End of training
Browse files
fine-tune-whisper-non-streaming-fleurs-ms.ipynb
CHANGED
@@ -1162,7 +1162,7 @@
|
|
1162 |
},
|
1163 |
{
|
1164 |
"cell_type": "code",
|
1165 |
-
"execution_count":
|
1166 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
1167 |
"metadata": {
|
1168 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
|
@@ -1191,8 +1191,8 @@
|
|
1191 |
"\n",
|
1192 |
" <div>\n",
|
1193 |
" \n",
|
1194 |
-
" <progress value='
|
1195 |
-
" [
|
1196 |
" </div>\n",
|
1197 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1198 |
" <thead>\n",
|
@@ -1200,17 +1200,18 @@
|
|
1200 |
" <th>Step</th>\n",
|
1201 |
" <th>Training Loss</th>\n",
|
1202 |
" <th>Validation Loss</th>\n",
|
|
|
1203 |
" </tr>\n",
|
1204 |
" </thead>\n",
|
1205 |
" <tbody>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
1206 |
" </tbody>\n",
|
1207 |
-
"</table><p
|
1208 |
-
" <div>\n",
|
1209 |
-
" \n",
|
1210 |
-
" <progress value='83' max='94' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1211 |
-
" [83/94 04:51 < 00:39, 0.28 it/s]\n",
|
1212 |
-
" </div>\n",
|
1213 |
-
" "
|
1214 |
],
|
1215 |
"text/plain": [
|
1216 |
"<IPython.core.display.HTML object>"
|
@@ -1226,7 +1227,25 @@
|
|
1226 |
"The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n",
|
1227 |
"***** Running Evaluation *****\n",
|
1228 |
" Num examples = 749\n",
|
1229 |
-
" Batch size = 8\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1230 |
]
|
1231 |
}
|
1232 |
],
|
@@ -1246,7 +1265,7 @@
|
|
1246 |
},
|
1247 |
{
|
1248 |
"cell_type": "code",
|
1249 |
-
"execution_count":
|
1250 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
|
1251 |
"metadata": {
|
1252 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
|
@@ -1260,7 +1279,7 @@
|
|
1260 |
" \"model_name\": \"Whisper Small MS - FLEURS\", # a 'pretty' name for your model\n",
|
1261 |
" \"finetuned_from\": \"openai/whisper-small\",\n",
|
1262 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
1263 |
-
" \"tags\": \"whisper-event\",\n",
|
1264 |
"}"
|
1265 |
]
|
1266 |
},
|
@@ -1281,7 +1300,18 @@
|
|
1281 |
"metadata": {
|
1282 |
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
|
1283 |
},
|
1284 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1285 |
"source": [
|
1286 |
"trainer.push_to_hub(**kwargs)"
|
1287 |
]
|
|
|
1162 |
},
|
1163 |
{
|
1164 |
"cell_type": "code",
|
1165 |
+
"execution_count": 23,
|
1166 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
1167 |
"metadata": {
|
1168 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de"
|
|
|
1191 |
"\n",
|
1192 |
" <div>\n",
|
1193 |
" \n",
|
1194 |
+
" <progress value='1137' max='5000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1195 |
+
" [1137/5000 1:25:51 < 4:52:12, 0.22 it/s, Epoch 12.21/54]\n",
|
1196 |
" </div>\n",
|
1197 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1198 |
" <thead>\n",
|
|
|
1200 |
" <th>Step</th>\n",
|
1201 |
" <th>Training Loss</th>\n",
|
1202 |
" <th>Validation Loss</th>\n",
|
1203 |
+
" <th>Wer</th>\n",
|
1204 |
" </tr>\n",
|
1205 |
" </thead>\n",
|
1206 |
" <tbody>\n",
|
1207 |
+
" <tr>\n",
|
1208 |
+
" <td>1000</td>\n",
|
1209 |
+
" <td>0.001500</td>\n",
|
1210 |
+
" <td>0.332360</td>\n",
|
1211 |
+
" <td>15.645336</td>\n",
|
1212 |
+
" </tr>\n",
|
1213 |
" </tbody>\n",
|
1214 |
+
"</table><p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
1215 |
],
|
1216 |
"text/plain": [
|
1217 |
"<IPython.core.display.HTML object>"
|
|
|
1227 |
"The following columns in the evaluation set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n",
|
1228 |
"***** Running Evaluation *****\n",
|
1229 |
" Num examples = 749\n",
|
1230 |
+
" Batch size = 8\n",
|
1231 |
+
"Saving model checkpoint to ./checkpoint-1000\n",
|
1232 |
+
"Configuration saved in ./checkpoint-1000/config.json\n",
|
1233 |
+
"Model weights saved in ./checkpoint-1000/pytorch_model.bin\n",
|
1234 |
+
"Feature extractor saved in ./checkpoint-1000/preprocessor_config.json\n",
|
1235 |
+
"Feature extractor saved in ./preprocessor_config.json\n"
|
1236 |
+
]
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"ename": "KeyboardInterrupt",
|
1240 |
+
"evalue": "",
|
1241 |
+
"output_type": "error",
|
1242 |
+
"traceback": [
|
1243 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1244 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
1245 |
+
"Cell \u001b[0;32mIn[23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
1246 |
+
"File \u001b[0;32m~/whisper/lib/python3.8/site-packages/transformers/trainer.py:1535\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1530\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_wrapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 1532\u001b[0m inner_training_loop \u001b[38;5;241m=\u001b[39m find_executable_batch_size(\n\u001b[1;32m 1533\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inner_training_loop, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_train_batch_size, args\u001b[38;5;241m.\u001b[39mauto_find_batch_size\n\u001b[1;32m 1534\u001b[0m )\n\u001b[0;32m-> 1535\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1536\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1537\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1538\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1539\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1540\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
1247 |
+
"File \u001b[0;32m~/whisper/lib/python3.8/site-packages/transformers/trainer.py:1785\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1782\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1783\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining_step(model, inputs)\n\u001b[0;32m-> 1785\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 1786\u001b[0m args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m 1787\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_tpu_available()\n\u001b[1;32m 1788\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m torch\u001b[38;5;241m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m 1789\u001b[0m ):\n\u001b[1;32m 1790\u001b[0m \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m 1791\u001b[0m tr_loss \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n\u001b[1;32m 1792\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
1248 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
1249 |
]
|
1250 |
}
|
1251 |
],
|
|
|
1265 |
},
|
1266 |
{
|
1267 |
"cell_type": "code",
|
1268 |
+
"execution_count": 24,
|
1269 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
|
1270 |
"metadata": {
|
1271 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
|
|
|
1279 |
" \"model_name\": \"Whisper Small MS - FLEURS\", # a 'pretty' name for your model\n",
|
1280 |
" \"finetuned_from\": \"openai/whisper-small\",\n",
|
1281 |
" \"tasks\": \"automatic-speech-recognition\",\n",
|
1282 |
+
" \"tags\": [\"whisper-event\", \"incomplete\"],\n",
|
1283 |
"}"
|
1284 |
]
|
1285 |
},
|
|
|
1300 |
"metadata": {
|
1301 |
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
|
1302 |
},
|
1303 |
+
"outputs": [
|
1304 |
+
{
|
1305 |
+
"name": "stderr",
|
1306 |
+
"output_type": "stream",
|
1307 |
+
"text": [
|
1308 |
+
"Saving model checkpoint to ./\n",
|
1309 |
+
"Configuration saved in ./config.json\n",
|
1310 |
+
"Model weights saved in ./pytorch_model.bin\n",
|
1311 |
+
"Feature extractor saved in ./preprocessor_config.json\n"
|
1312 |
+
]
|
1313 |
+
}
|
1314 |
+
],
|
1315 |
"source": [
|
1316 |
"trainer.push_to_hub(**kwargs)"
|
1317 |
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 967102601
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcc04218f31af574bfbde70d73250344da004bfa40593e65c10ae8984db558eb
|
3 |
size 967102601
|
runs/Dec11_09-38-31_DANDAN/events.out.tfevents.1670722725.DANDAN.10984.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7610414f37504b1b4057dd1cb351805a3020f7eb06db524f404a4cbeb20d34af
|
3 |
+
size 11646
|