dummy-model / config.json
SebastianS's picture
Upload config.json
c2ec4bf
raw
history blame
No virus
43.7 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Processing data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch.utils.data import DataLoader\n",
"from transformers import get_scheduler, TrainingArguments, Trainer, DataCollatorWithPadding, AdamW, AutoTokenizer, AutoModelForSequenceClassification\n",
"from datasets import load_dataset\n",
"import gc\n",
"import numpy as np\n",
"from datasets import load_metric\n",
"import random\n",
"import os\n",
"from tqdm.auto import tqdm"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"os.environ['CUDA_LAUNCH_BLOCKING'] = '1'"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# reset GPU memory\n",
"gc.collect()\n",
"torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'AutoTokenizer' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-3-f5793421e6ee>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mcheckpoint\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"bert-base-uncased\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mtokenizer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mNameError\u001b[0m: name 'AutoTokenizer' is not defined"
]
}
],
"source": [
"checkpoint = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"checkpoint = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"sequences = [\n",
" \"I've been waiting for a HuggingFace course my whole life.\",\n",
" \"This course is amazing!\",\n",
"]\n",
"batch = tokenizer(sequences, padding=True, truncation=True, return_tensors=\"pt\")\n",
"batch[\"labels\"] = torch.tensor([1, 1])\n",
"optimizer = AdamW(model.parameters())\n",
"loss = model(**batch).loss\n",
"loss.backward()\n",
"optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
]
}
],
"source": [
"raw_datasets = load_dataset(\"glue\",\"mrpc\")\n",
"raw_train_dataset = raw_datasets['train']\n",
"# print(raw_train_dataset.features)\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"# # WHY CANT WE PASS THE DIFFERENT SENTENCES TOGETHER\n",
"# tokenized_sentences_1 = tokenizer(raw_train_dataset[15]['sentence1'])\n",
"# tokenized_sentences_2 = tokenizer(raw_train_dataset[15]['sentence2'])\n",
"# print(tokenizer.decode(tokenized_sentences_1.input_ids), tokenizer.decode(tokenized_sentences_2.input_ids))\n",
"# inputs = tokenizer(raw_train_dataset[15]['sentence1'], raw_train_dataset[15]['sentence2'])\n",
"# print(tokenizer.decode(inputs.input_ids))\n",
"inputs = tokenizer(raw_train_dataset['sentence1'], raw_train_dataset['sentence2'], padding=True, truncation=True)\n",
"\n",
"# tokenized_datasets = raw_datasets.map(tokenize_function, batched=False)\n",
"# print(tokenized_datasets['train'].features)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['input_ids', 'token_type_ids', 'attention_mask']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(inputs.keys())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:01<00:00, 3.69ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 16.42ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 6.22ba/s]\n"
]
}
],
"source": [
"def tokenize_function(example):\n",
" tokenized = tokenizer(example['sentence1'], example['sentence2'], truncation=True)\n",
"# tokenized['input_ids'] = ['CHANGED!' for item in tokenized['input_ids']]\n",
" return tokenized\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[50, 59, 47, 67, 59, 50, 62, 32]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"samples = tokenized_datasets[\"train\"][:8]\n",
"samples = {k: v for k, v in samples.items() if k not in [\"idx\", \"sentence1\", \"sentence2\"]}\n",
"[len(x) for x in samples[\"input_ids\"]]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'attention_mask': torch.Size([8, 67]),\n",
" 'input_ids': torch.Size([8, 67]),\n",
" 'token_type_ids': torch.Size([8, 67]),\n",
" 'labels': torch.Size([8])}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch = data_collator(samples)\n",
"{k: v.shape for k, v in batch.items()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Challenge 1"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from torch.utils.data import DataLoader"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"samples = tokenized_datasets['test'][:8]\n",
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence1\", \"sentence2\"]}"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"padded_samples = data_collator(samples)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"\n",
"train_dataloader = DataLoader(tokenized_datasets['test'], batch_size=16, shuffle=True, collate_fn=data_collator)\n",
"for batch in train_dataloader:\n",
" print(batch['input_ids'].shape())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Challenge 2"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
]
}
],
"source": [
"raw_dataset_sst2 = load_dataset(\"glue\",\"sst2\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 68/68 [00:03<00:00, 18.46ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 16.67ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 16.67ba/s]\n"
]
}
],
"source": [
"dataset_to_tokenize = raw_dataset_sst2\n",
"def tokenize_dynamic(example):\n",
" dynamic_sentence_list = [x for x in list(example.keys()) if x not in ['label', 'idx']]\n",
" if len(dynamic_sentence_list) == 1:\n",
" return tokenizer(example[dynamic_sentence_list[0]], truncation=True)\n",
" else:\n",
" return tokenizer(example[dynamic_sentence_list[0]], example[dynamic_sentence_list[1]], truncation=True)\n",
"tokenized_datasets = dataset_to_tokenize.map(tokenize_dynamic, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"samples = tokenized_datasets['train'][:8]\n",
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence\", \"sentence1\", \"sentence2\"]}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"padded_data = data_collator(samples)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine-tuning a model with Trainer API"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 5.85ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 14.49ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 6.37ba/s]\n"
]
}
],
"source": [
"# set up so far\n",
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
"checkpoint = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"def tokenize_function(example):\n",
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
"\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from transformers import TrainingArguments\n",
"from transformers import AutoModelForSequenceClassification"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"training_args = TrainingArguments(\"test-trainer\")\n",
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 4.14ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 9.71ba/s]\n"
]
}
],
"source": [
"train_dataset = tokenized_datasets[\"train\"].filter(percentageOfItems)\n",
"validation_dataset = tokenized_datasets[\"validation\"].filter(percentageOfItems)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"trainer = Trainer(\n",
" model,\n",
" training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=validation_dataset,\n",
" data_collator=data_collator,\n",
" tokenizer=tokenizer,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/132 [01:31<?, ?it/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 132/132 [00:44<00:00, 2.97it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=132, training_loss=0.4154145789868904, metrics={'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0})"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4/5 [00:00<00:00, 9.37it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(37, 2) (37,)\n"
]
}
],
"source": [
"predictions = trainer.predict(validation_dataset)\n",
"print(predictions.predictions.shape, predictions.label_ids.shape)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from datasets import load_metric"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"preds = np.argmax(predictions.predictions, axis=-1)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'accuracy': 0.8378378378378378, 'f1': 0.8928571428571429}"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"metric = load_metric(\"glue\", \"mrpc\")\n",
"metric.compute(predictions=preds, references=predictions.label_ids)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"def compute_metrics(eval_preds):\n",
" metric = load_metric(\"glue\", \"mrpc\")\n",
" logits, labels = eval_preds\n",
" predictions = np.argmax(logits, axis=-1)\n",
" return metric.compute(predictions=predictions, references=labels)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"training_args = TrainingArguments(\"test-trainer\", evaluation_strategy=\"epoch\")\n",
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
"\n",
"trainer = Trainer(\n",
" model,\n",
" training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=validation_dataset,\n",
" data_collator=data_collator,\n",
" tokenizer=tokenizer,\n",
" compute_metrics=compute_metrics\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 1%| | 1/132 [00:19<43:22, 19.87s/it]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 17.23it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.5742557048797607, 'eval_accuracy': 0.7027027027027027, 'eval_f1': 0.8070175438596492, 'eval_runtime': 0.9927, 'eval_samples_per_second': 37.273, 'epoch': 1.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 17.03it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.4739842414855957, 'eval_accuracy': 0.7837837837837838, 'eval_f1': 0.8620689655172413, 'eval_runtime': 0.9255, 'eval_samples_per_second': 39.977, 'epoch': 2.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 16.95it/s]\n",
" \n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 132/132 [00:46<00:00, 2.81it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.5759992599487305, 'eval_accuracy': 0.7567567567567568, 'eval_f1': 0.8474576271186441, 'eval_runtime': 0.8269, 'eval_samples_per_second': 44.745, 'epoch': 3.0}\n",
"{'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=132, training_loss=0.39838010614568536, metrics={'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0})"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Challenge 3"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 7.19ba/s]\n"
]
}
],
"source": [
"# FILTER BREAKS THE LABELS ON THIS DATASET\n",
"a = tokenized_datasets['test'].filter(lambda example, index: index % 2 == 0, with_indices=True)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"# use \"tokenized_datasets\" from challenge 2\n",
"checkpoint = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
"training_args = TrainingArguments('test-trainer', evaluation_strategy='epoch')\n",
"train_shard = tokenized_datasets['train'].shard(num_shards=150, index=0)\n",
"validation_shard = tokenized_datasets['validation'].shard(num_shards=4, index=0)\n",
"metric_sst2 = load_metric('glue', 'sst2')\n",
"\n",
"# def compute_metrics(eval_preds):\n",
"# metric = load_metric(\"glue\", \"mrpc\")\n",
"# logits, labels = eval_preds\n",
"# predictions = np.argmax(logits, axis=-1)\n",
"# return metric.compute(predictions=predictions, references=labels)\n",
"def compute_metrics (eval_preds):\n",
" metric_sst2 = load_metric('glue', 'sst2')\n",
" logits, labels = eval_preds\n",
" predictions = np.argmax(logits, axis=-1)\n",
" return metric_sst2.compute(predictions=predictions, references=labels)\n",
"\n",
"trainer = Trainer(\n",
" model,\n",
" training_args,\n",
" train_dataset=train_shard,\n",
" eval_dataset=validation_shard,\n",
" data_collator=data_collator,\n",
" tokenizer=tokenizer,\n",
" compute_metrics=compute_metrics\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
" 33%|β–ˆβ–ˆβ–ˆβ–Ž | 57/171 [00:35<00:58, 1.94it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.38222888112068176, 'eval_accuracy': 0.8302752293577982, 'eval_runtime': 3.3093, 'eval_samples_per_second': 65.875, 'epoch': 1.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
" 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 114/171 [01:09<00:29, 1.93it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.7558169364929199, 'eval_accuracy': 0.8165137614678899, 'eval_runtime': 3.5593, 'eval_samples_per_second': 61.248, 'epoch': 2.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 171/171 [01:42<00:00, 1.66it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'eval_loss': 0.5612818598747253, 'eval_accuracy': 0.8669724770642202, 'eval_runtime': 3.3543, 'eval_samples_per_second': 64.991, 'epoch': 3.0}\n",
"{'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=171, training_loss=0.276075485854121, metrics={'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0})"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# A Full Training"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 7.09ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 16.39ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 9.01ba/s]\n"
]
}
],
"source": [
"# setup\n",
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
"\n",
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
"checkpoint = \"bert-base-uncased\"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"def tokenize_function(example):\n",
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['attention_mask', 'input_ids', 'labels', 'token_type_ids']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
"tokenized_datasets.set_format('torch')\n",
"tokenized_datasets['train'].column_names"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from torch.utils.data import DataLoader\n",
"train_dataloader = DataLoader(\n",
" tokenized_datasets['train'].shard(num_shards=15, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
")\n",
"eval_dataloader = DataLoader(\n",
" tokenized_datasets['validation'].shard(num_shards=5, index=0), batch_size=8, collate_fn=data_collator\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'attention_mask': torch.Size([8, 64]),\n",
" 'input_ids': torch.Size([8, 64]),\n",
" 'labels': torch.Size([8]),\n",
" 'token_type_ids': torch.Size([8, 64])}"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"for batch in train_dataloader:\n",
" break\n",
"{k: v.shape for k, v in batch.items()}"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"from transformers import AutoModelForSequenceClassification\n",
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(0.5705, grad_fn=<NllLossBackward>) torch.Size([8, 2])\n"
]
}
],
"source": [
"outputs = model(**batch)\n",
"print(outputs.loss, outputs.logits.shape)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AdamW\n",
"optimizer = AdamW(model.parameters(), lr=5e-5)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"93\n"
]
}
],
"source": [
"from transformers import get_scheduler\n",
"num_epochs = 3\n",
"num_training_steps = num_epochs * len(train_dataloader)\n",
"lr_scheduler = get_scheduler(\n",
" 'linear',\n",
" optimizer,\n",
" num_warmup_steps=0,\n",
" num_training_steps=num_training_steps,\n",
")\n",
"print(num_training_steps)\n"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cuda')"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
"model.to(device)\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [08:50<00:00, 5.70s/it]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [00:28<00:00, 3.21it/s]"
]
}
],
"source": [
"from tqdm.auto import tqdm\n",
"progress_bar = tqdm(range(num_training_steps))\n",
"model.train()\n",
"for epoch in range(num_epochs):\n",
" for batch in train_dataloader:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" outputs = model(**batch)\n",
" loss = outputs.loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" optimizer.zero_grad()\n",
" progress_bar.update(1)\n",
" \n",
" # metric = load_metric('glue', 'mrpc')\n",
" # model.eval()\n",
" # for batch in eval_dataloader:\n",
" # batch = {k: v.to(device) for k, v in batch.items()}\n",
" # with torch.no_grad():\n",
" # outputs = model(**batch)\n",
" # logits = outputs.logits\n",
" # predictions = torch.argmax(logits, dim=-1)\n",
" # metric.add_batch(predictions=predictions, references=batch['labels'])\n",
" # print(metric.compute())"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'accuracy': 0.6463414634146342, 'f1': 0.7851851851851851}"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datasets import load_metric\n",
"metric = load_metric('glue', 'mrpc')\n",
"model.eval()\n",
"for batch in eval_dataloader:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" with torch.no_grad():\n",
" outputs = model(**batch)\n",
" logits = outputs.logits\n",
" predictions = torch.argmax(logits, dim=-1)\n",
" metric.add_batch(predictions=predictions, references=batch['labels'])\n",
"metric.compute()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Challenge 1"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 68/68 [00:03<00:00, 20.33ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 17.24ba/s]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 16.53ba/s]\n"
]
}
],
"source": [
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
"\n",
"sst2_datasets = load_dataset(\"glue\", \"sst2\")\n",
"def tokenize_function (example):\n",
" return tokenizer(example['sentence'], truncation=True)\n",
"tokenized_datasets = sst2_datasets.map(tokenize_function, batched=True)\n",
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence\"])\n",
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
"tokenized_datasets.set_format('torch')\n",
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
"train_dataset = DataLoader(\n",
" tokenized_datasets['train'].shard(num_shards=180, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
")\n",
"eval_dataset = DataLoader(\n",
" tokenized_datasets['validation'].shard(num_shards=4, index=0), batch_size=8, collate_fn=data_collator\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 141/141 [18:15<00:00, 7.77s/it]\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 141/141 [01:12<00:00, 2.21it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'accuracy': 0.7568807339449541}, {'accuracy': 0.8256880733944955}, {'accuracy': 0.8623853211009175}]\n"
]
}
],
"source": [
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
"model.to(device)\n",
"optimizer= AdamW(model.parameters(), 5e-5)\n",
"\n",
"num_epochs = 3\n",
"num_training_steps = num_epochs * len(train_dataset)\n",
"lr_scheduler = get_scheduler(\n",
" 'linear',\n",
" optimizer=optimizer,\n",
" num_warmup_steps=0,\n",
" num_training_steps=num_training_steps,\n",
")\n",
"\n",
"metrics = []\n",
"\n",
"progress_bar = tqdm(range(num_training_steps))\n",
"model.train()\n",
"for epoch in range(num_epochs):\n",
" for batch in train_dataset:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" outputs = model(**batch)\n",
" loss = outputs.loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" lr_scheduler.step()\n",
" optimizer.zero_grad()\n",
" progress_bar.update(1)\n",
"\n",
" metric= load_metric(\"glue\", \"sst2\")\n",
" model.eval()\n",
" for batch in eval_dataset:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" with torch.no_grad():\n",
" outputs = model(**batch)\n",
" logits = outputs.logits\n",
" predictions = torch.argmax(logits, dim=-1)\n",
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
" metrics.append(metric.compute())\n",
"\n",
"print(metrics)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## (end)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from accelerate import Accelerator\n",
"accelerator = Accelerator()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 93/93 [01:11<00:00, 1.85it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'accuracy': 0.6707317073170732}, {'accuracy': 0.7073170731707317}, {'accuracy': 0.7560975609756098}]\n"
]
}
],
"source": [
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
"optimizer= AdamW(model.parameters(), 5e-5)\n",
"train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(\n",
" train_dataloader, eval_dataloader, model, optimizer\n",
")\n",
"\n",
"num_epochs = 3\n",
"num_training_steps = num_epochs * len(train_dataloader)\n",
"lr_scheduler = get_scheduler(\n",
" 'linear',\n",
" optimizer=optimizer,\n",
" num_warmup_steps=0,\n",
" num_training_steps=num_training_steps,\n",
")\n",
"\n",
"metrics = []\n",
"\n",
"progress_bar = tqdm(range(num_training_steps))\n",
"model.train()\n",
"for epoch in range(num_epochs):\n",
" for batch in train_dataloader:\n",
" outputs = model(**batch)\n",
" loss = outputs.loss\n",
" accelerator.backward(loss)\n",
" optimizer.step()\n",
" lr_scheduler.step()\n",
" optimizer.zero_grad()\n",
" progress_bar.update(1)\n",
"\n",
" metric= load_metric(\"glue\", \"sst2\")\n",
" model.eval()\n",
" for batch in eval_dataloader:\n",
" with torch.no_grad():\n",
" outputs = model(**batch)\n",
" logits = outputs.logits\n",
" predictions = torch.argmax(logits, dim=-1)\n",
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
" metrics.append(metric.compute())\n",
"\n",
"print(metrics)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "c23364dc34acf6d559b2ccbb804894040b11f1b7cd300b891de29d32dea3c2c2"
},
"kernelspec": {
"display_name": "Python 3.8.10 64-bit ('AI': conda)",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}