPxKef7JnydX2UKGgGaAloD0MIms3jMJi/3L+UhpRSlGgVSzJoFkdAj8OMPrfLtHV9lChoBmgJaA9DCNttF5rrNNe/lIaUUpRoFUsyaBZHQI/LKlvZRKp1fZQoaAZoCWgPQwgsZoS3ByHjv5SGlFKUaBVLMmgWR0CPyjBi1AqvdX2UKGgGaAloD0MIHo1D/S5s2L+UhpRSlGgVSzJoFkdAj8k8H4XXRXV9lChoBmgJaA9DCPDfvDjx1dS/lIaUUpRoFUsyaBZHQI/IIHqu8sd1fZQoaAZoCWgPQwgdxw+VRkziv5SGlFKUaBVLMmgWR0CPz6ilBQendX2UKGgGaAloD0MIZRwj2SNU5b+UhpRSlGgVSzJoFkdAj86rCFbml3V9lChoBmgJaA9DCLdCWI0lrNS/lIaUUpRoFUsyaBZHQI/Nt0gbIcR1fZQoaAZoCWgPQwhlFwyuuaPfv5SGlFKUaBVLMmgWR0CPzJvjOs1bdX2UKGgGaAloD0MINEqX/iUp5b+UhpRSlGgVSzJoFkdAj9Qk5p8F6nV9lChoBmgJaA9DCFFsBU1LrNC/lIaUUpRoFUsyaBZHQI/TJvkzXSV1fZQoaAZoCWgPQwiN7ErLSL3nv5SGlFKUaBVLMmgWR0CP0jL9MsYmdX2UKGgGaAloD0MIJjW0AdiA4r+UhpRSlGgVSzJoFkdAj9EXdj5KvnV9lChoBmgJaA9DCM+9h0uOO9y/lIaUUpRoFUsyaBZHQI/YnscABDJ1fZQoaAZoCWgPQwiDM/j7xezov5SGlFKUaBVLMmgWR0CP16Dmr8zidX2UKGgGaAloD0MIFsJqLGFtzr+UhpRSlGgVSzJoFkdAj9aswDeTFHV9lChoBmgJaA9DCKq6RzZXzdW/lIaUUpRoFUsyaBZHQI/VkOby6MB1fZQoaAZoCWgPQwjKarqe6Lrpv5SGlFKUaBVLMmgWR0CP3Qyj59E1dX2UKGgGaAloD0MIio9PyM7b6r+UhpRSlGgVSzJoFkdAj9wOQIUrTnV9lChoBmgJaA9DCN1AgXfy6dm/lIaUUpRoFUsyaBZHQI/bGk56t1Z1fZQoaAZoCWgPQwibIOo+AKngv5SGlFKUaBVLMmgWR0CP2f69CeEqdX2UKGgGaAloD0MIZrtCHyxj37+UhpRSlGgVSzJoFkdAj+GWyLQ5WHV9lChoBmgJaA9DCP4Mb9bg/ee/lIaUUpRoFUsyaBZHQI/gmQQtjCp1fZQoaAZoCWgPQwgzwAXZsnzgv5SGlFKUaBVLMmgWR0CP36TFl05mdX2UKGgGaAloD0MIequuQzWl5b+UhpRSlGgVSzJoFkdAj96JM6BAfXV9lChoBmgJaA9DCEw49BYP796/lIaUUpRoFUsyaBZHQI/mA0Mw1zh1fZQoaAZoCWgPQwiRup195UHTv5SGlFKUaBVLMmgWR0CP5QVKwpvxdX2UKGgGaAloD0MIn48y4gJQ6r+UhpRSlGgVSzJoFkdAj+QRKpT/AHV9lChoBmgJaA9DCENTdvpB3eG/lIaUUpRoFUsyaBZHQI/i9ZFG5MF1fZQoaAZoCWgPQwjvjozV5n/jv5SGlFKUaBVLMmgWR0CP6oSTQmeEdX2UKGgGaAloD0MIqRPQRNjw2L+UhpRSlGgVSzJoFkdAj+mGplz2e3V9lChoBmgJaA9DCKIqptJPONO/lIaUUpRoFUsyaBZHQI/okr/bTMJ1fZQoaAZoCWgPQwgT8kHPZlXhv5SGlFKUaBVLMmgWR0CP53dcB2fTdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAj+73Ehq0t3V9lChoBmgJaA9DCBueXinLEOO/lIaUUpRoFUsyaBZHQI/t+KuSwGJ1fZQoaAZoCWgPQwi0y7c+rDfiv5SGlFKUaBVLMmgWR0CP7QRh+fAcdX2UKGgGaAloD0MInmFqSx3k4L+UhpRSlGgVSzJoFkdAj+vo7V8TjHV9lChoBmgJaA9DCAt/hjdrcOO/lIaUUpRoFUsyaBZHQI/zVBOYYzl1fZQoaAZoCWgPQwjXoC+9/Tnlv5SGlFKUaBVLMmgWR0CP8lYQJ5VwdX2UKGgGaAloD0MIETRmEvWC3L+UhpRSlGgVSzJoFkdAj/Fii7Ciy3V9lChoBmgJaA9DCPsEUIwsmeO/lIaUUpRoFUsyaBZHQI/wRtzjm0V1fZQoaAZoCWgPQwgkm6vmOaLkv5SGlFKUaBVLMmgWR0CP+BTRYzSDdX2UKGgGaAloD0MI5kAPtW0Y57+UhpRSlGgVSzJoFkdAj/cZAQg9vHV9lChoBmgJaA9DCDLk2HqGcN+/lIaUUpRoFUsyaBZHQI/2JNbkfcN1fZQoaAZoCWgPQwhA22rWGV/nv5SGlFKUaBVLMmgWR0CP9Ql/pdKNdX2UKGgGaAloD0MIVvXyO01m5L+UhpRSlGgVSzJoFkdAj/x9X9zfanV9lChoBmgJaA9DCOyhfazgt9O/lIaUUpRoFUsyaBZHQI/7f0oScsl1fZQoaAZoCWgPQwjoFORnI9flv5SGlFKUaBVLMmgWR0CP+osfaHsUdX2UKGgGaAloD0MIstr8v+pI5L+UhpRSlGgVSzJoFkdAj/lvCEYfn3V9lChoBmgJaA9DCBJKXwg57+O/lIaUUpRoFUsyaBZHQJAAbwsoUi91fZQoaAZoCWgPQwh1rb1PVaHev5SGlFKUaBVLMmgWR0CP/+BI4EOidX2UKGgGaAloD0MIWtk+5C3X4L+UhpRSlGgVSzJoFkdAj/7sAWBSUHV9lChoBmgJaA9DCPGdmPViKNq/lIaUUpRoFUsyaBZHQI/9z9VFQVN1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 20000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae27331b2588a824c482bb0012f24d95e850b289f43ca79ab8811837fdb65000
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:832cabfd9c4ddcc4b621a113bed7beae9062e348f497a6560027e7e2506db559
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f124f5e3550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f124f5e0480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 400000, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674104183404813056, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/QUHEPqXzOTu3Tgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2JY0PyTIjb+qyCy/CjfBv4jx3D8v2dq/BqAKPXo+rD4RDZu/+ZiXvyRsNT+N7L8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDtBQcQ+pfM5O7dOCD+wxAO8ct+5OQL1LDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]\n [0.38331035 0.0028374 0.5324511 ]]", "desired_goal": "[[ 0.7054267 -1.1076703 -0.6749369 ]\n [-1.5094922 1.726121 -1.7097529 ]\n [ 0.03384402 0.33641416 -1.2113363 ]\n [-1.1843559 0.70868134 0.3748516 ]]", "observation": "[[ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]\n [ 3.8331035e-01 2.8373983e-03 5.3245109e-01 -8.0424994e-03\n 3.5452429e-04 2.6391153e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANlHhvdGih71cBgw+xj1FPQDDqTv8WC0+BxTWPXDH4L3mRh0+UWjvvVcWDz6+2wA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11001818 -0.06622852 0.13674301]\n [ 0.04815461 0.00518072 0.16928476]\n [ 0.10453039 -0.1097554 0.15359077]\n [-0.11689819 0.13973366 0.12583825]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/oAHBhA+5r+UhpRSlIwBbJRLMowBdJRHQI+VcP8Q7Ld1fZQoaAZoCWgPQwjaqbncYCjhv5SGlFKUaBVLMmgWR0CPlHM9r434dX2UKGgGaAloD0MIoMVSJF8J3r+UhpRSlGgVSzJoFkdAj5N/KISDiHV9lChoBmgJaA9DCIHNOXgmNOW/lIaUUpRoFUsyaBZHQI+SY4jrzGx1fZQoaAZoCWgPQwie0sH6P4fjv5SGlFKUaBVLMmgWR0CPmecDr7fpdX2UKGgGaAloD0MI2Ne61Aj93b+UhpRSlGgVSzJoFkdAj5jpMg2ZRnV9lChoBmgJaA9DCLzMsFHWb+S/lIaUUpRoFUsyaBZHQI+X9RpDeCV1fZQoaAZoCWgPQwjcgTrl0Y3cv5SGlFKUaBVLMmgWR0CPltkz41xbdX2UKGgGaAloD0MIoMGmzqPi3r+UhpRSlGgVSzJoFkdAj55hhH9WIXV9lChoBmgJaA9DCOOKi6NyE9e/lIaUUpRoFUsyaBZHQI+dY1YQrc11fZQoaAZoCWgPQwhtHLEWnwLkv5SGlFKUaBVLMmgWR0CPnG8zQ/ordX2UKGgGaAloD0MIiUShZd0/3b+UhpRSlGgVSzJoFkdAj5tTnaFmF3V9lChoBmgJaA9DCH8UdeYeEte/lIaUUpRoFUsyaBZHQI+jFLYf4h51fZQoaAZoCWgPQwjp7c9FQ8bcv5SGlFKUaBVLMmgWR0CPoheD3/PxdX2UKGgGaAloD0MIkBK7trdb4r+UhpRSlGgVSzJoFkdAj6EkGiYb83V9lChoBmgJaA9DCBoaTwRxHtu/lIaUUpRoFUsyaBZHQI+gCVv/BFd1fZQoaAZoCWgPQwi71t6nqtDgv5SGlFKUaBVLMmgWR0CPp4hL5AQhdX2UKGgGaAloD0MIMbd7uU+O3b+UhpRSlGgVSzJoFkdAj6aJ+UhV2nV9lChoBmgJaA9DCLrdy31ylOG/lIaUUpRoFUsyaBZHQI+llfeDWbx1fZQoaAZoCWgPQwgMycnErYLfv5SGlFKUaBVLMmgWR0CPpHqcEvCedX2UKGgGaAloD0MIuAGfH0YI0b+UhpRSlGgVSzJoFkdAj6wWa+evp3V9lChoBmgJaA9DCIlccAZ/P+O/lIaUUpRoFUsyaBZHQI+rGDjBEa51fZQoaAZoCWgPQwiQSrGjcajYv5SGlFKUaBVLMmgWR0CPqiOU+s5odX2UKGgGaAloD0MIl/26050n17+UhpRSlGgVSzJoFkdAj6kIGQjlgnV9lChoBmgJaA9DCIC77Ned7tq/lIaUUpRoFUsyaBZHQI+wZh+fAbh1fZQoaAZoCWgPQwjDfeTWpNvdv5SGlFKUaBVLMmgWR0CPr2lANXo1dX2UKGgGaAloD0MIw/Ln24Kl1b+UhpRSlGgVSzJoFkdAj651aOgg5nV9lChoBmgJaA9DCFVpi2t8Jtq/lIaUUpRoFUsyaBZHQI+tWaBqbjN1fZQoaAZoCWgPQwgwn6wYrg7ev5SGlFKUaBVLMmgWR0CPtObQTmGNdX2UKGgGaAloD0MIUwPN59zt0L+UhpRSlGgVSzJoFkdAj7PouGsV+XV9lChoBmgJaA9DCAFsQIS4cuW/lIaUUpRoFUsyaBZHQI+y9I5HVgB1fZQoaAZoCWgPQwifAIqRJfPhv5SGlFKUaBVLMmgWR0CPsdlJYkmhdX2UKGgGaAloD0MIZXH/kenQ1b+UhpRSlGgVSzJoFkdAj7k0dBBzFXV9lChoBmgJaA9DCKjlB67yBNO/lIaUUpRoFUsyaBZHQI+4NinYQJ51fZQoaAZoCWgPQwg/rDdqhenWv5SGlFKUaBVLMmgWR0CPt0HPeHi4dX2UKGgGaAloD0MIZoLhXMMMz7+UhpRSlGgVSzJoFkdAj7YmOlwcYXV9lChoBmgJaA9DCIcUAySaQN+/lIaUUpRoFUsyaBZHQI+9vYraufV1fZQoaAZoCWgPQwjIzXADPj/Tv5SGlFKUaBVLMmgWR0CPvL+85CF9dX2UKGgGaAloD0MI75BigEQTzr+UhpRSlGgVSzJoFkdAj7vL+PzWgHV9lChoBmgJaA9DCI2z6Qjg5uS/lIaUUpRoFUsyaBZHQI+6sFEAo5R1fZQoaAZoCWgPQwjdXPxtT5DSv5SGlFKUaBVLMmgWR0CPwg/XXiBHdX2UKGgGaAloD0MIGHyakxeZzr+UhpRSlGgVSzJoFkdAj8ESGi5/b3V9lChoBmgJaA9DCF4QkZp2MdW/lIaUUpRoFUsyaBZHQI/AHiYLLIR1fZQoaAZoCWgPQwhanZyhuOPhv5SGlFKUaBVLMmgWR0CPvwK+i8FqdX2UKGgGaAloD0MI91rQe2MI3r+UhpRSlGgVSzJoFkdAj8aZ6+nIhnV9lChoBmgJaA9DCG3GaYgq/NG/lIaUUpRoFUsyaBZHQI/Fm/QBxPx1fZQoaAZoCWgPQwhTQUXVr3Thv5SGlFKUaBVLMmgWR0CPxKef7JnydX2UKGgGaAloD0MIms3jMJi/3L+UhpRSlGgVSzJoFkdAj8OMPrfLtHV9lChoBmgJaA9DCNttF5rrNNe/lIaUUpRoFUsyaBZHQI/LKlvZRKp1fZQoaAZoCWgPQwgsZoS3ByHjv5SGlFKUaBVLMmgWR0CPyjBi1AqvdX2UKGgGaAloD0MIHo1D/S5s2L+UhpRSlGgVSzJoFkdAj8k8H4XXRXV9lChoBmgJaA9DCPDfvDjx1dS/lIaUUpRoFUsyaBZHQI/IIHqu8sd1fZQoaAZoCWgPQwgdxw+VRkziv5SGlFKUaBVLMmgWR0CPz6ilBQendX2UKGgGaAloD0MIZRwj2SNU5b+UhpRSlGgVSzJoFkdAj86rCFbml3V9lChoBmgJaA9DCLdCWI0lrNS/lIaUUpRoFUsyaBZHQI/Nt0gbIcR1fZQoaAZoCWgPQwhlFwyuuaPfv5SGlFKUaBVLMmgWR0CPzJvjOs1bdX2UKGgGaAloD0MINEqX/iUp5b+UhpRSlGgVSzJoFkdAj9Qk5p8F6nV9lChoBmgJaA9DCFFsBU1LrNC/lIaUUpRoFUsyaBZHQI/TJvkzXSV1fZQoaAZoCWgPQwiN7ErLSL3nv5SGlFKUaBVLMmgWR0CP0jL9MsYmdX2UKGgGaAloD0MIJjW0AdiA4r+UhpRSlGgVSzJoFkdAj9EXdj5KvnV9lChoBmgJaA9DCM+9h0uOO9y/lIaUUpRoFUsyaBZHQI/YnscABDJ1fZQoaAZoCWgPQwiDM/j7xezov5SGlFKUaBVLMmgWR0CP16Dmr8zidX2UKGgGaAloD0MIFsJqLGFtzr+UhpRSlGgVSzJoFkdAj9aswDeTFHV9lChoBmgJaA9DCKq6RzZXzdW/lIaUUpRoFUsyaBZHQI/VkOby6MB1fZQoaAZoCWgPQwjKarqe6Lrpv5SGlFKUaBVLMmgWR0CP3Qyj59E1dX2UKGgGaAloD0MIio9PyM7b6r+UhpRSlGgVSzJoFkdAj9wOQIUrTnV9lChoBmgJaA9DCN1AgXfy6dm/lIaUUpRoFUsyaBZHQI/bGk56t1Z1fZQoaAZoCWgPQwibIOo+AKngv5SGlFKUaBVLMmgWR0CP2f69CeEqdX2UKGgGaAloD0MIZrtCHyxj37+UhpRSlGgVSzJoFkdAj+GWyLQ5WHV9lChoBmgJaA9DCP4Mb9bg/ee/lIaUUpRoFUsyaBZHQI/gmQQtjCp1fZQoaAZoCWgPQwgzwAXZsnzgv5SGlFKUaBVLMmgWR0CP36TFl05mdX2UKGgGaAloD0MIequuQzWl5b+UhpRSlGgVSzJoFkdAj96JM6BAfXV9lChoBmgJaA9DCEw49BYP796/lIaUUpRoFUsyaBZHQI/mA0Mw1zh1fZQoaAZoCWgPQwiRup195UHTv5SGlFKUaBVLMmgWR0CP5QVKwpvxdX2UKGgGaAloD0MIn48y4gJQ6r+UhpRSlGgVSzJoFkdAj+QRKpT/AHV9lChoBmgJaA9DCENTdvpB3eG/lIaUUpRoFUsyaBZHQI/i9ZFG5MF1fZQoaAZoCWgPQwjvjozV5n/jv5SGlFKUaBVLMmgWR0CP6oSTQmeEdX2UKGgGaAloD0MIqRPQRNjw2L+UhpRSlGgVSzJoFkdAj+mGplz2e3V9lChoBmgJaA9DCKIqptJPONO/lIaUUpRoFUsyaBZHQI/okr/bTMJ1fZQoaAZoCWgPQwgT8kHPZlXhv5SGlFKUaBVLMmgWR0CP53dcB2fTdX2UKGgGaAloD0MIW11OCYhJ67+UhpRSlGgVSzJoFkdAj+73Ehq0t3V9lChoBmgJaA9DCBueXinLEOO/lIaUUpRoFUsyaBZHQI/t+KuSwGJ1fZQoaAZoCWgPQwi0y7c+rDfiv5SGlFKUaBVLMmgWR0CP7QRh+fAcdX2UKGgGaAloD0MInmFqSx3k4L+UhpRSlGgVSzJoFkdAj+vo7V8TjHV9lChoBmgJaA9DCAt/hjdrcOO/lIaUUpRoFUsyaBZHQI/zVBOYYzl1fZQoaAZoCWgPQwjXoC+9/Tnlv5SGlFKUaBVLMmgWR0CP8lYQJ5VwdX2UKGgGaAloD0MIETRmEvWC3L+UhpRSlGgVSzJoFkdAj/Fii7Ciy3V9lChoBmgJaA9DCPsEUIwsmeO/lIaUUpRoFUsyaBZHQI/wRtzjm0V1fZQoaAZoCWgPQwgkm6vmOaLkv5SGlFKUaBVLMmgWR0CP+BTRYzSDdX2UKGgGaAloD0MI5kAPtW0Y57+UhpRSlGgVSzJoFkdAj/cZAQg9vHV9lChoBmgJaA9DCDLk2HqGcN+/lIaUUpRoFUsyaBZHQI/2JNbkfcN1fZQoaAZoCWgPQwhA22rWGV/nv5SGlFKUaBVLMmgWR0CP9Ql/pdKNdX2UKGgGaAloD0MIVvXyO01m5L+UhpRSlGgVSzJoFkdAj/x9X9zfanV9lChoBmgJaA9DCOyhfazgt9O/lIaUUpRoFUsyaBZHQI/7f0oScsl1fZQoaAZoCWgPQwjoFORnI9flv5SGlFKUaBVLMmgWR0CP+osfaHsUdX2UKGgGaAloD0MIstr8v+pI5L+UhpRSlGgVSzJoFkdAj/lvCEYfn3V9lChoBmgJaA9DCBJKXwg57+O/lIaUUpRoFUsyaBZHQJAAbwsoUi91fZQoaAZoCWgPQwh1rb1PVaHev5SGlFKUaBVLMmgWR0CP/+BI4EOidX2UKGgGaAloD0MIWtk+5C3X4L+UhpRSlGgVSzJoFkdAj/7sAWBSUHV9lChoBmgJaA9DCPGdmPViKNq/lIaUUpRoFUsyaBZHQI/9z9VFQVN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (284 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.4441687039434328, "std_reward": 0.15308496516446732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T05:14:01.636201"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53af911de11c8ba7935699f8f38b12442bb55d4b1de0975afb1fbd1832440449
|
3 |
+
size 3056
|