Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Usage:
|
2 |
+
|
3 |
+
```python
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
question_template = "<|im_start|>user\nMy LEAN 4 state is:\n```{state}```\nPlease write down the reasoning that leads to the possible next tactic and then predict the tactic to help me prove the theorem.<|im_end|>\n<|im_start|>assistant\n"
|
8 |
+
|
9 |
+
model_name = "ScalableMath/Lean-STaR-plus"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
state = "x : \u211d\nn : \u2115\nh\u2080 : -1 < x\nh\u2081 : 0 < n\n\u22a2 1 + \u2191n * x \u2264 (1 + x) ^ n"
|
15 |
+
question = question_template.format(state=state)
|
16 |
+
|
17 |
+
input_tensor = torch.tensor([tokenizer.encode(question)])
|
18 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)
|
19 |
+
|
20 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
print(result)
|
22 |
+
```
|
23 |
+
|
24 |
+
Example Results:
|
25 |
+
```
|
26 |
+
# State
|
27 |
+
|
28 |
+
x : ℝ
|
29 |
+
n : ℕ
|
30 |
+
h₀ : -1 < x
|
31 |
+
h₁ : 0 < n
|
32 |
+
⊢ 1 + ↑n * x ≤ (1 + x) ^ n
|
33 |
+
|
34 |
+
# Reasoning
|
35 |
+
|
36 |
+
To prove the inequality involving the binomial expansion of `(1 + x)^n`, we start by considering the binomial expansion of `1 + x` raised to the power `n`. This expansion will allow us to compare the left-hand side and the right-hand side of the inequality.
|
37 |
+
|
38 |
+
# Next Tactic
|
39 |
+
|
40 |
+
have h₂ : x = -1 + (x + 1) := by simp
|
41 |
+
```
|