Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,76 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: NousResearch/Hermes-3-Llama-3.1-70B
|
5 |
+
datasets:
|
6 |
+
- Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
|
7 |
+
- Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
|
8 |
+
- Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
|
9 |
+
- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
|
10 |
+
- Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
|
11 |
+
- Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
|
12 |
+
- Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
|
13 |
+
- Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
|
14 |
+
- Saxo/ko-news-corpus-1
|
15 |
+
- Saxo/ko-news-corpus-2
|
16 |
+
- Saxo/ko-news-corpus-3
|
17 |
+
- Saxo/ko-news-corpus-4
|
18 |
+
- Saxo/ko-news-corpus-5
|
19 |
+
- Saxo/ko-news-corpus-6
|
20 |
+
- Saxo/ko-news-corpus-7
|
21 |
+
- Saxo/ko-news-corpus-8
|
22 |
+
- Saxo/ko-news-corpus-9
|
23 |
+
- maywell/ko_Ultrafeedback_binarized
|
24 |
+
- youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
|
25 |
+
- lilacai/glaive-function-calling-v2-sharegpt
|
26 |
+
- kuotient/gsm8k-ko
|
27 |
+
language:
|
28 |
+
- ko
|
29 |
+
- en
|
30 |
+
- jp
|
31 |
+
- cn
|
32 |
+
pipeline_tag: text-generation
|
33 |
---
|
34 |
|
35 |
# Model Card for Model ID
|
36 |
|
37 |
+
<div align="center">
|
38 |
+
<img src="http://www.linkbricks.com/wp-content/uploads/2024/11/fulllogo.png" />
|
39 |
+
</div>
|
40 |
+
|
41 |
+
AIとビッグデータ分析の専門企業であるLinkbricksのデータサイエンティストであるジ・ユンソン(Saxo)ディレクターが <br>
|
42 |
+
Hermes-3-Llama-3.1-70Bベースモデルを使用し、H100-80G 8個を通じて約10%程度のパラメータを日本語CPT(Continued-Pretraining)->SFT->DPOした日本語強化言語モデル。<br>
|
43 |
+
1千万件の日本ニュース及びウィキコーパスを基準に、様々なタスク別の日本語・韓国語・中国語・英語クロス学習データと数学及び論理判断データを通じて、日中韓英言語クロス補強処理と複雑な論理問題にも対応できるように訓練したモデルです。
|
44 |
+
-トークナイザーは、単語拡張なしでベースモデルのまま使用します。<br>
|
45 |
+
-カスタマーレビューやソーシャル投稿の高次元分析及びコーディングとライティング、数学、論理判断などが強化されたモデル。<br>
|
46 |
+
-128k-Context Window<br>
|
47 |
+
-Function Call<br>
|
48 |
+
-128k-Context Window<br>
|
49 |
+
-Deepspeed Stage=3、rslora及びBAdam Layer Modeを使用 <br>
|
50 |
+
-「transformers_version」: 「4.46.3」<br>
|
51 |
+
|
52 |
+
<br><br>
|
53 |
+
|
54 |
+
AI 와 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성(Saxo) 이사가 <br>
|
55 |
+
Hermes-3-Llama-3.1-70B 베이스모델을 사용해서 H100-80G 8개를 통해 약 10%정도의 파라미터를 일본어 CPT(Continued-Pretraining)->SFT->DPO 한 일본어 강화 언어 모델<br>
|
56 |
+
1천만건의 일본 뉴스 및 위키 코퍼스를 기준으로 다양한 테스크별 일본어-한국어-중국어-영어 교차 학습 데이터와 수학 및 논리판단 데이터를 통하여 한중일영 언어 교차 증강 처리와 복잡한 논리 문제 역시 대응 가능하도록 훈련한 모델이다.<br>
|
57 |
+
-토크나이저는 단어 확장 없이 베이스 모델 그대로 사용<br>
|
58 |
+
-고객 리뷰나 소셜 포스팅 고차원 분석 및 코딩과 작문, 수학, 논리판단 등이 강화된 모델<br>
|
59 |
+
-128k-Context Window<br>
|
60 |
+
-Function Call 및 Tool Calling 지원<br>
|
61 |
+
-128k-Context Window<br>
|
62 |
+
-Deepspeed Stage=3, rslora 및 BAdam Layer Mode 사용 <br>
|
63 |
+
-"transformers_version": "4.46.3"<br>
|
64 |
+
<br><br>
|
65 |
+
|
66 |
+
Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics <br>
|
67 |
+
about 10% of total parameters Japanese CPT(Continued-Pretraining)->SFT->DPO training model based on Hermes-3-Llama-3.1-70B through 8 H100-80Gs as a Japanese boosting language model <br>
|
68 |
+
It is a model that has been trained to handle Japanese-Korean-Chinese-English cross-training data and 10M Japanese news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br>
|
69 |
+
-Tokenizer uses the base model without word expansion<br>
|
70 |
+
-Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br>
|
71 |
+
-Function Calling<br>
|
72 |
+
-128k-Context Window<br>
|
73 |
+
-Deepspeed Stage=3, use rslora and BAdam Layer Mode<br>
|
74 |
+
<br><br>
|
75 |
+
|
76 |
+
<a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|