File size: 6,618 Bytes
6fe20b3
132c9d9
 
 
 
 
6fe20b3
132c9d9
6fe20b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132c9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fe20b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c3050
6fe20b3
 
 
 
 
 
 
 
 
 
 
 
132c9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
language:
- ko
- en
- jp
- cn
license: apache-2.0
library_name: transformers
base_model: google/gemma-2-27b-it
datasets:
- Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
- Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
- Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
- Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
- Saxo/ko-news-corpus-1
- Saxo/ko-news-corpus-2
- Saxo/ko-news-corpus-3
- Saxo/ko-news-corpus-4
- Saxo/ko-news-corpus-5
- Saxo/ko-news-corpus-6
- Saxo/ko-news-corpus-7
- Saxo/ko-news-corpus-8
- Saxo/ko-news-corpus-9
- maywell/ko_Ultrafeedback_binarized
- youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
- lilacai/glaive-function-calling-v2-sharegpt
- kuotient/gsm8k-ko
pipeline_tag: text-generation
model-index:
- name: Linkbricks-Horizon-AI-Korean-Superb-27B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 77.68
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 50.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 26.96
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.65
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.53
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.52
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Saxo/Linkbricks-Horizon-AI-Korean-Superb-27B
      name: Open LLM Leaderboard
---

# Model Card for Model ID

<div align="center">
<img src="https://www.linkbricks.com/wp-content/uploads/2022/03/%E1%84%85%E1%85%B5%E1%86%BC%E1%84%8F%E1%85%B3%E1%84%87%E1%85%B3%E1%84%85%E1%85%B5%E1%86%A8%E1%84%89%E1%85%B3%E1%84%85%E1%85%A9%E1%84%80%E1%85%A9-2-1024x804.png" />
</div>


AI ์™€ ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์ „๋ฌธ ๊ธฐ์—…์ธ Linkbricks์˜ ๋ฐ์ดํ„ฐ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ์ธ ์ง€์œค์„ฑ(Saxo) ๋ฐ•์‚ฌ๊ฐ€ <br>
gemma-2-27b-it ๋ฒ ์ด์Šค๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ H100-80G 8๊ฐœ๋ฅผ ํ†ตํ•ด ์•ฝ 38%์ •๋„์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํ•œ๊ตญ์–ด CPT(Continued-Pretraining)->SFT->DPO ํ•œ ํ•œ๊ธ€ ์–ธ์–ด ๋ชจ๋ธ<br>
9์ฒœ๋งŒ๊ฑด์˜ ํ•œ๊ธ€ ๋‰ด์Šค ์ฝ”ํผ์Šค๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์–‘ํ•œ ํ…Œ์Šคํฌ๋ณ„ ํ•œ๊ตญ์–ด-์ค‘๊ตญ์–ด-์˜์–ด-์ผ๋ณธ์–ด ๊ต์ฐจ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์ˆ˜ํ•™ ๋ฐ ๋…ผ๋ฆฌํŒ๋‹จ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•˜์—ฌ ํ•œ์ค‘์ผ์˜ ์–ธ์–ด ๊ต์ฐจ ์ฆ๊ฐ• ์ฒ˜๋ฆฌ์™€ ๋ณต์žกํ•œ ๋…ผ๋ฆฌ ๋ฌธ์ œ ์—ญ์‹œ ๋Œ€์‘ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ›ˆ๋ จํ•œ ๋ชจ๋ธ์ด๋‹ค.<br> 
-ํ† ํฌ๋‚˜์ด์ €๋Š” ๋‹จ์–ด ํ™•์žฅ ์—†์ด ๋ฒ ์ด์Šค ๋ชจ๋ธ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉ<br>
-๊ณ ๊ฐ ๋ฆฌ๋ทฐ๋‚˜ ์†Œ์…œ ํฌ์ŠคํŒ… ๊ณ ์ฐจ์› ๋ถ„์„ ๋ฐ ์ฝ”๋”ฉ๊ณผ ์ž‘๋ฌธ, ์ˆ˜ํ•™, ๋…ผ๋ฆฌํŒ๋‹จ ๋“ฑ์ด ๊ฐ•ํ™”๋œ ๋ชจ๋ธ<br>
-128k-Context Window<br>
-Deepspeed Stage=3, rslora ๋ฐ BAdam Layer Mode ์‚ฌ์šฉ <br>
"transformers_version": "4.46.1"
<br><br>

Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics <br>
about 38% of total parameters Korean CPT(Continued-Pretraining)->SFT->DPO training model based on gemma-2-27b-it through 8 H100-80Gs as a Korean language model <br>
It is a model that has been trained to handle Korean-Chinese-English-Japanese cross-training data and 90M korean news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br>
-Tokenizer uses the base model without word expansion<br>
-Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br>
-128k-Context Window<br>
-Deepspeed Stage=3, use rslora and BAdam Layer Mode<br>
<br><br>

<a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a>

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Saxo__Linkbricks-Horizon-AI-Korean-Superb-27B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |38.32|
|IFEval (0-Shot)    |77.68|
|BBH (3-Shot)       |50.61|
|MATH Lvl 5 (4-Shot)|26.96|
|GPQA (0-shot)      |14.65|
|MuSR (0-shot)      |19.53|
|MMLU-PRO (5-shot)  |40.52|