SeanLMH commited on
Commit
d84af7d
·
verified ·
1 Parent(s): c609990

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0a98d69b324f2f3270615adb42fe943899abf8cf41166302e88a502d1d47ab
3
+ size 111462
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c61eda252d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c61eda20ec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1729849924972824729,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnEmfv4j8s78T6ik/f7pVv/qHab9yip+/HtgYPrrpp7w/a9Y+z0RWP+Isnj/upeS+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2+vvvrC5ur+9tAI/6YsMv6qdJ78WGIi/bLXXvV/8l79cBIg/ZV3bPzLZyz+pEo0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcSZ+/iPyzvxPqKT8VakK/25+Jv2W51j9/ulW/+odpv3KKn7/bQlu/CVFyPSe9aL8e2Bg+uumnvD9r1j6rweI+kmWruoNOwT7PRFY/4iyeP+6l5L4LS7Y+1UZNP1ItIr+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.2444339 -1.4061441 0.66372794]\n [-0.83487695 -0.9122311 -1.2464125 ]\n [ 0.14926192 -0.02049719 0.41878697]\n [ 0.83698744 1.2357447 -0.44657844]]",
34
+ "desired_goal": "[[-0.4685963 -1.4587917 0.51057035]\n [-0.54900986 -0.6547495 -1.063235 ]\n [-0.1053265 -1.1873893 1.062633 ]\n [ 1.7137877 1.5925658 0.275533 ]]",
35
+ "observation": "[[-1.2444339e+00 -1.4061441e+00 6.6372794e-01 -7.5943118e-01\n -1.0751909e+00 1.6775328e+00]\n [-8.3487695e-01 -9.1223109e-01 -1.2464125e+00 -8.5648888e-01\n 5.9159312e-02 -9.0913624e-01]\n [ 1.4926192e-01 -2.0497192e-02 4.1878697e-01 4.4288382e-01\n -1.3076535e-03 3.7755212e-01]\n [ 8.3698744e-01 1.2357447e+00 -4.4657844e-01 3.5604128e-01\n 8.0186206e-01 -6.3350403e-01]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfNEOPZjgBb7fJSg+eeGLu70gBr6Dm48+Nl6bvTihpj2M85I9d2LlPRTBir1tiYs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.03486775 -0.13073957 0.16420697]\n [-0.00426882 -0.13098426 0.28048334]\n [-0.07586329 0.08136219 0.07175359]\n [ 0.11200421 -0.06775108 0.27253285]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7ojjaPCEYiMAWyUSwKMAXSUR0CkF0fxDst1dX2UKGgGR7/ZbRF7Uoa2aAdLBGgIR0CkF+PzvqkedX2UKGgGR7/RE0zj3mFKaAdLA2gIR0CkF5fCyhSMdX2UKGgGR7+37Kq4pc5baAdLAmgIR0CkGDQqRU3odX2UKGgGR7+7vWpZOi35aAdLAmgIR0CkF+vr4WUKdX2UKGgGR7/JsY2sJY1YaAdLA2gIR0CkF1cFyJbddX2UKGgGR7/YgOz6ab4KaAdLBGgIR0CkF6e/QBxQdX2UKGgGR7+5qGlANXo1aAdLAmgIR0CkF19U83dcdX2UKGgGR7/gGgam4y44aAdLBGgIR0CkGEdoWYWtdX2UKGgGR7/YXIEKVpsXaAdLA2gIR0CkF/uc2BJ7dX2UKGgGR7+2uA7PppvhaAdLAmgIR0CkGANQj2SMdX2UKGgGR7/RziCJ40MxaAdLA2gIR0CkF26dDpkgdX2UKGgGR7/XBomG/N7jaAdLBGgIR0CkF7ugxrSFdX2UKGgGR7/UVafSQYDUaAdLBGgIR0CkGFgC4jKQdX2UKGgGR7+7NgSeyzHCaAdLAmgIR0CkF3ceS0SidX2UKGgGR7/QAdGRV6u5aAdLA2gIR0CkGBNHQQcxdX2UKGgGR7/Qji4rjHXFaAdLA2gIR0CkF8t78ejmdX2UKGgGR7+0u3+dbxEwaAdLAmgIR0CkF4LIgeRxdX2UKGgGR7/Ie+23KB/aaAdLA2gIR0CkGGhMzuWsdX2UKGgGR7+bAk9lmOENaAdLAWgIR0CkGGwNb1RMdX2UKGgGR7/QP5HmRvFWaAdLA2gIR0CkGCCblRxcdX2UKGgGR7+ZNCZ4Oc2BaAdLAWgIR0CkGHDJdSl4dX2UKGgGR7/LFnZkCmuUaAdLA2gIR0CkF9jTa0x/dX2UKGgGR7/LpFCswL3LaAdLA2gIR0CkF5Aeq7yydX2UKGgGR7+6cMEzO5avaAdLAmgIR0CkGCx+SbH7dX2UKGgGR7+1usLfDUExaAdLAmgIR0CkGHzWoWHldX2UKGgGR7+lPDYRNATqaAdLAWgIR0CkGICSaEzwdX2UKGgGR7/CevpyIYWMaAdLAmgIR0CkGDTKLbYcdX2UKGgGR7/KYtxuKoAGaAdLA2gIR0CkF+i9qUNbdX2UKGgGR7/KjcEeQuEmaAdLA2gIR0CkF6ARsdkrdX2UKGgGR7+/oTwlSjxkaAdLAmgIR0CkGD1IiC8OdX2UKGgGR7/CozeoDPnkaAdLAmgIR0CkF/EoWpIddX2UKGgGR7/PZgXuVopQaAdLA2gIR0CkF69Nvfj0dX2UKGgGR7/cK8cuJ1q4aAdLBGgIR0CkGJR/ustDdX2UKGgGR7+1u5z5oGpuaAdLAmgIR0CkGEjxTbWVdX2UKGgGR7/Os/6fra/RaAdLA2gIR0CkGAC4jKPodX2UKGgGR7+6MBIWgvlEaAdLAmgIR0CkGJ0Pxx1gdX2UKGgGR7/Ciml67dzoaAdLAmgIR0CkGFFcpsoEdX2UKGgGR7/Rk43m3fALaAdLA2gIR0CkF7ya/h2odX2UKGgGR7+4Ug0TDfm+aAdLAmgIR0CkGFyYgJTmdX2UKGgGR7/NNQj2SMcZaAdLA2gIR0CkGBCYkVvddX2UKGgGR7/aMEidJ8OTaAdLBGgIR0CkGLDA8B+4dX2UKGgGR7/N4bCJoCdSaAdLA2gIR0CkGGkDIRywdX2UKGgGR7/IOmzjWCmNaAdLA2gIR0CkGB0GNaQndX2UKGgGR7/R0T101ZTyaAdLBWgIR0CkF9RQ79ycdX2UKGgGR7/RPfsNUfgaaAdLA2gIR0CkGL/PPcBVdX2UKGgGR7+8w5/9YOlPaAdLAmgIR0CkGHQOOKfndX2UKGgGR7+4bMotthuwaAdLAmgIR0CkGCfYao/BdX2UKGgGR7/CKIBRyfcvaAdLAmgIR0CkF98wHqu9dX2UKGgGR7+0Dmr8zhxYaAdLAmgIR0CkGMgIQe3hdX2UKGgGR7/DHoX9BKL9aAdLAmgIR0CkGHw5vLowdX2UKGgGR7+/UG3WnTAnaAdLAmgIR0CkGDAMlTm5dX2UKGgGR7/ChA4XGff5aAdLAmgIR0CkF+dnkDISdX2UKGgGR7+0Kqn3ta6jaAdLAmgIR0CkGIRaPjn3dX2UKGgGR7/IV6eGwiaBaAdLAmgIR0CkGDggX/HYdX2UKGgGR7/FdP+GXXyzaAdLA2gIR0CkF/YraufVdX2UKGgGR7/TogFHJ9y+aAdLBGgIR0CkGNt4A0bcdX2UKGgGR7/CY/mknCwbaAdLAmgIR0CkGI+kpI+XdX2UKGgGR7+4MuvllsguaAdLAmgIR0CkGENzKcNIdX2UKGgGR7/BzcRDkU9IaAdLAmgIR0CkGEta6jFidX2UKGgGR7/WC/GlyimEaAdLA2gIR0CkGJweNkvsdX2UKGgGR7/WqH446wMZaAdLBGgIR0CkGO8VpKzzdX2UKGgGR7/YhfBvaURnaAdLBWgIR0CkGA4s3AEddX2UKGgGR7+/w+dK/VRUaAdLAmgIR0CkGKemWMS9dX2UKGgGR7/N1hb4agmJaAdLA2gIR0CkGFuyu6mPdX2UKGgGR7/SaRISUTtcaAdLA2gIR0CkGPuP/7zkdX2UKGgGR7/RBN21UlzEaAdLA2gIR0CkGGdKEnLJdX2UKGgGR7/ZpC8e0XxfaAdLBGgIR0CkGB611GLDdX2UKGgGR7/Seg+QlruZaAdLBGgIR0CkGLqbjLjhdX2UKGgGR7/R5s0pEx7BaAdLA2gIR0CkGQqEvkBCdX2UKGgGR7+3TKDCgsbvaAdLAmgIR0CkGMJ3HJcPdX2UKGgGR7/YB/qgRK6GaAdLA2gIR0CkGHY7zTWodX2UKGgGR7/TYplSS/0vaAdLA2gIR0CkGC2EK3NLdX2UKGgGR7/BeVs1sLv1aAdLAmgIR0CkGRLP2PDHdX2UKGgGR7+iN4qwyIpIaAdLAWgIR0CkGHqFqSHNdX2UKGgGR7+969kBjnV5aAdLAmgIR0CkGMrW7OE/dX2UKGgGR7/TJgb6xgRcaAdLA2gIR0CkGDyKNyYHdX2UKGgGR7/Sysjmjj7zaAdLA2gIR0CkGSGz8gp0dX2UKGgGR7/TXe3x4IKMaAdLA2gIR0CkGNnrIHTrdX2UKGgGR7/VUu+RHPNWaAdLBGgIR0CkGI3++/QCdX2UKGgGR7/REQXhwVCYaAdLA2gIR0CkGEjujRD1dX2UKGgGR7/I3gDRtxdZaAdLA2gIR0CkGS5C4SYgdX2UKGgGR7/W5H3Dej20aAdLA2gIR0CkGOj2alUIdX2UKGgGR7+9AOavzOHGaAdLAmgIR0CkGFQGW2PUdX2UKGgGR7/UzvqkdmxuaAdLBGgIR0CkGKDrAxi5dX2UKGgGR7/TCY1He7+UaAdLBGgIR0CkGUGFi8WcdX2UKGgGR7/RrY5DJEH/aAdLA2gIR0CkGGC1Z1V6dX2UKGgGR7/Hu7YkE9t/aAdLA2gIR0CkGK4W1twadX2UKGgGR7/Y1gH/tICmaAdLBWgIR0CkGQELYwqRdX2UKGgGR7/OYv38GcFyaAdLA2gIR0CkGHBY/3WXdX2UKGgGR7/XTo+wC8vmaAdLBGgIR0CkGVWdupCKdX2UKGgGR7/G7SRbKRuCaAdLA2gIR0CkGL2MS9M9dX2UKGgGR7/GvV3EAHVxaAdLA2gIR0CkGQ34j8k2dX2UKGgGR7/Rc6eXiR4haAdLA2gIR0CkGHz3RG+cdX2UKGgGR7/LujRD1GsnaAdLA2gIR0CkGWSQgcLjdX2UKGgGR7/OihWYF7laaAdLA2gIR0CkGMxjBl+WdX2UKGgGR7+zP5YYBNmEaAdLAmgIR0CkGWyJTER8dX2UKGgGR7/ZQZn+Q2deaAdLBGgIR0CkGSEoWpIddX2UKGgGR7/VUz9CNS62aAdLA2gIR0CkGIwGGEf1dX2UKGgGR7/WdvbXYlIFaAdLBGgIR0CkGNygwoLHdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb9bf3be5c1cee358acafb6eb96227fc908e3aefdeda9f7df0ff3709b3f07753
3
+ size 48456
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7883061bd0a5a5993222624c6ce7dfb0168f1dc4740e19092eefe55205e317
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.154+-x86_64-with-glibc2.35 # 1 SMP Thu Jun 27 20:43:36 UTC 2024
2
+ - Python: 3.10.14
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.4.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c61eda252d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c61eda20ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729849924972824729, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnEmfv4j8s78T6ik/f7pVv/qHab9yip+/HtgYPrrpp7w/a9Y+z0RWP+Isnj/upeS+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2+vvvrC5ur+9tAI/6YsMv6qdJ78WGIi/bLXXvV/8l79cBIg/ZV3bPzLZyz+pEo0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcSZ+/iPyzvxPqKT8VakK/25+Jv2W51j9/ulW/+odpv3KKn7/bQlu/CVFyPSe9aL8e2Bg+uumnvD9r1j6rweI+kmWruoNOwT7PRFY/4iyeP+6l5L4LS7Y+1UZNP1ItIr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.2444339 -1.4061441 0.66372794]\n [-0.83487695 -0.9122311 -1.2464125 ]\n [ 0.14926192 -0.02049719 0.41878697]\n [ 0.83698744 1.2357447 -0.44657844]]", "desired_goal": "[[-0.4685963 -1.4587917 0.51057035]\n [-0.54900986 -0.6547495 -1.063235 ]\n [-0.1053265 -1.1873893 1.062633 ]\n [ 1.7137877 1.5925658 0.275533 ]]", "observation": "[[-1.2444339e+00 -1.4061441e+00 6.6372794e-01 -7.5943118e-01\n -1.0751909e+00 1.6775328e+00]\n [-8.3487695e-01 -9.1223109e-01 -1.2464125e+00 -8.5648888e-01\n 5.9159312e-02 -9.0913624e-01]\n [ 1.4926192e-01 -2.0497192e-02 4.1878697e-01 4.4288382e-01\n -1.3076535e-03 3.7755212e-01]\n [ 8.3698744e-01 1.2357447e+00 -4.4657844e-01 3.5604128e-01\n 8.0186206e-01 -6.3350403e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfNEOPZjgBb7fJSg+eeGLu70gBr6Dm48+Nl6bvTihpj2M85I9d2LlPRTBir1tiYs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03486775 -0.13073957 0.16420697]\n [-0.00426882 -0.13098426 0.28048334]\n [-0.07586329 0.08136219 0.07175359]\n [ 0.11200421 -0.06775108 0.27253285]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7ojjaPCEYiMAWyUSwKMAXSUR0CkF0fxDst1dX2UKGgGR7/ZbRF7Uoa2aAdLBGgIR0CkF+PzvqkedX2UKGgGR7/RE0zj3mFKaAdLA2gIR0CkF5fCyhSMdX2UKGgGR7+37Kq4pc5baAdLAmgIR0CkGDQqRU3odX2UKGgGR7+7vWpZOi35aAdLAmgIR0CkF+vr4WUKdX2UKGgGR7/JsY2sJY1YaAdLA2gIR0CkF1cFyJbddX2UKGgGR7/YgOz6ab4KaAdLBGgIR0CkF6e/QBxQdX2UKGgGR7+5qGlANXo1aAdLAmgIR0CkF19U83dcdX2UKGgGR7/gGgam4y44aAdLBGgIR0CkGEdoWYWtdX2UKGgGR7/YXIEKVpsXaAdLA2gIR0CkF/uc2BJ7dX2UKGgGR7+2uA7PppvhaAdLAmgIR0CkGANQj2SMdX2UKGgGR7/RziCJ40MxaAdLA2gIR0CkF26dDpkgdX2UKGgGR7/XBomG/N7jaAdLBGgIR0CkF7ugxrSFdX2UKGgGR7/UVafSQYDUaAdLBGgIR0CkGFgC4jKQdX2UKGgGR7+7NgSeyzHCaAdLAmgIR0CkF3ceS0SidX2UKGgGR7/QAdGRV6u5aAdLA2gIR0CkGBNHQQcxdX2UKGgGR7/Qji4rjHXFaAdLA2gIR0CkF8t78ejmdX2UKGgGR7+0u3+dbxEwaAdLAmgIR0CkF4LIgeRxdX2UKGgGR7/Ie+23KB/aaAdLA2gIR0CkGGhMzuWsdX2UKGgGR7+bAk9lmOENaAdLAWgIR0CkGGwNb1RMdX2UKGgGR7/QP5HmRvFWaAdLA2gIR0CkGCCblRxcdX2UKGgGR7+ZNCZ4Oc2BaAdLAWgIR0CkGHDJdSl4dX2UKGgGR7/LFnZkCmuUaAdLA2gIR0CkF9jTa0x/dX2UKGgGR7/LpFCswL3LaAdLA2gIR0CkF5Aeq7yydX2UKGgGR7+6cMEzO5avaAdLAmgIR0CkGCx+SbH7dX2UKGgGR7+1usLfDUExaAdLAmgIR0CkGHzWoWHldX2UKGgGR7+lPDYRNATqaAdLAWgIR0CkGICSaEzwdX2UKGgGR7/CevpyIYWMaAdLAmgIR0CkGDTKLbYcdX2UKGgGR7/KYtxuKoAGaAdLA2gIR0CkF+i9qUNbdX2UKGgGR7/KjcEeQuEmaAdLA2gIR0CkF6ARsdkrdX2UKGgGR7+/oTwlSjxkaAdLAmgIR0CkGD1IiC8OdX2UKGgGR7/CozeoDPnkaAdLAmgIR0CkF/EoWpIddX2UKGgGR7/PZgXuVopQaAdLA2gIR0CkF69Nvfj0dX2UKGgGR7/cK8cuJ1q4aAdLBGgIR0CkGJR/ustDdX2UKGgGR7+1u5z5oGpuaAdLAmgIR0CkGEjxTbWVdX2UKGgGR7/Os/6fra/RaAdLA2gIR0CkGAC4jKPodX2UKGgGR7+6MBIWgvlEaAdLAmgIR0CkGJ0Pxx1gdX2UKGgGR7/Ciml67dzoaAdLAmgIR0CkGFFcpsoEdX2UKGgGR7/Rk43m3fALaAdLA2gIR0CkF7ya/h2odX2UKGgGR7+4Ug0TDfm+aAdLAmgIR0CkGFyYgJTmdX2UKGgGR7/NNQj2SMcZaAdLA2gIR0CkGBCYkVvddX2UKGgGR7/aMEidJ8OTaAdLBGgIR0CkGLDA8B+4dX2UKGgGR7/N4bCJoCdSaAdLA2gIR0CkGGkDIRywdX2UKGgGR7/IOmzjWCmNaAdLA2gIR0CkGB0GNaQndX2UKGgGR7/R0T101ZTyaAdLBWgIR0CkF9RQ79ycdX2UKGgGR7/RPfsNUfgaaAdLA2gIR0CkGL/PPcBVdX2UKGgGR7+8w5/9YOlPaAdLAmgIR0CkGHQOOKfndX2UKGgGR7+4bMotthuwaAdLAmgIR0CkGCfYao/BdX2UKGgGR7/CKIBRyfcvaAdLAmgIR0CkF98wHqu9dX2UKGgGR7+0Dmr8zhxYaAdLAmgIR0CkGMgIQe3hdX2UKGgGR7/DHoX9BKL9aAdLAmgIR0CkGHw5vLowdX2UKGgGR7+/UG3WnTAnaAdLAmgIR0CkGDAMlTm5dX2UKGgGR7/ChA4XGff5aAdLAmgIR0CkF+dnkDISdX2UKGgGR7+0Kqn3ta6jaAdLAmgIR0CkGIRaPjn3dX2UKGgGR7/IV6eGwiaBaAdLAmgIR0CkGDggX/HYdX2UKGgGR7/FdP+GXXyzaAdLA2gIR0CkF/YraufVdX2UKGgGR7/TogFHJ9y+aAdLBGgIR0CkGNt4A0bcdX2UKGgGR7/CY/mknCwbaAdLAmgIR0CkGI+kpI+XdX2UKGgGR7+4MuvllsguaAdLAmgIR0CkGENzKcNIdX2UKGgGR7/BzcRDkU9IaAdLAmgIR0CkGEta6jFidX2UKGgGR7/WC/GlyimEaAdLA2gIR0CkGJweNkvsdX2UKGgGR7/WqH446wMZaAdLBGgIR0CkGO8VpKzzdX2UKGgGR7/YhfBvaURnaAdLBWgIR0CkGA4s3AEddX2UKGgGR7+/w+dK/VRUaAdLAmgIR0CkGKemWMS9dX2UKGgGR7/N1hb4agmJaAdLA2gIR0CkGFuyu6mPdX2UKGgGR7/SaRISUTtcaAdLA2gIR0CkGPuP/7zkdX2UKGgGR7/RBN21UlzEaAdLA2gIR0CkGGdKEnLJdX2UKGgGR7/ZpC8e0XxfaAdLBGgIR0CkGB611GLDdX2UKGgGR7/Seg+QlruZaAdLBGgIR0CkGLqbjLjhdX2UKGgGR7/R5s0pEx7BaAdLA2gIR0CkGQqEvkBCdX2UKGgGR7+3TKDCgsbvaAdLAmgIR0CkGMJ3HJcPdX2UKGgGR7/YB/qgRK6GaAdLA2gIR0CkGHY7zTWodX2UKGgGR7/TYplSS/0vaAdLA2gIR0CkGC2EK3NLdX2UKGgGR7/BeVs1sLv1aAdLAmgIR0CkGRLP2PDHdX2UKGgGR7+iN4qwyIpIaAdLAWgIR0CkGHqFqSHNdX2UKGgGR7+969kBjnV5aAdLAmgIR0CkGMrW7OE/dX2UKGgGR7/TJgb6xgRcaAdLA2gIR0CkGDyKNyYHdX2UKGgGR7/Sysjmjj7zaAdLA2gIR0CkGSGz8gp0dX2UKGgGR7/TXe3x4IKMaAdLA2gIR0CkGNnrIHTrdX2UKGgGR7/VUu+RHPNWaAdLBGgIR0CkGI3++/QCdX2UKGgGR7/REQXhwVCYaAdLA2gIR0CkGEjujRD1dX2UKGgGR7/I3gDRtxdZaAdLA2gIR0CkGS5C4SYgdX2UKGgGR7/W5H3Dej20aAdLA2gIR0CkGOj2alUIdX2UKGgGR7+9AOavzOHGaAdLAmgIR0CkGFQGW2PUdX2UKGgGR7/UzvqkdmxuaAdLBGgIR0CkGKDrAxi5dX2UKGgGR7/TCY1He7+UaAdLBGgIR0CkGUGFi8WcdX2UKGgGR7/RrY5DJEH/aAdLA2gIR0CkGGC1Z1V6dX2UKGgGR7/Hu7YkE9t/aAdLA2gIR0CkGK4W1twadX2UKGgGR7/Y1gH/tICmaAdLBWgIR0CkGQELYwqRdX2UKGgGR7/OYv38GcFyaAdLA2gIR0CkGHBY/3WXdX2UKGgGR7/XTo+wC8vmaAdLBGgIR0CkGVWdupCKdX2UKGgGR7/G7SRbKRuCaAdLA2gIR0CkGL2MS9M9dX2UKGgGR7/GvV3EAHVxaAdLA2gIR0CkGQ34j8k2dX2UKGgGR7/Rc6eXiR4haAdLA2gIR0CkGHz3RG+cdX2UKGgGR7/LujRD1GsnaAdLA2gIR0CkGWSQgcLjdX2UKGgGR7/OihWYF7laaAdLA2gIR0CkGMxjBl+WdX2UKGgGR7+zP5YYBNmEaAdLAmgIR0CkGWyJTER8dX2UKGgGR7/ZQZn+Q2deaAdLBGgIR0CkGSEoWpIddX2UKGgGR7/VUz9CNS62aAdLA2gIR0CkGIwGGEf1dX2UKGgGR7/WdvbXYlIFaAdLBGgIR0CkGNygwoLHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.154+-x86_64-with-glibc2.35 # 1 SMP Thu Jun 27 20:43:36 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.1.0", "PyTorch": "2.4.0", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.19556741286069154, "std_reward": 0.10967895958278946, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-25T10:35:13.386601"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f645737db900bf326933df84308e6ca70bd514bd020cb2011e7dad175e8f7d68
3
+ size 2636