--- language: - es license: apache-2.0 datasets: - eriktks/conll2002 metrics: - precision - recall - f1 - accuracy pipeline_tag: token-classification --- # Model Name: NER-finetuned-BETO This is a BERT model fine-tuned for Named Entity Recognition (NER). # Model Description This is a fine-tuned BERT model for Named Entity Recognition (NER) task using CONLL2002 dataset. In the first part, the dataset must be pre-processed in order to give it to the model. This is done using the šŸ¤— Transformers and BERT tokenizers. Once this is done, finetuning is applied from *[bert-base-cased](https://huggingface.co/google-bert/bert-base-cased)* and using the šŸ¤— *AutoModelForTokenClassification*. Finally, the model is trained obtaining the neccesary metrics for evaluating its performance (Precision, Recall, F1 and Accuracy) Summary of executed tests can be found in: https://docs.google.com/spreadsheets/d/1lI7skNIvRurwq3LA5ps7JFK5TxToEx4s7Kaah3ezyQc/edit?usp=sharing Model can be found in: https://huggingface.co/paulrojasg/bert-finetuned-ner-1 Github repository: https://github.com/paulrojasg/nlp_4th_workshop # Training ## Training Details - Epochs: 5 - Learning Rate: 2e-05 - Weight Decay: 0.01 - Batch Size (Train): 16 - Batch Size (Eval): 8 ## Training Metrics | Epoch | Training Loss | Validation Loss | Precision | Recall | F1 Score | Accuracy | |:----:|:-------------:|:---------------:|:---------:|:------:|:--------:|:--------:| | 1 | 0.0507| 0.1354 | 0.8310 | 0.8518 | 0.8413 | 0.9700 | | 2 | 0.0292| 0.1598 | 0.8331 | 0.8433 | 0.8382 | 0.9684 | | 3 | 0.0172| 0.1565 | 0.8392 | 0.8550 | 0.8470 | 0.9705 | | 4 | 0.0136| 0.1812 | 0.8456 | 0.8534 | 0.8495 | 0.9698 | | 5 | 0.0088| 0.1861 | 0.8395 | 0.8543 | 0.8468 | 0.9699 | # Authors Made by: - Paul Rodrigo Rojas Guerrero - Jose Luis Hincapie Bucheli - SebastiĆ”n Idrobo Avirama With help from: - [RaĆŗl Ernesto GutiĆ©rrez](https://huggingface.co/raulgdp)