--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-NER results: [] --- # distilbert-NER This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0649 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 0.91 | 200 | 0.0681 | 0.0 | 0.0 | 0.0 | 0.9805 | | No log | 1.82 | 400 | 0.0599 | 0.0 | 0.0 | 0.0 | 0.9827 | | 0.1171 | 2.73 | 600 | 0.0641 | 0.0 | 0.0 | 0.0 | 0.9834 | | 0.1171 | 3.64 | 800 | 0.0652 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0177 | 4.55 | 1000 | 0.0649 | 0.0 | 0.0 | 0.0 | 0.9838 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2