Usage: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM question_template = "# Question\n\n{question}\n\n# Solution\n\n" model_name = "ScalableMath/llemma-7b-sft-prm800k-level-1to3-hf" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("EleutherAI/llemma_7b") question = "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$" question = question_template.format(question=question) input_tensor = torch.tensor([tokenizer.encode(question)]) outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` Example Results: ``` # Question Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$ # Solution To convert from rectangular to polar coordinates, I need to use the formulas $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x).$ In this case, $x = 0$ and $y = 3,$ so I can plug them into the formulas. For $r,$ I get $r = \sqrt{0^2 + 3^2} = \sqrt{9} = 3.$ For $\theta,$ I get $\theta = \tan^{-1}(3/0).$ This is undefined, since the tangent function is not defined at $0.$ However, I can use the fact that the point $(0,3)$ lies on the positive $y$-axis, which has an angle of $\pi/2$ radians or $90^\circ.$ Therefore, I can choose any angle in the range $(0,\pi/2)$ as the value of $\theta.$ I will choose $\theta = \pi/2,$ since it is the simplest and most natural choice. Therefore, the polar coordinates of the point $(0,3)$ are $(3,\pi/2).$ # Answer (3,\pi/2) ```