File size: 6,618 Bytes
6fe20b3 132c9d9 6fe20b3 132c9d9 6fe20b3 132c9d9 6fe20b3 c0c3050 6fe20b3 132c9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
language:
- ko
- en
- jp
- cn
license: apache-2.0
library_name: transformers
base_model: google/gemma-2-27b-it
datasets:
- Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
- Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
- Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
- Saxo/ko-news-corpus-1
- Saxo/ko-news-corpus-2
- Saxo/ko-news-corpus-3
- Saxo/ko-news-corpus-4
- Saxo/ko-news-corpus-5
- Saxo/ko-news-corpus-6
- Saxo/ko-news-corpus-7
- Saxo/ko-news-corpus-8
- Saxo/ko-news-corpus-9
- maywell/ko_Ultrafeedback_binarized
- youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
- lilacai/glaive-function-calling-v2-sharegpt
- kuotient/gsm8k-ko
pipeline_tag: text-generation
model-index:
- name: Linkbricks-Horizon-AI-Korean-Superb-27B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.68
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.61
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 26.96
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.65
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.53
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.52
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
name: Open LLM Leaderboard
---
# Model Card for Model ID
<div align="center">
<img src="https://www.linkbricks.com/wp-content/uploads/2022/03/%E1%84%85%E1%85%B5%E1%86%BC%E1%84%8F%E1%85%B3%E1%84%87%E1%85%B3%E1%84%85%E1%85%B5%E1%86%A8%E1%84%89%E1%85%B3%E1%84%85%E1%85%A9%E1%84%80%E1%85%A9-2-1024x804.png" />
</div>
AI ์ ๋น
๋ฐ์ดํฐ ๋ถ์ ์ ๋ฌธ ๊ธฐ์
์ธ Linkbricks์ ๋ฐ์ดํฐ์ฌ์ด์ธํฐ์คํธ์ธ ์ง์ค์ฑ(Saxo) ๋ฐ์ฌ๊ฐ <br>
gemma-2-27b-it ๋ฒ ์ด์ค๋ชจ๋ธ์ ์ฌ์ฉํด์ H100-80G 8๊ฐ๋ฅผ ํตํด ์ฝ 38%์ ๋์ ํ๋ผ๋ฏธํฐ๋ฅผ ํ๊ตญ์ด CPT(Continued-Pretraining)->SFT->DPO ํ ํ๊ธ ์ธ์ด ๋ชจ๋ธ<br>
9์ฒ๋ง๊ฑด์ ํ๊ธ ๋ด์ค ์ฝํผ์ค๋ฅผ ๊ธฐ์ค์ผ๋ก ๋ค์ํ ํ
์คํฌ๋ณ ํ๊ตญ์ด-์ค๊ตญ์ด-์์ด-์ผ๋ณธ์ด ๊ต์ฐจ ํ์ต ๋ฐ์ดํฐ์ ์ํ ๋ฐ ๋
ผ๋ฆฌํ๋จ ๋ฐ์ดํฐ๋ฅผ ํตํ์ฌ ํ์ค์ผ์ ์ธ์ด ๊ต์ฐจ ์ฆ๊ฐ ์ฒ๋ฆฌ์ ๋ณต์กํ ๋
ผ๋ฆฌ ๋ฌธ์ ์ญ์ ๋์ ๊ฐ๋ฅํ๋๋ก ํ๋ จํ ๋ชจ๋ธ์ด๋ค.<br>
-ํ ํฌ๋์ด์ ๋ ๋จ์ด ํ์ฅ ์์ด ๋ฒ ์ด์ค ๋ชจ๋ธ ๊ทธ๋๋ก ์ฌ์ฉ<br>
-๊ณ ๊ฐ ๋ฆฌ๋ทฐ๋ ์์
ํฌ์คํ
๊ณ ์ฐจ์ ๋ถ์ ๋ฐ ์ฝ๋ฉ๊ณผ ์๋ฌธ, ์ํ, ๋
ผ๋ฆฌํ๋จ ๋ฑ์ด ๊ฐํ๋ ๋ชจ๋ธ<br>
-128k-Context Window<br>
-Deepspeed Stage=3, rslora ๋ฐ BAdam Layer Mode ์ฌ์ฉ <br>
"transformers_version": "4.46.1"
<br><br>
Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics <br>
about 38% of total parameters Korean CPT(Continued-Pretraining)->SFT->DPO training model based on gemma-2-27b-it through 8 H100-80Gs as a Korean language model <br>
It is a model that has been trained to handle Korean-Chinese-English-Japanese cross-training data and 90M korean news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br>
-Tokenizer uses the base model without word expansion<br>
-Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br>
-128k-Context Window<br>
-Deepspeed Stage=3, use rslora and BAdam Layer Mode<br>
<br><br>
<a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Saxo__Linkbricks-Horizon-AI-Korean-Superb-27B)
| Metric |Value|
|-------------------|----:|
|Avg. |38.32|
|IFEval (0-Shot) |77.68|
|BBH (3-Shot) |50.61|
|MATH Lvl 5 (4-Shot)|26.96|
|GPQA (0-shot) |14.65|
|MuSR (0-shot) |19.53|
|MMLU-PRO (5-shot) |40.52|
|