import copy import math import numpy as np import scipy import torch from torch import nn from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from tools import commons from tools.commons import get_padding, init_weights from tools.transforms import piecewise_rational_quadratic_transform LRELU_SLOPE = 0.1 class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1).contiguous() x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1).contiguous() class ConvReluNorm(nn.Module): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, ): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append( nn.Conv1d( in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append( nn.Conv1d( hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2, ) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size**i padding = (kernel_size * dilation - dilation) // 2 conv = nn.Conv1d( channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding, ) self.convs_sep.append(conv) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask class WN(torch.nn.Module): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): super(WN, self).__init__() assert kernel_size % 2 == 1 self.hidden_channels = hidden_channels self.kernel_size = (kernel_size,) self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0: cond_layer = torch.nn.Conv1d( gin_channels, 2 * hidden_channels * n_layers, 1 ) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") for i in range(n_layers): dilation = dilation_rate**i padding = int((kernel_size * dilation - dilation) / 2) in_layer = Conv1d( hidden_channels, 2 * hidden_channels, kernel_size, padding=padding, dilation=dilation, ) in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) acts = self.drop(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: res_acts = res_skip_acts[:, : self.hidden_channels, :] x = (x + res_acts) * x_mask output = output + res_skip_acts[:, self.hidden_channels :, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): if self.gin_channels != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for l in self.in_layers: torch.nn.utils.remove_weight_norm(l) for l in self.res_skip_layers: torch.nn.utils.remove_weight_norm(l) class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x class ResidualCouplingLayer(nn.Module): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): assert channels % 2 == 0, "channels should be divisible by 2" super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet else: x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x class ConvFlow(nn.Module): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0, ): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) self.proj = nn.Conv1d( filter_channels, self.half_channels * (num_bins * 3 - 1), 1 ) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = ( h.reshape(b, c, -1, t).permute(0, 1, 3, 2).contiguous() ) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( self.filter_channels ) unnormalized_derivatives = h[..., 2 * self.num_bins :] x1, logabsdet = piecewise_rational_quadratic_transform( x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails="linear", tail_bound=self.tail_bound, ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x class LinearNorm(nn.Module): def __init__( self, in_channels, out_channels, bias=True, spectral_norm=False, ): super(LinearNorm, self).__init__() self.fc = nn.Linear(in_channels, out_channels, bias) if spectral_norm: self.fc = nn.utils.spectral_norm(self.fc) def forward(self, input): out = self.fc(input) return out class Mish(nn.Module): def __init__(self): super(Mish, self).__init__() def forward(self, x): return x * torch.tanh(F.softplus(x)) class LinearNorm(nn.Module): def __init__( self, in_channels, out_channels, bias=True, spectral_norm=False, ): super(LinearNorm, self).__init__() self.fc = nn.Linear(in_channels, out_channels, bias) if spectral_norm: self.fc = nn.utils.spectral_norm(self.fc) def forward(self, input): out = self.fc(input) return out class ConvNorm(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, spectral_norm=False, ): super(ConvNorm, self).__init__() if padding is None: assert kernel_size % 2 == 1 padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) if spectral_norm: self.conv = nn.utils.spectral_norm(self.conv) def forward(self, input): out = self.conv(input) return out class MultiHeadAttention(nn.Module): """Multi-Head Attention module""" def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) self.attention = ScaledDotProductAttention( temperature=np.power(d_model, 0.5), dropout=dropout ) self.fc = nn.Linear(n_head * d_v, d_model) self.dropout = nn.Dropout(dropout) if spectral_norm: self.w_qs = nn.utils.spectral_norm(self.w_qs) self.w_ks = nn.utils.spectral_norm(self.w_ks) self.w_vs = nn.utils.spectral_norm(self.w_vs) self.fc = nn.utils.spectral_norm(self.fc) def forward(self, x, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_x, _ = x.size() residual = x q = self.w_qs(x).view(sz_b, len_x, n_head, d_k) k = self.w_ks(x).view(sz_b, len_x, n_head, d_k) v = self.w_vs(x).view(sz_b, len_x, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv if mask is not None: slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. else: slf_mask = None output, attn = self.attention(q, k, v, mask=slf_mask) output = output.view(n_head, sz_b, len_x, d_v) output = ( output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1) ) # b x lq x (n*dv) output = self.fc(output) output = self.dropout(output) + residual return output, attn class ScaledDotProductAttention(nn.Module): """Scaled Dot-Product Attention""" def __init__(self, temperature, dropout): super().__init__() self.temperature = temperature self.softmax = nn.Softmax(dim=2) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): attn = torch.bmm(q, k.transpose(1, 2).contiguous()) attn = attn / self.temperature if mask is not None: attn = attn.masked_fill(mask, -np.inf) attn = self.softmax(attn) p_attn = self.dropout(attn) output = torch.bmm(p_attn, v) return output, attn class Conv1dGLU(nn.Module): """ Conv1d + GLU(Gated Linear Unit) with residual connection. For GLU refer to https://arxiv.org/abs/1612.08083 paper. """ def __init__(self, in_channels, out_channels, kernel_size, dropout): super(Conv1dGLU, self).__init__() self.out_channels = out_channels self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.conv1(x) x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1) x = x1 * torch.sigmoid(x2) x = residual + self.dropout(x) return x