SebastianS
commited on
Commit
•
b83af22
1
Parent(s):
bc13ef6
first model version
Browse files- .ipynb_checkpoints/part4-checkpoint.ipynb +43 -1
- config.json +25 -1333
- hello.txt +1 -0
- part4.ipynb +46 -89
- pytorch_model.bin +3 -0
.ipynb_checkpoints/part4-checkpoint.ipynb
CHANGED
@@ -309,10 +309,52 @@
|
|
309 |
},
|
310 |
{
|
311 |
"cell_type": "code",
|
312 |
-
"execution_count":
|
313 |
"id": "06ef92c9",
|
314 |
"metadata": {},
|
315 |
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
"source": []
|
317 |
}
|
318 |
],
|
|
|
309 |
},
|
310 |
{
|
311 |
"cell_type": "code",
|
312 |
+
"execution_count": 3,
|
313 |
"id": "06ef92c9",
|
314 |
"metadata": {},
|
315 |
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"repo.git_pull()"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": 4,
|
323 |
+
"id": "3442a913",
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [
|
326 |
+
{
|
327 |
+
"name": "stderr",
|
328 |
+
"output_type": "stream",
|
329 |
+
"text": [
|
330 |
+
"To https://huggingface.co/SebastianS/dummy-model\n",
|
331 |
+
" 91d9c6c..bc13ef6 main -> main\n",
|
332 |
+
"\n"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"data": {
|
337 |
+
"text/plain": [
|
338 |
+
"'https://huggingface.co/SebastianS/dummy-model/commit/bc13ef64436e852b999af0315b661eebf6fd6a42'"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
"execution_count": 4,
|
342 |
+
"metadata": {},
|
343 |
+
"output_type": "execute_result"
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"source": [
|
347 |
+
"repo.git_add()\n",
|
348 |
+
"repo.git_commit(\"added this file\")\n",
|
349 |
+
"repo.git_push()"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"id": "f036dfdd",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
"source": []
|
359 |
}
|
360 |
],
|
config.json
CHANGED
@@ -1,1335 +1,27 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": 5,
|
31 |
-
"metadata": {},
|
32 |
-
"outputs": [],
|
33 |
-
"source": [
|
34 |
-
"os.environ['CUDA_LAUNCH_BLOCKING'] = '1'"
|
35 |
-
]
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"cell_type": "code",
|
39 |
-
"execution_count": 6,
|
40 |
-
"metadata": {},
|
41 |
-
"outputs": [],
|
42 |
-
"source": [
|
43 |
-
"# reset GPU memory\n",
|
44 |
-
"gc.collect()\n",
|
45 |
-
"torch.cuda.empty_cache()"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "code",
|
50 |
-
"execution_count": 3,
|
51 |
-
"metadata": {},
|
52 |
-
"outputs": [
|
53 |
-
{
|
54 |
-
"ename": "NameError",
|
55 |
-
"evalue": "name 'AutoTokenizer' is not defined",
|
56 |
-
"output_type": "error",
|
57 |
-
"traceback": [
|
58 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
59 |
-
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
60 |
-
"\u001b[1;32m<ipython-input-3-f5793421e6ee>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mcheckpoint\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"bert-base-uncased\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mtokenizer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
61 |
-
"\u001b[1;31mNameError\u001b[0m: name 'AutoTokenizer' is not defined"
|
62 |
-
]
|
63 |
-
}
|
64 |
-
],
|
65 |
-
"source": [
|
66 |
-
"checkpoint = \"bert-base-uncased\"\n",
|
67 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
|
68 |
-
]
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"cell_type": "code",
|
72 |
-
"execution_count": 5,
|
73 |
-
"metadata": {},
|
74 |
-
"outputs": [
|
75 |
-
{
|
76 |
-
"name": "stderr",
|
77 |
-
"output_type": "stream",
|
78 |
-
"text": [
|
79 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight']\n",
|
80 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
81 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
82 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
83 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
84 |
-
]
|
85 |
-
}
|
86 |
-
],
|
87 |
-
"source": [
|
88 |
-
"checkpoint = \"bert-base-uncased\"\n",
|
89 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
90 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint)"
|
91 |
-
]
|
92 |
-
},
|
93 |
-
{
|
94 |
-
"cell_type": "code",
|
95 |
-
"execution_count": 3,
|
96 |
-
"metadata": {},
|
97 |
-
"outputs": [],
|
98 |
-
"source": [
|
99 |
-
"sequences = [\n",
|
100 |
-
" \"I've been waiting for a HuggingFace course my whole life.\",\n",
|
101 |
-
" \"This course is amazing!\",\n",
|
102 |
-
"]\n",
|
103 |
-
"batch = tokenizer(sequences, padding=True, truncation=True, return_tensors=\"pt\")\n",
|
104 |
-
"batch[\"labels\"] = torch.tensor([1, 1])\n",
|
105 |
-
"optimizer = AdamW(model.parameters())\n",
|
106 |
-
"loss = model(**batch).loss\n",
|
107 |
-
"loss.backward()\n",
|
108 |
-
"optimizer.step()"
|
109 |
-
]
|
110 |
-
},
|
111 |
-
{
|
112 |
-
"cell_type": "code",
|
113 |
-
"execution_count": 4,
|
114 |
-
"metadata": {},
|
115 |
-
"outputs": [
|
116 |
-
{
|
117 |
-
"name": "stderr",
|
118 |
-
"output_type": "stream",
|
119 |
-
"text": [
|
120 |
-
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
|
121 |
-
]
|
122 |
-
}
|
123 |
-
],
|
124 |
-
"source": [
|
125 |
-
"raw_datasets = load_dataset(\"glue\",\"mrpc\")\n",
|
126 |
-
"raw_train_dataset = raw_datasets['train']\n",
|
127 |
-
"# print(raw_train_dataset.features)\n",
|
128 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
129 |
-
"# # WHY CANT WE PASS THE DIFFERENT SENTENCES TOGETHER\n",
|
130 |
-
"# tokenized_sentences_1 = tokenizer(raw_train_dataset[15]['sentence1'])\n",
|
131 |
-
"# tokenized_sentences_2 = tokenizer(raw_train_dataset[15]['sentence2'])\n",
|
132 |
-
"# print(tokenizer.decode(tokenized_sentences_1.input_ids), tokenizer.decode(tokenized_sentences_2.input_ids))\n",
|
133 |
-
"# inputs = tokenizer(raw_train_dataset[15]['sentence1'], raw_train_dataset[15]['sentence2'])\n",
|
134 |
-
"# print(tokenizer.decode(inputs.input_ids))\n",
|
135 |
-
"inputs = tokenizer(raw_train_dataset['sentence1'], raw_train_dataset['sentence2'], padding=True, truncation=True)\n",
|
136 |
-
"\n",
|
137 |
-
"# tokenized_datasets = raw_datasets.map(tokenize_function, batched=False)\n",
|
138 |
-
"# print(tokenized_datasets['train'].features)"
|
139 |
-
]
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"cell_type": "code",
|
143 |
-
"execution_count": 5,
|
144 |
-
"metadata": {},
|
145 |
-
"outputs": [
|
146 |
-
{
|
147 |
-
"data": {
|
148 |
-
"text/plain": [
|
149 |
-
"['input_ids', 'token_type_ids', 'attention_mask']"
|
150 |
-
]
|
151 |
-
},
|
152 |
-
"execution_count": 5,
|
153 |
-
"metadata": {},
|
154 |
-
"output_type": "execute_result"
|
155 |
-
}
|
156 |
-
],
|
157 |
-
"source": [
|
158 |
-
"list(inputs.keys())"
|
159 |
-
]
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"cell_type": "code",
|
163 |
-
"execution_count": 6,
|
164 |
-
"metadata": {},
|
165 |
-
"outputs": [
|
166 |
-
{
|
167 |
-
"name": "stderr",
|
168 |
-
"output_type": "stream",
|
169 |
-
"text": [
|
170 |
-
"100%|██████████| 4/4 [00:01<00:00, 3.69ba/s]\n",
|
171 |
-
"100%|██████████| 1/1 [00:00<00:00, 16.42ba/s]\n",
|
172 |
-
"100%|██████████| 2/2 [00:00<00:00, 6.22ba/s]\n"
|
173 |
-
]
|
174 |
-
}
|
175 |
-
],
|
176 |
-
"source": [
|
177 |
-
"def tokenize_function(example):\n",
|
178 |
-
" tokenized = tokenizer(example['sentence1'], example['sentence2'], truncation=True)\n",
|
179 |
-
"# tokenized['input_ids'] = ['CHANGED!' for item in tokenized['input_ids']]\n",
|
180 |
-
" return tokenized\n",
|
181 |
-
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)"
|
182 |
-
]
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"cell_type": "code",
|
186 |
-
"execution_count": 9,
|
187 |
-
"metadata": {},
|
188 |
-
"outputs": [],
|
189 |
-
"source": [
|
190 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
191 |
-
]
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"cell_type": "code",
|
195 |
-
"execution_count": 10,
|
196 |
-
"metadata": {},
|
197 |
-
"outputs": [
|
198 |
-
{
|
199 |
-
"data": {
|
200 |
-
"text/plain": [
|
201 |
-
"[50, 59, 47, 67, 59, 50, 62, 32]"
|
202 |
-
]
|
203 |
-
},
|
204 |
-
"execution_count": 10,
|
205 |
-
"metadata": {},
|
206 |
-
"output_type": "execute_result"
|
207 |
-
}
|
208 |
-
],
|
209 |
-
"source": [
|
210 |
-
"samples = tokenized_datasets[\"train\"][:8]\n",
|
211 |
-
"samples = {k: v for k, v in samples.items() if k not in [\"idx\", \"sentence1\", \"sentence2\"]}\n",
|
212 |
-
"[len(x) for x in samples[\"input_ids\"]]"
|
213 |
-
]
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"cell_type": "code",
|
217 |
-
"execution_count": 37,
|
218 |
-
"metadata": {
|
219 |
-
"scrolled": true
|
220 |
-
},
|
221 |
-
"outputs": [
|
222 |
-
{
|
223 |
-
"data": {
|
224 |
-
"text/plain": [
|
225 |
-
"{'attention_mask': torch.Size([8, 67]),\n",
|
226 |
-
" 'input_ids': torch.Size([8, 67]),\n",
|
227 |
-
" 'token_type_ids': torch.Size([8, 67]),\n",
|
228 |
-
" 'labels': torch.Size([8])}"
|
229 |
-
]
|
230 |
-
},
|
231 |
-
"execution_count": 37,
|
232 |
-
"metadata": {},
|
233 |
-
"output_type": "execute_result"
|
234 |
-
}
|
235 |
-
],
|
236 |
-
"source": [
|
237 |
-
"batch = data_collator(samples)\n",
|
238 |
-
"{k: v.shape for k, v in batch.items()}"
|
239 |
-
]
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"cell_type": "markdown",
|
243 |
-
"metadata": {},
|
244 |
-
"source": [
|
245 |
-
"## Challenge 1"
|
246 |
-
]
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"cell_type": "code",
|
250 |
-
"execution_count": 15,
|
251 |
-
"metadata": {},
|
252 |
-
"outputs": [],
|
253 |
-
"source": [
|
254 |
-
"from torch.utils.data import DataLoader"
|
255 |
-
]
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"cell_type": "code",
|
259 |
-
"execution_count": 12,
|
260 |
-
"metadata": {},
|
261 |
-
"outputs": [],
|
262 |
-
"source": [
|
263 |
-
"samples = tokenized_datasets['test'][:8]\n",
|
264 |
-
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence1\", \"sentence2\"]}"
|
265 |
-
]
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"cell_type": "code",
|
269 |
-
"execution_count": 13,
|
270 |
-
"metadata": {},
|
271 |
-
"outputs": [],
|
272 |
-
"source": [
|
273 |
-
"padded_samples = data_collator(samples)"
|
274 |
-
]
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"cell_type": "code",
|
278 |
-
"execution_count": 21,
|
279 |
-
"metadata": {},
|
280 |
-
"outputs": [],
|
281 |
-
"source": [
|
282 |
-
"\n",
|
283 |
-
"train_dataloader = DataLoader(tokenized_datasets['test'], batch_size=16, shuffle=True, collate_fn=data_collator)\n",
|
284 |
-
"for batch in train_dataloader:\n",
|
285 |
-
" print(batch['input_ids'].shape())"
|
286 |
-
]
|
287 |
-
},
|
288 |
-
{
|
289 |
-
"cell_type": "markdown",
|
290 |
-
"metadata": {},
|
291 |
-
"source": [
|
292 |
-
"## Challenge 2"
|
293 |
-
]
|
294 |
-
},
|
295 |
-
{
|
296 |
-
"cell_type": "code",
|
297 |
-
"execution_count": 5,
|
298 |
-
"metadata": {},
|
299 |
-
"outputs": [
|
300 |
-
{
|
301 |
-
"name": "stderr",
|
302 |
-
"output_type": "stream",
|
303 |
-
"text": [
|
304 |
-
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
|
305 |
-
]
|
306 |
-
}
|
307 |
-
],
|
308 |
-
"source": [
|
309 |
-
"raw_dataset_sst2 = load_dataset(\"glue\",\"sst2\")"
|
310 |
-
]
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"cell_type": "code",
|
314 |
-
"execution_count": 6,
|
315 |
-
"metadata": {},
|
316 |
-
"outputs": [
|
317 |
-
{
|
318 |
-
"name": "stderr",
|
319 |
-
"output_type": "stream",
|
320 |
-
"text": [
|
321 |
-
"100%|██████████| 68/68 [00:03<00:00, 18.46ba/s]\n",
|
322 |
-
"100%|██████████| 1/1 [00:00<00:00, 16.67ba/s]\n",
|
323 |
-
"100%|██████████| 2/2 [00:00<00:00, 16.67ba/s]\n"
|
324 |
-
]
|
325 |
-
}
|
326 |
-
],
|
327 |
-
"source": [
|
328 |
-
"dataset_to_tokenize = raw_dataset_sst2\n",
|
329 |
-
"def tokenize_dynamic(example):\n",
|
330 |
-
" dynamic_sentence_list = [x for x in list(example.keys()) if x not in ['label', 'idx']]\n",
|
331 |
-
" if len(dynamic_sentence_list) == 1:\n",
|
332 |
-
" return tokenizer(example[dynamic_sentence_list[0]], truncation=True)\n",
|
333 |
-
" else:\n",
|
334 |
-
" return tokenizer(example[dynamic_sentence_list[0]], example[dynamic_sentence_list[1]], truncation=True)\n",
|
335 |
-
"tokenized_datasets = dataset_to_tokenize.map(tokenize_dynamic, batched=True)"
|
336 |
-
]
|
337 |
-
},
|
338 |
-
{
|
339 |
-
"cell_type": "code",
|
340 |
-
"execution_count": 7,
|
341 |
-
"metadata": {},
|
342 |
-
"outputs": [],
|
343 |
-
"source": [
|
344 |
-
"samples = tokenized_datasets['train'][:8]\n",
|
345 |
-
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence\", \"sentence1\", \"sentence2\"]}"
|
346 |
-
]
|
347 |
-
},
|
348 |
-
{
|
349 |
-
"cell_type": "code",
|
350 |
-
"execution_count": 8,
|
351 |
-
"metadata": {},
|
352 |
-
"outputs": [],
|
353 |
-
"source": [
|
354 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
355 |
-
]
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"cell_type": "code",
|
359 |
-
"execution_count": 74,
|
360 |
-
"metadata": {},
|
361 |
-
"outputs": [],
|
362 |
-
"source": [
|
363 |
-
"padded_data = data_collator(samples)"
|
364 |
-
]
|
365 |
-
},
|
366 |
-
{
|
367 |
-
"cell_type": "markdown",
|
368 |
-
"metadata": {},
|
369 |
-
"source": [
|
370 |
-
"# Fine-tuning a model with Trainer API"
|
371 |
-
]
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"cell_type": "code",
|
375 |
-
"execution_count": 33,
|
376 |
-
"metadata": {},
|
377 |
-
"outputs": [
|
378 |
-
{
|
379 |
-
"name": "stderr",
|
380 |
-
"output_type": "stream",
|
381 |
-
"text": [
|
382 |
-
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
383 |
-
"100%|██████████| 4/4 [00:00<00:00, 5.85ba/s]\n",
|
384 |
-
"100%|██████████| 1/1 [00:00<00:00, 14.49ba/s]\n",
|
385 |
-
"100%|██████████| 2/2 [00:00<00:00, 6.37ba/s]\n"
|
386 |
-
]
|
387 |
-
}
|
388 |
-
],
|
389 |
-
"source": [
|
390 |
-
"# set up so far\n",
|
391 |
-
"from datasets import load_dataset\n",
|
392 |
-
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
|
393 |
-
"\n",
|
394 |
-
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
|
395 |
-
"checkpoint = \"bert-base-uncased\"\n",
|
396 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
397 |
-
"\n",
|
398 |
-
"def tokenize_function(example):\n",
|
399 |
-
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
|
400 |
-
"\n",
|
401 |
-
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
|
402 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
403 |
-
]
|
404 |
-
},
|
405 |
-
{
|
406 |
-
"cell_type": "code",
|
407 |
-
"execution_count": 9,
|
408 |
-
"metadata": {},
|
409 |
-
"outputs": [],
|
410 |
-
"source": [
|
411 |
-
"from transformers import TrainingArguments\n",
|
412 |
-
"from transformers import AutoModelForSequenceClassification"
|
413 |
-
]
|
414 |
-
},
|
415 |
-
{
|
416 |
-
"cell_type": "code",
|
417 |
-
"execution_count": 34,
|
418 |
-
"metadata": {},
|
419 |
-
"outputs": [],
|
420 |
-
"source": [
|
421 |
-
"training_args = TrainingArguments(\"test-trainer\")\n",
|
422 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
|
423 |
-
]
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"cell_type": "code",
|
427 |
-
"execution_count": 9,
|
428 |
-
"metadata": {},
|
429 |
-
"outputs": [],
|
430 |
-
"source": []
|
431 |
-
},
|
432 |
-
{
|
433 |
-
"cell_type": "code",
|
434 |
-
"execution_count": 37,
|
435 |
-
"metadata": {},
|
436 |
-
"outputs": [
|
437 |
-
{
|
438 |
-
"name": "stderr",
|
439 |
-
"output_type": "stream",
|
440 |
-
"text": [
|
441 |
-
"100%|██████████| 4/4 [00:00<00:00, 4.14ba/s]\n",
|
442 |
-
"100%|██████████| 1/1 [00:00<00:00, 9.71ba/s]\n"
|
443 |
-
]
|
444 |
-
}
|
445 |
-
],
|
446 |
-
"source": [
|
447 |
-
"train_dataset = tokenized_datasets[\"train\"].filter(percentageOfItems)\n",
|
448 |
-
"validation_dataset = tokenized_datasets[\"validation\"].filter(percentageOfItems)"
|
449 |
-
]
|
450 |
-
},
|
451 |
-
{
|
452 |
-
"cell_type": "code",
|
453 |
-
"execution_count": 42,
|
454 |
-
"metadata": {},
|
455 |
-
"outputs": [],
|
456 |
-
"source": [
|
457 |
-
"trainer = Trainer(\n",
|
458 |
-
" model,\n",
|
459 |
-
" training_args,\n",
|
460 |
-
" train_dataset=train_dataset,\n",
|
461 |
-
" eval_dataset=validation_dataset,\n",
|
462 |
-
" data_collator=data_collator,\n",
|
463 |
-
" tokenizer=tokenizer,\n",
|
464 |
-
")"
|
465 |
-
]
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"cell_type": "code",
|
469 |
-
"execution_count": null,
|
470 |
-
"metadata": {},
|
471 |
-
"outputs": [
|
472 |
-
{
|
473 |
-
"name": "stderr",
|
474 |
-
"output_type": "stream",
|
475 |
-
"text": [
|
476 |
-
" 0%| | 0/132 [01:31<?, ?it/s]\n",
|
477 |
-
"100%|██████████| 132/132 [00:44<00:00, 2.97it/s]"
|
478 |
-
]
|
479 |
-
},
|
480 |
-
{
|
481 |
-
"name": "stdout",
|
482 |
-
"output_type": "stream",
|
483 |
-
"text": [
|
484 |
-
"{'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0}\n"
|
485 |
-
]
|
486 |
-
},
|
487 |
-
{
|
488 |
-
"name": "stderr",
|
489 |
-
"output_type": "stream",
|
490 |
-
"text": [
|
491 |
-
"\n"
|
492 |
-
]
|
493 |
-
},
|
494 |
-
{
|
495 |
-
"data": {
|
496 |
-
"text/plain": [
|
497 |
-
"TrainOutput(global_step=132, training_loss=0.4154145789868904, metrics={'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0})"
|
498 |
-
]
|
499 |
-
},
|
500 |
-
"metadata": {},
|
501 |
-
"output_type": "display_data"
|
502 |
-
}
|
503 |
-
],
|
504 |
-
"source": [
|
505 |
-
"trainer.train()"
|
506 |
-
]
|
507 |
-
},
|
508 |
-
{
|
509 |
-
"cell_type": "code",
|
510 |
-
"execution_count": 48,
|
511 |
-
"metadata": {},
|
512 |
-
"outputs": [
|
513 |
-
{
|
514 |
-
"name": "stderr",
|
515 |
-
"output_type": "stream",
|
516 |
-
"text": [
|
517 |
-
" 80%|████████ | 4/5 [00:00<00:00, 9.37it/s]"
|
518 |
-
]
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"name": "stdout",
|
522 |
-
"output_type": "stream",
|
523 |
-
"text": [
|
524 |
-
"(37, 2) (37,)\n"
|
525 |
-
]
|
526 |
-
}
|
527 |
-
],
|
528 |
-
"source": [
|
529 |
-
"predictions = trainer.predict(validation_dataset)\n",
|
530 |
-
"print(predictions.predictions.shape, predictions.label_ids.shape)"
|
531 |
-
]
|
532 |
-
},
|
533 |
-
{
|
534 |
-
"cell_type": "code",
|
535 |
-
"execution_count": 10,
|
536 |
-
"metadata": {},
|
537 |
-
"outputs": [],
|
538 |
-
"source": [
|
539 |
-
"import numpy as np\n",
|
540 |
-
"from datasets import load_metric"
|
541 |
-
]
|
542 |
-
},
|
543 |
-
{
|
544 |
-
"cell_type": "code",
|
545 |
-
"execution_count": 49,
|
546 |
-
"metadata": {},
|
547 |
-
"outputs": [],
|
548 |
-
"source": [
|
549 |
-
"preds = np.argmax(predictions.predictions, axis=-1)"
|
550 |
-
]
|
551 |
-
},
|
552 |
-
{
|
553 |
-
"cell_type": "code",
|
554 |
-
"execution_count": 51,
|
555 |
-
"metadata": {},
|
556 |
-
"outputs": [
|
557 |
-
{
|
558 |
-
"data": {
|
559 |
-
"text/plain": [
|
560 |
-
"{'accuracy': 0.8378378378378378, 'f1': 0.8928571428571429}"
|
561 |
-
]
|
562 |
-
},
|
563 |
-
"execution_count": 51,
|
564 |
-
"metadata": {},
|
565 |
-
"output_type": "execute_result"
|
566 |
-
}
|
567 |
-
],
|
568 |
-
"source": [
|
569 |
-
"metric = load_metric(\"glue\", \"mrpc\")\n",
|
570 |
-
"metric.compute(predictions=preds, references=predictions.label_ids)"
|
571 |
-
]
|
572 |
-
},
|
573 |
-
{
|
574 |
-
"cell_type": "code",
|
575 |
-
"execution_count": 52,
|
576 |
-
"metadata": {},
|
577 |
-
"outputs": [],
|
578 |
-
"source": [
|
579 |
-
"def compute_metrics(eval_preds):\n",
|
580 |
-
" metric = load_metric(\"glue\", \"mrpc\")\n",
|
581 |
-
" logits, labels = eval_preds\n",
|
582 |
-
" predictions = np.argmax(logits, axis=-1)\n",
|
583 |
-
" return metric.compute(predictions=predictions, references=labels)"
|
584 |
-
]
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"cell_type": "code",
|
588 |
-
"execution_count": 62,
|
589 |
-
"metadata": {},
|
590 |
-
"outputs": [
|
591 |
-
{
|
592 |
-
"name": "stderr",
|
593 |
-
"output_type": "stream",
|
594 |
-
"text": [
|
595 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight']\n",
|
596 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
597 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
598 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
599 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
600 |
-
]
|
601 |
-
}
|
602 |
-
],
|
603 |
-
"source": [
|
604 |
-
"training_args = TrainingArguments(\"test-trainer\", evaluation_strategy=\"epoch\")\n",
|
605 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
606 |
-
"\n",
|
607 |
-
"trainer = Trainer(\n",
|
608 |
-
" model,\n",
|
609 |
-
" training_args,\n",
|
610 |
-
" train_dataset=train_dataset,\n",
|
611 |
-
" eval_dataset=validation_dataset,\n",
|
612 |
-
" data_collator=data_collator,\n",
|
613 |
-
" tokenizer=tokenizer,\n",
|
614 |
-
" compute_metrics=compute_metrics\n",
|
615 |
-
")"
|
616 |
-
]
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"cell_type": "code",
|
620 |
-
"execution_count": 66,
|
621 |
-
"metadata": {},
|
622 |
-
"outputs": [
|
623 |
-
{
|
624 |
-
"name": "stderr",
|
625 |
-
"output_type": "stream",
|
626 |
-
"text": [
|
627 |
-
" 1%| | 1/132 [00:19<43:22, 19.87s/it]\n",
|
628 |
-
"100%|██████████| 5/5 [00:00<00:00, 17.23it/s]\n"
|
629 |
-
]
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"name": "stdout",
|
633 |
-
"output_type": "stream",
|
634 |
-
"text": [
|
635 |
-
"{'eval_loss': 0.5742557048797607, 'eval_accuracy': 0.7027027027027027, 'eval_f1': 0.8070175438596492, 'eval_runtime': 0.9927, 'eval_samples_per_second': 37.273, 'epoch': 1.0}\n"
|
636 |
-
]
|
637 |
-
},
|
638 |
-
{
|
639 |
-
"name": "stderr",
|
640 |
-
"output_type": "stream",
|
641 |
-
"text": [
|
642 |
-
"100%|██████████| 5/5 [00:00<00:00, 17.03it/s]\n"
|
643 |
-
]
|
644 |
-
},
|
645 |
-
{
|
646 |
-
"name": "stdout",
|
647 |
-
"output_type": "stream",
|
648 |
-
"text": [
|
649 |
-
"{'eval_loss': 0.4739842414855957, 'eval_accuracy': 0.7837837837837838, 'eval_f1': 0.8620689655172413, 'eval_runtime': 0.9255, 'eval_samples_per_second': 39.977, 'epoch': 2.0}\n"
|
650 |
-
]
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"name": "stderr",
|
654 |
-
"output_type": "stream",
|
655 |
-
"text": [
|
656 |
-
"100%|██████████| 5/5 [00:00<00:00, 16.95it/s]\n",
|
657 |
-
" \n",
|
658 |
-
"100%|██████████| 132/132 [00:46<00:00, 2.81it/s]"
|
659 |
-
]
|
660 |
-
},
|
661 |
-
{
|
662 |
-
"name": "stdout",
|
663 |
-
"output_type": "stream",
|
664 |
-
"text": [
|
665 |
-
"{'eval_loss': 0.5759992599487305, 'eval_accuracy': 0.7567567567567568, 'eval_f1': 0.8474576271186441, 'eval_runtime': 0.8269, 'eval_samples_per_second': 44.745, 'epoch': 3.0}\n",
|
666 |
-
"{'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0}\n"
|
667 |
-
]
|
668 |
-
},
|
669 |
-
{
|
670 |
-
"name": "stderr",
|
671 |
-
"output_type": "stream",
|
672 |
-
"text": [
|
673 |
-
"\n"
|
674 |
-
]
|
675 |
-
},
|
676 |
-
{
|
677 |
-
"data": {
|
678 |
-
"text/plain": [
|
679 |
-
"TrainOutput(global_step=132, training_loss=0.39838010614568536, metrics={'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0})"
|
680 |
-
]
|
681 |
-
},
|
682 |
-
"execution_count": 66,
|
683 |
-
"metadata": {},
|
684 |
-
"output_type": "execute_result"
|
685 |
-
}
|
686 |
-
],
|
687 |
-
"source": [
|
688 |
-
"trainer.train()"
|
689 |
-
]
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"cell_type": "markdown",
|
693 |
-
"metadata": {},
|
694 |
-
"source": [
|
695 |
-
"## Challenge 3"
|
696 |
-
]
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"cell_type": "code",
|
700 |
-
"execution_count": 13,
|
701 |
-
"metadata": {},
|
702 |
-
"outputs": [
|
703 |
-
{
|
704 |
-
"name": "stderr",
|
705 |
-
"output_type": "stream",
|
706 |
-
"text": [
|
707 |
-
"100%|██████████| 2/2 [00:00<00:00, 7.19ba/s]\n"
|
708 |
-
]
|
709 |
-
}
|
710 |
-
],
|
711 |
-
"source": [
|
712 |
-
"# FILTER BREAKS THE LABELS ON THIS DATASET\n",
|
713 |
-
"a = tokenized_datasets['test'].filter(lambda example, index: index % 2 == 0, with_indices=True)"
|
714 |
-
]
|
715 |
-
},
|
716 |
-
{
|
717 |
-
"cell_type": "code",
|
718 |
-
"execution_count": 21,
|
719 |
-
"metadata": {},
|
720 |
-
"outputs": [
|
721 |
-
{
|
722 |
-
"name": "stderr",
|
723 |
-
"output_type": "stream",
|
724 |
-
"text": [
|
725 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight']\n",
|
726 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
727 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
728 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
729 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
730 |
-
]
|
731 |
-
}
|
732 |
-
],
|
733 |
-
"source": [
|
734 |
-
"# use \"tokenized_datasets\" from challenge 2\n",
|
735 |
-
"checkpoint = \"bert-base-uncased\"\n",
|
736 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
737 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
738 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
739 |
-
"training_args = TrainingArguments('test-trainer', evaluation_strategy='epoch')\n",
|
740 |
-
"train_shard = tokenized_datasets['train'].shard(num_shards=150, index=0)\n",
|
741 |
-
"validation_shard = tokenized_datasets['validation'].shard(num_shards=4, index=0)\n",
|
742 |
-
"metric_sst2 = load_metric('glue', 'sst2')\n",
|
743 |
-
"\n",
|
744 |
-
"# def compute_metrics(eval_preds):\n",
|
745 |
-
"# metric = load_metric(\"glue\", \"mrpc\")\n",
|
746 |
-
"# logits, labels = eval_preds\n",
|
747 |
-
"# predictions = np.argmax(logits, axis=-1)\n",
|
748 |
-
"# return metric.compute(predictions=predictions, references=labels)\n",
|
749 |
-
"def compute_metrics (eval_preds):\n",
|
750 |
-
" metric_sst2 = load_metric('glue', 'sst2')\n",
|
751 |
-
" logits, labels = eval_preds\n",
|
752 |
-
" predictions = np.argmax(logits, axis=-1)\n",
|
753 |
-
" return metric_sst2.compute(predictions=predictions, references=labels)\n",
|
754 |
-
"\n",
|
755 |
-
"trainer = Trainer(\n",
|
756 |
-
" model,\n",
|
757 |
-
" training_args,\n",
|
758 |
-
" train_dataset=train_shard,\n",
|
759 |
-
" eval_dataset=validation_shard,\n",
|
760 |
-
" data_collator=data_collator,\n",
|
761 |
-
" tokenizer=tokenizer,\n",
|
762 |
-
" compute_metrics=compute_metrics\n",
|
763 |
-
")"
|
764 |
-
]
|
765 |
-
},
|
766 |
-
{
|
767 |
-
"cell_type": "code",
|
768 |
-
"execution_count": 22,
|
769 |
-
"metadata": {},
|
770 |
-
"outputs": [
|
771 |
-
{
|
772 |
-
"name": "stderr",
|
773 |
-
"output_type": "stream",
|
774 |
-
"text": [
|
775 |
-
"\n",
|
776 |
-
" 33%|███▎ | 57/171 [00:35<00:58, 1.94it/s]"
|
777 |
-
]
|
778 |
-
},
|
779 |
-
{
|
780 |
-
"name": "stdout",
|
781 |
-
"output_type": "stream",
|
782 |
-
"text": [
|
783 |
-
"{'eval_loss': 0.38222888112068176, 'eval_accuracy': 0.8302752293577982, 'eval_runtime': 3.3093, 'eval_samples_per_second': 65.875, 'epoch': 1.0}\n"
|
784 |
-
]
|
785 |
-
},
|
786 |
-
{
|
787 |
-
"name": "stderr",
|
788 |
-
"output_type": "stream",
|
789 |
-
"text": [
|
790 |
-
"\n",
|
791 |
-
" 67%|██████▋ | 114/171 [01:09<00:29, 1.93it/s]"
|
792 |
-
]
|
793 |
-
},
|
794 |
-
{
|
795 |
-
"name": "stdout",
|
796 |
-
"output_type": "stream",
|
797 |
-
"text": [
|
798 |
-
"{'eval_loss': 0.7558169364929199, 'eval_accuracy': 0.8165137614678899, 'eval_runtime': 3.5593, 'eval_samples_per_second': 61.248, 'epoch': 2.0}\n"
|
799 |
-
]
|
800 |
-
},
|
801 |
-
{
|
802 |
-
"name": "stderr",
|
803 |
-
"output_type": "stream",
|
804 |
-
"text": [
|
805 |
-
"\n",
|
806 |
-
"100%|██████████| 171/171 [01:42<00:00, 1.66it/s]"
|
807 |
-
]
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"name": "stdout",
|
811 |
-
"output_type": "stream",
|
812 |
-
"text": [
|
813 |
-
"{'eval_loss': 0.5612818598747253, 'eval_accuracy': 0.8669724770642202, 'eval_runtime': 3.3543, 'eval_samples_per_second': 64.991, 'epoch': 3.0}\n",
|
814 |
-
"{'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0}\n"
|
815 |
-
]
|
816 |
-
},
|
817 |
-
{
|
818 |
-
"name": "stderr",
|
819 |
-
"output_type": "stream",
|
820 |
-
"text": [
|
821 |
-
"\n"
|
822 |
-
]
|
823 |
-
},
|
824 |
-
{
|
825 |
-
"data": {
|
826 |
-
"text/plain": [
|
827 |
-
"TrainOutput(global_step=171, training_loss=0.276075485854121, metrics={'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0})"
|
828 |
-
]
|
829 |
-
},
|
830 |
-
"execution_count": 22,
|
831 |
-
"metadata": {},
|
832 |
-
"output_type": "execute_result"
|
833 |
-
}
|
834 |
-
],
|
835 |
-
"source": [
|
836 |
-
"trainer.train()"
|
837 |
-
]
|
838 |
-
},
|
839 |
-
{
|
840 |
-
"cell_type": "markdown",
|
841 |
-
"metadata": {},
|
842 |
-
"source": [
|
843 |
-
"# A Full Training"
|
844 |
-
]
|
845 |
-
},
|
846 |
-
{
|
847 |
-
"cell_type": "code",
|
848 |
-
"execution_count": 5,
|
849 |
-
"metadata": {},
|
850 |
-
"outputs": [
|
851 |
-
{
|
852 |
-
"name": "stderr",
|
853 |
-
"output_type": "stream",
|
854 |
-
"text": [
|
855 |
-
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
856 |
-
"100%|██████████| 4/4 [00:00<00:00, 7.09ba/s]\n",
|
857 |
-
"100%|██████████| 1/1 [00:00<00:00, 16.39ba/s]\n",
|
858 |
-
"100%|██████████| 2/2 [00:00<00:00, 9.01ba/s]\n"
|
859 |
-
]
|
860 |
-
}
|
861 |
-
],
|
862 |
-
"source": [
|
863 |
-
"# setup\n",
|
864 |
-
"from datasets import load_dataset\n",
|
865 |
-
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
|
866 |
-
"\n",
|
867 |
-
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
|
868 |
-
"checkpoint = \"bert-base-uncased\"\n",
|
869 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
870 |
-
"def tokenize_function(example):\n",
|
871 |
-
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
|
872 |
-
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
|
873 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
874 |
-
]
|
875 |
-
},
|
876 |
-
{
|
877 |
-
"cell_type": "code",
|
878 |
-
"execution_count": 6,
|
879 |
-
"metadata": {},
|
880 |
-
"outputs": [
|
881 |
-
{
|
882 |
-
"data": {
|
883 |
-
"text/plain": [
|
884 |
-
"['attention_mask', 'input_ids', 'labels', 'token_type_ids']"
|
885 |
-
]
|
886 |
-
},
|
887 |
-
"execution_count": 6,
|
888 |
-
"metadata": {},
|
889 |
-
"output_type": "execute_result"
|
890 |
-
}
|
891 |
-
],
|
892 |
-
"source": [
|
893 |
-
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
|
894 |
-
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
|
895 |
-
"tokenized_datasets.set_format('torch')\n",
|
896 |
-
"tokenized_datasets['train'].column_names"
|
897 |
-
]
|
898 |
-
},
|
899 |
-
{
|
900 |
-
"cell_type": "code",
|
901 |
-
"execution_count": 7,
|
902 |
-
"metadata": {},
|
903 |
-
"outputs": [],
|
904 |
-
"source": [
|
905 |
-
"from torch.utils.data import DataLoader\n",
|
906 |
-
"train_dataloader = DataLoader(\n",
|
907 |
-
" tokenized_datasets['train'].shard(num_shards=15, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
|
908 |
-
")\n",
|
909 |
-
"eval_dataloader = DataLoader(\n",
|
910 |
-
" tokenized_datasets['validation'].shard(num_shards=5, index=0), batch_size=8, collate_fn=data_collator\n",
|
911 |
-
")"
|
912 |
-
]
|
913 |
-
},
|
914 |
-
{
|
915 |
-
"cell_type": "code",
|
916 |
-
"execution_count": 60,
|
917 |
-
"metadata": {},
|
918 |
-
"outputs": [
|
919 |
-
{
|
920 |
-
"data": {
|
921 |
-
"text/plain": [
|
922 |
-
"{'attention_mask': torch.Size([8, 64]),\n",
|
923 |
-
" 'input_ids': torch.Size([8, 64]),\n",
|
924 |
-
" 'labels': torch.Size([8]),\n",
|
925 |
-
" 'token_type_ids': torch.Size([8, 64])}"
|
926 |
-
]
|
927 |
-
},
|
928 |
-
"execution_count": 60,
|
929 |
-
"metadata": {},
|
930 |
-
"output_type": "execute_result"
|
931 |
-
}
|
932 |
-
],
|
933 |
-
"source": [
|
934 |
-
"for batch in train_dataloader:\n",
|
935 |
-
" break\n",
|
936 |
-
"{k: v.shape for k, v in batch.items()}"
|
937 |
-
]
|
938 |
-
},
|
939 |
-
{
|
940 |
-
"cell_type": "code",
|
941 |
-
"execution_count": 61,
|
942 |
-
"metadata": {},
|
943 |
-
"outputs": [
|
944 |
-
{
|
945 |
-
"name": "stderr",
|
946 |
-
"output_type": "stream",
|
947 |
-
"text": [
|
948 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight']\n",
|
949 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
950 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
951 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
952 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
953 |
-
]
|
954 |
-
}
|
955 |
-
],
|
956 |
-
"source": [
|
957 |
-
"from transformers import AutoModelForSequenceClassification\n",
|
958 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
|
959 |
-
]
|
960 |
-
},
|
961 |
-
{
|
962 |
-
"cell_type": "code",
|
963 |
-
"execution_count": 62,
|
964 |
-
"metadata": {},
|
965 |
-
"outputs": [
|
966 |
-
{
|
967 |
-
"name": "stdout",
|
968 |
-
"output_type": "stream",
|
969 |
-
"text": [
|
970 |
-
"tensor(0.5705, grad_fn=<NllLossBackward>) torch.Size([8, 2])\n"
|
971 |
-
]
|
972 |
-
}
|
973 |
-
],
|
974 |
-
"source": [
|
975 |
-
"outputs = model(**batch)\n",
|
976 |
-
"print(outputs.loss, outputs.logits.shape)"
|
977 |
-
]
|
978 |
-
},
|
979 |
-
{
|
980 |
-
"cell_type": "code",
|
981 |
-
"execution_count": 63,
|
982 |
-
"metadata": {},
|
983 |
-
"outputs": [],
|
984 |
-
"source": [
|
985 |
-
"from transformers import AdamW\n",
|
986 |
-
"optimizer = AdamW(model.parameters(), lr=5e-5)"
|
987 |
-
]
|
988 |
-
},
|
989 |
-
{
|
990 |
-
"cell_type": "code",
|
991 |
-
"execution_count": 64,
|
992 |
-
"metadata": {},
|
993 |
-
"outputs": [
|
994 |
-
{
|
995 |
-
"name": "stdout",
|
996 |
-
"output_type": "stream",
|
997 |
-
"text": [
|
998 |
-
"93\n"
|
999 |
-
]
|
1000 |
-
}
|
1001 |
-
],
|
1002 |
-
"source": [
|
1003 |
-
"from transformers import get_scheduler\n",
|
1004 |
-
"num_epochs = 3\n",
|
1005 |
-
"num_training_steps = num_epochs * len(train_dataloader)\n",
|
1006 |
-
"lr_scheduler = get_scheduler(\n",
|
1007 |
-
" 'linear',\n",
|
1008 |
-
" optimizer,\n",
|
1009 |
-
" num_warmup_steps=0,\n",
|
1010 |
-
" num_training_steps=num_training_steps,\n",
|
1011 |
-
")\n",
|
1012 |
-
"print(num_training_steps)\n"
|
1013 |
-
]
|
1014 |
-
},
|
1015 |
-
{
|
1016 |
-
"cell_type": "code",
|
1017 |
-
"execution_count": 65,
|
1018 |
-
"metadata": {},
|
1019 |
-
"outputs": [
|
1020 |
-
{
|
1021 |
-
"data": {
|
1022 |
-
"text/plain": [
|
1023 |
-
"device(type='cuda')"
|
1024 |
-
]
|
1025 |
-
},
|
1026 |
-
"execution_count": 65,
|
1027 |
-
"metadata": {},
|
1028 |
-
"output_type": "execute_result"
|
1029 |
-
}
|
1030 |
-
],
|
1031 |
-
"source": [
|
1032 |
-
"import torch\n",
|
1033 |
-
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
|
1034 |
-
"model.to(device)\n",
|
1035 |
-
"device"
|
1036 |
-
]
|
1037 |
-
},
|
1038 |
-
{
|
1039 |
-
"cell_type": "code",
|
1040 |
-
"execution_count": 71,
|
1041 |
-
"metadata": {},
|
1042 |
-
"outputs": [
|
1043 |
-
{
|
1044 |
-
"name": "stderr",
|
1045 |
-
"output_type": "stream",
|
1046 |
-
"text": [
|
1047 |
-
"100%|██████████| 93/93 [08:50<00:00, 5.70s/it]\n",
|
1048 |
-
"100%|██████████| 93/93 [00:28<00:00, 3.21it/s]"
|
1049 |
-
]
|
1050 |
-
}
|
1051 |
-
],
|
1052 |
-
"source": [
|
1053 |
-
"from tqdm.auto import tqdm\n",
|
1054 |
-
"progress_bar = tqdm(range(num_training_steps))\n",
|
1055 |
-
"model.train()\n",
|
1056 |
-
"for epoch in range(num_epochs):\n",
|
1057 |
-
" for batch in train_dataloader:\n",
|
1058 |
-
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1059 |
-
" outputs = model(**batch)\n",
|
1060 |
-
" loss = outputs.loss\n",
|
1061 |
-
" loss.backward()\n",
|
1062 |
-
" optimizer.step()\n",
|
1063 |
-
" optimizer.zero_grad()\n",
|
1064 |
-
" progress_bar.update(1)\n",
|
1065 |
-
" \n",
|
1066 |
-
" # metric = load_metric('glue', 'mrpc')\n",
|
1067 |
-
" # model.eval()\n",
|
1068 |
-
" # for batch in eval_dataloader:\n",
|
1069 |
-
" # batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1070 |
-
" # with torch.no_grad():\n",
|
1071 |
-
" # outputs = model(**batch)\n",
|
1072 |
-
" # logits = outputs.logits\n",
|
1073 |
-
" # predictions = torch.argmax(logits, dim=-1)\n",
|
1074 |
-
" # metric.add_batch(predictions=predictions, references=batch['labels'])\n",
|
1075 |
-
" # print(metric.compute())"
|
1076 |
-
]
|
1077 |
-
},
|
1078 |
-
{
|
1079 |
-
"cell_type": "code",
|
1080 |
-
"execution_count": 109,
|
1081 |
-
"metadata": {},
|
1082 |
-
"outputs": [
|
1083 |
-
{
|
1084 |
-
"data": {
|
1085 |
-
"text/plain": [
|
1086 |
-
"{'accuracy': 0.6463414634146342, 'f1': 0.7851851851851851}"
|
1087 |
-
]
|
1088 |
-
},
|
1089 |
-
"execution_count": 109,
|
1090 |
-
"metadata": {},
|
1091 |
-
"output_type": "execute_result"
|
1092 |
-
}
|
1093 |
-
],
|
1094 |
-
"source": [
|
1095 |
-
"from datasets import load_metric\n",
|
1096 |
-
"metric = load_metric('glue', 'mrpc')\n",
|
1097 |
-
"model.eval()\n",
|
1098 |
-
"for batch in eval_dataloader:\n",
|
1099 |
-
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1100 |
-
" with torch.no_grad():\n",
|
1101 |
-
" outputs = model(**batch)\n",
|
1102 |
-
" logits = outputs.logits\n",
|
1103 |
-
" predictions = torch.argmax(logits, dim=-1)\n",
|
1104 |
-
" metric.add_batch(predictions=predictions, references=batch['labels'])\n",
|
1105 |
-
"metric.compute()"
|
1106 |
-
]
|
1107 |
-
},
|
1108 |
-
{
|
1109 |
-
"cell_type": "markdown",
|
1110 |
-
"metadata": {},
|
1111 |
-
"source": [
|
1112 |
-
"## Challenge 1"
|
1113 |
-
]
|
1114 |
-
},
|
1115 |
-
{
|
1116 |
-
"cell_type": "code",
|
1117 |
-
"execution_count": 20,
|
1118 |
-
"metadata": {},
|
1119 |
-
"outputs": [
|
1120 |
-
{
|
1121 |
-
"name": "stderr",
|
1122 |
-
"output_type": "stream",
|
1123 |
-
"text": [
|
1124 |
-
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
1125 |
-
"100%|██████████| 68/68 [00:03<00:00, 20.33ba/s]\n",
|
1126 |
-
"100%|██████████| 1/1 [00:00<00:00, 17.24ba/s]\n",
|
1127 |
-
"100%|██████████| 2/2 [00:00<00:00, 16.53ba/s]\n"
|
1128 |
-
]
|
1129 |
-
}
|
1130 |
-
],
|
1131 |
-
"source": [
|
1132 |
-
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
|
1133 |
-
"\n",
|
1134 |
-
"sst2_datasets = load_dataset(\"glue\", \"sst2\")\n",
|
1135 |
-
"def tokenize_function (example):\n",
|
1136 |
-
" return tokenizer(example['sentence'], truncation=True)\n",
|
1137 |
-
"tokenized_datasets = sst2_datasets.map(tokenize_function, batched=True)\n",
|
1138 |
-
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence\"])\n",
|
1139 |
-
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
|
1140 |
-
"tokenized_datasets.set_format('torch')\n",
|
1141 |
-
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
1142 |
-
"train_dataset = DataLoader(\n",
|
1143 |
-
" tokenized_datasets['train'].shard(num_shards=180, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
|
1144 |
-
")\n",
|
1145 |
-
"eval_dataset = DataLoader(\n",
|
1146 |
-
" tokenized_datasets['validation'].shard(num_shards=4, index=0), batch_size=8, collate_fn=data_collator\n",
|
1147 |
-
")"
|
1148 |
-
]
|
1149 |
-
},
|
1150 |
-
{
|
1151 |
-
"cell_type": "code",
|
1152 |
-
"execution_count": 31,
|
1153 |
-
"metadata": {},
|
1154 |
-
"outputs": [
|
1155 |
-
{
|
1156 |
-
"name": "stderr",
|
1157 |
-
"output_type": "stream",
|
1158 |
-
"text": [
|
1159 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight']\n",
|
1160 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1161 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1162 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
1163 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
1164 |
-
"100%|██████████| 141/141 [18:15<00:00, 7.77s/it]\n",
|
1165 |
-
"100%|██████████| 141/141 [01:12<00:00, 2.21it/s]"
|
1166 |
-
]
|
1167 |
-
},
|
1168 |
-
{
|
1169 |
-
"name": "stdout",
|
1170 |
-
"output_type": "stream",
|
1171 |
-
"text": [
|
1172 |
-
"[{'accuracy': 0.7568807339449541}, {'accuracy': 0.8256880733944955}, {'accuracy': 0.8623853211009175}]\n"
|
1173 |
-
]
|
1174 |
-
}
|
1175 |
-
],
|
1176 |
-
"source": [
|
1177 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
1178 |
-
"model.to(device)\n",
|
1179 |
-
"optimizer= AdamW(model.parameters(), 5e-5)\n",
|
1180 |
-
"\n",
|
1181 |
-
"num_epochs = 3\n",
|
1182 |
-
"num_training_steps = num_epochs * len(train_dataset)\n",
|
1183 |
-
"lr_scheduler = get_scheduler(\n",
|
1184 |
-
" 'linear',\n",
|
1185 |
-
" optimizer=optimizer,\n",
|
1186 |
-
" num_warmup_steps=0,\n",
|
1187 |
-
" num_training_steps=num_training_steps,\n",
|
1188 |
-
")\n",
|
1189 |
-
"\n",
|
1190 |
-
"metrics = []\n",
|
1191 |
-
"\n",
|
1192 |
-
"progress_bar = tqdm(range(num_training_steps))\n",
|
1193 |
-
"model.train()\n",
|
1194 |
-
"for epoch in range(num_epochs):\n",
|
1195 |
-
" for batch in train_dataset:\n",
|
1196 |
-
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1197 |
-
" outputs = model(**batch)\n",
|
1198 |
-
" loss = outputs.loss\n",
|
1199 |
-
" loss.backward()\n",
|
1200 |
-
" optimizer.step()\n",
|
1201 |
-
" lr_scheduler.step()\n",
|
1202 |
-
" optimizer.zero_grad()\n",
|
1203 |
-
" progress_bar.update(1)\n",
|
1204 |
-
"\n",
|
1205 |
-
" metric= load_metric(\"glue\", \"sst2\")\n",
|
1206 |
-
" model.eval()\n",
|
1207 |
-
" for batch in eval_dataset:\n",
|
1208 |
-
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
1209 |
-
" with torch.no_grad():\n",
|
1210 |
-
" outputs = model(**batch)\n",
|
1211 |
-
" logits = outputs.logits\n",
|
1212 |
-
" predictions = torch.argmax(logits, dim=-1)\n",
|
1213 |
-
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
|
1214 |
-
" metrics.append(metric.compute())\n",
|
1215 |
-
"\n",
|
1216 |
-
"print(metrics)"
|
1217 |
-
]
|
1218 |
-
},
|
1219 |
-
{
|
1220 |
-
"cell_type": "markdown",
|
1221 |
-
"metadata": {},
|
1222 |
-
"source": [
|
1223 |
-
"## (end)"
|
1224 |
-
]
|
1225 |
-
},
|
1226 |
-
{
|
1227 |
-
"cell_type": "code",
|
1228 |
-
"execution_count": 8,
|
1229 |
-
"metadata": {},
|
1230 |
-
"outputs": [],
|
1231 |
-
"source": [
|
1232 |
-
"from accelerate import Accelerator\n",
|
1233 |
-
"accelerator = Accelerator()"
|
1234 |
-
]
|
1235 |
-
},
|
1236 |
-
{
|
1237 |
-
"cell_type": "code",
|
1238 |
-
"execution_count": 9,
|
1239 |
-
"metadata": {},
|
1240 |
-
"outputs": [
|
1241 |
-
{
|
1242 |
-
"name": "stderr",
|
1243 |
-
"output_type": "stream",
|
1244 |
-
"text": [
|
1245 |
-
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
|
1246 |
-
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
1247 |
-
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
1248 |
-
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
1249 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
1250 |
-
"100%|██████████| 93/93 [01:11<00:00, 1.85it/s]"
|
1251 |
-
]
|
1252 |
-
},
|
1253 |
-
{
|
1254 |
-
"name": "stdout",
|
1255 |
-
"output_type": "stream",
|
1256 |
-
"text": [
|
1257 |
-
"[{'accuracy': 0.6707317073170732}, {'accuracy': 0.7073170731707317}, {'accuracy': 0.7560975609756098}]\n"
|
1258 |
-
]
|
1259 |
-
}
|
1260 |
-
],
|
1261 |
-
"source": [
|
1262 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
1263 |
-
"optimizer= AdamW(model.parameters(), 5e-5)\n",
|
1264 |
-
"train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(\n",
|
1265 |
-
" train_dataloader, eval_dataloader, model, optimizer\n",
|
1266 |
-
")\n",
|
1267 |
-
"\n",
|
1268 |
-
"num_epochs = 3\n",
|
1269 |
-
"num_training_steps = num_epochs * len(train_dataloader)\n",
|
1270 |
-
"lr_scheduler = get_scheduler(\n",
|
1271 |
-
" 'linear',\n",
|
1272 |
-
" optimizer=optimizer,\n",
|
1273 |
-
" num_warmup_steps=0,\n",
|
1274 |
-
" num_training_steps=num_training_steps,\n",
|
1275 |
-
")\n",
|
1276 |
-
"\n",
|
1277 |
-
"metrics = []\n",
|
1278 |
-
"\n",
|
1279 |
-
"progress_bar = tqdm(range(num_training_steps))\n",
|
1280 |
-
"model.train()\n",
|
1281 |
-
"for epoch in range(num_epochs):\n",
|
1282 |
-
" for batch in train_dataloader:\n",
|
1283 |
-
" outputs = model(**batch)\n",
|
1284 |
-
" loss = outputs.loss\n",
|
1285 |
-
" accelerator.backward(loss)\n",
|
1286 |
-
" optimizer.step()\n",
|
1287 |
-
" lr_scheduler.step()\n",
|
1288 |
-
" optimizer.zero_grad()\n",
|
1289 |
-
" progress_bar.update(1)\n",
|
1290 |
-
"\n",
|
1291 |
-
" metric= load_metric(\"glue\", \"sst2\")\n",
|
1292 |
-
" model.eval()\n",
|
1293 |
-
" for batch in eval_dataloader:\n",
|
1294 |
-
" with torch.no_grad():\n",
|
1295 |
-
" outputs = model(**batch)\n",
|
1296 |
-
" logits = outputs.logits\n",
|
1297 |
-
" predictions = torch.argmax(logits, dim=-1)\n",
|
1298 |
-
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
|
1299 |
-
" metrics.append(metric.compute())\n",
|
1300 |
-
"\n",
|
1301 |
-
"print(metrics)"
|
1302 |
-
]
|
1303 |
-
},
|
1304 |
-
{
|
1305 |
-
"cell_type": "code",
|
1306 |
-
"execution_count": null,
|
1307 |
-
"metadata": {},
|
1308 |
-
"outputs": [],
|
1309 |
-
"source": []
|
1310 |
-
}
|
1311 |
-
],
|
1312 |
-
"metadata": {
|
1313 |
-
"interpreter": {
|
1314 |
-
"hash": "c23364dc34acf6d559b2ccbb804894040b11f1b7cd300b891de29d32dea3c2c2"
|
1315 |
-
},
|
1316 |
-
"kernelspec": {
|
1317 |
-
"display_name": "Python 3.8.10 64-bit ('AI': conda)",
|
1318 |
-
"name": "python3"
|
1319 |
-
},
|
1320 |
-
"language_info": {
|
1321 |
-
"codemirror_mode": {
|
1322 |
-
"name": "ipython",
|
1323 |
-
"version": 3
|
1324 |
-
},
|
1325 |
-
"file_extension": ".py",
|
1326 |
-
"mimetype": "text/x-python",
|
1327 |
-
"name": "python",
|
1328 |
-
"nbconvert_exporter": "python",
|
1329 |
-
"pygments_lexer": "ipython3",
|
1330 |
-
"version": "3.8.10"
|
1331 |
-
}
|
1332 |
-
},
|
1333 |
-
"nbformat": 4,
|
1334 |
-
"nbformat_minor": 5
|
1335 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "camembert-base",
|
3 |
+
"architectures": [
|
4 |
+
"CamembertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 5,
|
8 |
+
"eos_token_id": 6,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "camembert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"transformers_version": "4.6.1",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 32005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
hello.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Hello
|
part4.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "aa7a358a",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
@@ -12,100 +12,25 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"id": "c7e39f7f",
|
17 |
"metadata": {},
|
18 |
-
"outputs": [
|
19 |
-
{
|
20 |
-
"data": {
|
21 |
-
"application/vnd.jupyter.widget-view+json": {
|
22 |
-
"model_id": "f07d3dc0c67842c5905d2a8d9bbc0ee8",
|
23 |
-
"version_major": 2,
|
24 |
-
"version_minor": 0
|
25 |
-
},
|
26 |
-
"text/plain": [
|
27 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=810912.0, style=ProgressStyle(descripti…"
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"metadata": {},
|
31 |
-
"output_type": "display_data"
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"name": "stdout",
|
35 |
-
"output_type": "stream",
|
36 |
-
"text": [
|
37 |
-
"\n"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"data": {
|
42 |
-
"application/vnd.jupyter.widget-view+json": {
|
43 |
-
"model_id": "bafae4f91f7e490087300d6fcd12ad15",
|
44 |
-
"version_major": 2,
|
45 |
-
"version_minor": 0
|
46 |
-
},
|
47 |
-
"text/plain": [
|
48 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1395301.0, style=ProgressStyle(descript…"
|
49 |
-
]
|
50 |
-
},
|
51 |
-
"metadata": {},
|
52 |
-
"output_type": "display_data"
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"name": "stdout",
|
56 |
-
"output_type": "stream",
|
57 |
-
"text": [
|
58 |
-
"\n"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"data": {
|
63 |
-
"application/vnd.jupyter.widget-view+json": {
|
64 |
-
"model_id": "55b5654c906441d3bba3d48c72a373f2",
|
65 |
-
"version_major": 2,
|
66 |
-
"version_minor": 0
|
67 |
-
},
|
68 |
-
"text/plain": [
|
69 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=508.0, style=ProgressStyle(description_…"
|
70 |
-
]
|
71 |
-
},
|
72 |
-
"metadata": {},
|
73 |
-
"output_type": "display_data"
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"name": "stdout",
|
77 |
-
"output_type": "stream",
|
78 |
-
"text": [
|
79 |
-
"\n"
|
80 |
-
]
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"data": {
|
84 |
-
"application/vnd.jupyter.widget-view+json": {
|
85 |
-
"model_id": "659a9e30adb94f24bd78d87fb4f7706d",
|
86 |
-
"version_major": 2,
|
87 |
-
"version_minor": 0
|
88 |
-
},
|
89 |
-
"text/plain": [
|
90 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=445032417.0, style=ProgressStyle(descri…"
|
91 |
-
]
|
92 |
-
},
|
93 |
-
"metadata": {},
|
94 |
-
"output_type": "display_data"
|
95 |
-
},
|
96 |
-
{
|
97 |
-
"name": "stdout",
|
98 |
-
"output_type": "stream",
|
99 |
-
"text": [
|
100 |
-
"\n"
|
101 |
-
]
|
102 |
-
}
|
103 |
-
],
|
104 |
"source": [
|
105 |
"tokenizer = CamembertTokenizer.from_pretrained(\"camembert-base\")\n",
|
106 |
"model = CamembertForMaskedLM.from_pretrained(\"camembert-base\")"
|
107 |
]
|
108 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
{
|
110 |
"cell_type": "code",
|
111 |
"execution_count": 1,
|
@@ -317,10 +242,42 @@
|
|
317 |
"repo.git_pull()"
|
318 |
]
|
319 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
{
|
321 |
"cell_type": "code",
|
322 |
"execution_count": null,
|
323 |
-
"id": "
|
324 |
"metadata": {},
|
325 |
"outputs": [],
|
326 |
"source": []
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "aa7a358a",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
"id": "c7e39f7f",
|
17 |
"metadata": {},
|
18 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"source": [
|
20 |
"tokenizer = CamembertTokenizer.from_pretrained(\"camembert-base\")\n",
|
21 |
"model = CamembertForMaskedLM.from_pretrained(\"camembert-base\")"
|
22 |
]
|
23 |
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"id": "30ca41f5",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"model.save_pretrained(\"./\")"
|
32 |
+
]
|
33 |
+
},
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
"execution_count": 1,
|
|
|
242 |
"repo.git_pull()"
|
243 |
]
|
244 |
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": 4,
|
248 |
+
"id": "3442a913",
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [
|
251 |
+
{
|
252 |
+
"name": "stderr",
|
253 |
+
"output_type": "stream",
|
254 |
+
"text": [
|
255 |
+
"To https://huggingface.co/SebastianS/dummy-model\n",
|
256 |
+
" 91d9c6c..bc13ef6 main -> main\n",
|
257 |
+
"\n"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"data": {
|
262 |
+
"text/plain": [
|
263 |
+
"'https://huggingface.co/SebastianS/dummy-model/commit/bc13ef64436e852b999af0315b661eebf6fd6a42'"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
"execution_count": 4,
|
267 |
+
"metadata": {},
|
268 |
+
"output_type": "execute_result"
|
269 |
+
}
|
270 |
+
],
|
271 |
+
"source": [
|
272 |
+
"repo.git_add()\n",
|
273 |
+
"repo.git_commit(\"added this file\")\n",
|
274 |
+
"repo.git_push()"
|
275 |
+
]
|
276 |
+
},
|
277 |
{
|
278 |
"cell_type": "code",
|
279 |
"execution_count": null,
|
280 |
+
"id": "f036dfdd",
|
281 |
"metadata": {},
|
282 |
"outputs": [],
|
283 |
"source": []
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23e3c7b2ac552b676f86d627ac840b9138181091c281d047caa0fa638c5e562a
|
3 |
+
size 442709831
|