Segamboam commited on
Commit
27afc5a
1 Parent(s): f634186

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1162.41 +/- 150.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a67ae5154051c4484e81b650fd71d378e7031802047e9628c07bae76729d809
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a68cd3c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a68cd3ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a68cd3d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a68cd3dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a68cd3e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a68cd3ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a68cd3f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a68cd9040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a68cd90d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a68cd9160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a68cd91f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a68cd9280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9a68cd16f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674741395556677561,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM5e+z+JhIS/lvyBP/olE79K+1W/Dn6WPTyqdb9I2Go/lmsGvew5jTxz1Io+nIHXvMHSir/tIMc7ZRYuwBTJZjwssB1AmNHKO3+icsAizi89ZOFvvwIQBT2h0jVApoCxvIsTUT/8Dx0/z2cbwNnHsT6neA9ACRZfP3VwGb7t9YY/CNYJQNqF2r8sLC5ATj3LvyyvV78gAcU8CexRvhK16z/3KvY/GYLXv1O3wr/75pg/1WGQv7zQqzzdSiY/6yEKPX8XIr8tWUw/YpYsvpswvb85upy/YaHQv89nG8DZx7E+4QQRvp6eGz9YKOS/dUmMv2XCL7+Ihvk+/IoaP3tSqr6Rzr+/NMMiP+ARBz+MikG9nFA/v1B2jL9WPUQ/fksUQORXkL9jeKU8HUQFP56sOr6VGwdAS/JHQDx6E77mUx1AixNRP2Gh0L/V2tI+J1E4wKgZDj8NWYA/SaFOv0i4L78dPwi/S5OFPZtUTz87pkq/7UbSvyDwhr748d8/1gY/vSrbOD9PNCW/ABhVvg2JOD8nJJG/L9mdPRiJFz9YMpg84hjfviLtHj+dvEa+PCd2v4sTUT/8Dx0/1drSPtnHsT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMsNU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0inbOwAAAABEj9q/AAAAAOGJjz0AAAAATI7nPwAAAAARxTU5AAAAAEsT2j8AAAAAaUNeuwAAAADGQ+W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARVLiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIRzT70AAAAAZGjtvwAAAADeIBI+AAAAALbM+z8AAAAA1bgAPgAAAAAvGO0/AAAAABe69TwAAAAAL8fZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrukDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZo+S9AAAAAE9a778AAAAAb4CIvQAAAACPr90/AAAAAEVBkr0AAAAAY8nyPwAAAADTkpG9AAAAAB4bAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxQwO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+CnnPQAAAAC78/y/AAAAAGUFLjwAAAAAlrf+PwAAAADlNXK9AAAAAOIK3D8AAAAAQRSbvQAAAADLeuC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIczR/oaDPKMAWyUTegDjAF0lEdAp/Wt49ovjHV9lChoBkdAisPv5P/JeWgHTegDaAhHQKf16/BWPtF1fZQoaAZHQIc+IIQe3hJoB03oA2gIR0Cn+fiMglnidX2UKGgGR0CKURDsMRYjaAdN6ANoCEdAp/5eQwK0D3V9lChoBkdAi7a3Ov+wT2gHTegDaAhHQKgCJwe/5+J1fZQoaAZHQImMmoBJZntoB03oA2gIR0CoAmTiS7oTdX2UKGgGR0COQfhXKbKBaAdN6ANoCEdAqAaTOX3QD3V9lChoBkdAkD7VKPGQ0WgHTegDaAhHQKgLAA6uGK11fZQoaAZHQJFhzCVKPGRoB03oA2gIR0CoDr8e0XxfdX2UKGgGR0CQH2irksBiaAdN6ANoCEdAqA73tv4ub3V9lChoBkdAkKBRT4tYjmgHTegDaAhHQKgTAUyHmA91fZQoaAZHQJDeykk8ifRoB03oA2gIR0CoF4D50r9VdX2UKGgGR0CQ/PQjlgc+aAdN6ANoCEdAqBtFl9SdfHV9lChoBkdAkhXMDfWMCWgHTegDaAhHQKgbgTYdyT91fZQoaAZHQJGSBJJ5E+hoB03oA2gIR0CoH5srmQr+dX2UKGgGR0CRbyGecx0uaAdN6ANoCEdAqCQscfeUIXV9lChoBkdAiZ5Y2S+xnmgHTegDaAhHQKgn8NDMNc51fZQoaAZHQI/IKWJJoTRoB03oA2gIR0CoKCmJWNm2dX2UKGgGR0CGodR2r4nGaAdN6ANoCEdAqCw2U0Nz83V9lChoBkdAgCM68Yht+GgHTegDaAhHQKgwmYYR/Vl1fZQoaAZHQIci2gi/wiJoB03oA2gIR0CoNF/NZ/0/dX2UKGgGR0CFOeJLuhK2aAdN6ANoCEdAqDSbT2FnI3V9lChoBkdAhi16GgzxgGgHTegDaAhHQKg4npmmLtN1fZQoaAZHQH7cQdjoZAJoB03oA2gIR0CoPSSX+l0pdX2UKGgGR0B3xCoo/iYLaAdN6ANoCEdAqEEYtUXHinV9lChoBkdAhJ46mwaBJGgHTegDaAhHQKhBUj1wo9d1fZQoaAZHQImV21UlzEJoB03oA2gIR0CoRW5R8+ibdX2UKGgGR0CNzW384xUOaAdN6ANoCEdAqEnzwz+FUXV9lChoBkdAjdkYBvJiiWgHTegDaAhHQKhNobo8p1B1fZQoaAZHQJC1JAX2ugZoB03oA2gIR0CoTeAieNDMdX2UKGgGR0CKyq3n6l+FaAdN6ANoCEdAqFH841gpjXV9lChoBkdAjuOFr/Khc2gHTegDaAhHQKhWbkdV/+d1fZQoaAZHQIq9drhzeXRoB03oA2gIR0CoWi5D7ZWadX2UKGgGR0CQBc1RceKbaAdN6ANoCEdAqFpl8G9pRHV9lChoBkdAkIelFc6eXmgHTegDaAhHQKhegQEpy6t1fZQoaAZHQI7oalJpWWBoB03oA2gIR0CoYvWKVII4dX2UKGgGR0CNepfLLZBcaAdN6ANoCEdAqGbIgFHJ93V9lChoBkdAhRDyZ0CA+mgHTegDaAhHQKhnAna37UJ1fZQoaAZHQJKBYYLsrupoB03oA2gIR0CoaxJUxVQzdX2UKGgGR0CHfGSElE7XaAdN6ANoCEdAqG+Fz+3pfXV9lChoBkdAiq/wjt5UtWgHTegDaAhHQKhzNVJ+UhV1fZQoaAZHQInOpMDfWMFoB03oA2gIR0Coc27Lt/nXdX2UKGgGR0B/dypAD7qIaAdN6ANoCEdAqHeGQwK0D3V9lChoBkdAjMD6oddVvWgHTegDaAhHQKh8AmYSg5B1fZQoaAZHQIkqKrPt2LZoB03oA2gIR0CogGDfNzKcdX2UKGgGR0CLkGz/IbOvaAdN6ANoCEdAqIC5YA80UHV9lChoBkdAju1SHEdeY2gHTegDaAhHQKiHRMaCL/F1fZQoaAZHQIWlPBvaURpoB03oA2gIR0CojHwI+nqFdX2UKGgGR0CF3ftl7MPjaAdN6ANoCEdAqJBV9ORDC3V9lChoBkdAf+iqMWGh3GgHTegDaAhHQKiQkutfXwt1fZQoaAZHQH50e6mO2iNoB03oA2gIR0ColKkit7rtdX2UKGgGR0CL9uEPDpC8aAdN6ANoCEdAqJk9clgMMXV9lChoBkdAimUNrj5sTGgHTegDaAhHQKidAQjlgc91fZQoaAZHQIFRS4lQdjpoB03oA2gIR0ConTnQhOgydX2UKGgGR0B4FOoJiRW+aAdN6ANoCEdAqKFU8vEjxHV9lChoBkdAiXRBPj4pMGgHTegDaAhHQKil0oLofSx1fZQoaAZHQHsQ1mBe5WloB03oA2gIR0CoqZfqX4TLdX2UKGgGR0CAfyKGcnVoaAdN6ANoCEdAqKnTm6oVEnV9lChoBkdAgxTpdrwfAGgHTegDaAhHQKit39MsYl91fZQoaAZHQJFKXLns9jhoB03oA2gIR0CosldgF5fMdX2UKGgGR0CQbmBas6q9aAdN6ANoCEdAqLYbEJjUeHV9lChoBkdAiz4lMyrPt2gHTegDaAhHQKi2WtzS1E51fZQoaAZHQIYV/MGHHm1oB03oA2gIR0CouqfBvaUSdX2UKGgGR0B1ElpcophGaAdN6ANoCEdAqL83tlZownV9lChoBkdAjSyCBGx2S2gHTegDaAhHQKjC+2gFotd1fZQoaAZHQIZIe9nK4hFoB03oA2gIR0CowzXKB/ZvdX2UKGgGR0CCCZxwQ176aAdN6ANoCEdAqMdT9ZRsM3V9lChoBkdAg3wNgKF7D2gHTegDaAhHQKjL9DCP6sR1fZQoaAZHQIvEM9pyp71oB03oA2gIR0Coz68nmaH9dX2UKGgGR0CQ9KTl1bJPaAdN6ANoCEdAqM/m+ueSS3V9lChoBkdAkU3PHo5ggGgHTegDaAhHQKjT6NedCmd1fZQoaAZHQI9csoDxLChoB03oA2gIR0Co2GEwWWQfdX2UKGgGR0CI/o5paiblaAdN6ANoCEdAqNws3l0YCXV9lChoBkdAhqNUrCm/FmgHTegDaAhHQKjcZlq8Djl1fZQoaAZHQIG6jcbiqABoB03oA2gIR0Co4Ho3aSLZdX2UKGgGR0CRhRt1IRRNaAdN6ANoCEdAqOTt6w+t83V9lChoBkdAjxEuZTho/WgHTegDaAhHQKjor8F6iTN1fZQoaAZHQIw+rLEDQqtoB03oA2gIR0Co6Omxlg+hdX2UKGgGR0CIafQBPsRhaAdN6ANoCEdAqOz2UB4lhXV9lChoBkdAhGzYDDCP62gHTegDaAhHQKjxf2wmmch1fZQoaAZHQIlEdHxz7uVoB03oA2gIR0Co9VB9kSVXdX2UKGgGR0CEGesiB5HFaAdN6ANoCEdAqPWOKjzqbHV9lChoBkdAhF467EpAlmgHTegDaAhHQKj5nMTN+sp1fZQoaAZHQI6GA3zcynFoB03oA2gIR0Co/h9NN8E3dX2UKGgGR0CQ91NPgvUSaAdN6ANoCEdAqQHNHDrJKnV9lChoBkdAkCzjeoDPnmgHTegDaAhHQKkCBhYNiH91fZQoaAZHQJA9mLNwBHVoB03oA2gIR0CpBgm8mKIjdX2UKGgGR0CQ/Wzgdfb9aAdN6ANoCEdAqQqC2WpqAXV9lChoBkdAko2b7bcoIGgHTegDaAhHQKkOSmNzbN91fZQoaAZHQJIIQLiMo+hoB03oA2gIR0CpDoQ4CIUKdX2UKGgGR0CKwh4iX6ZZaAdN6ANoCEdAqRK14keIVXV9lChoBkdAhZru9vjwQWgHTegDaAhHQKkXNRIBikR1fZQoaAZHQHdr6neizs1oB03oA2gIR0CpGwOvECNkdX2UKGgGR0CQAGqe9SMtaAdN6ANoCEdAqRs+p84Pw3V9lChoBkdAk7aWGmDUVmgHTegDaAhHQKkfWBEroW51fZQoaAZHQIxKG9lEqlRoB03oA2gIR0CpI9dvbXYldX2UKGgGR0CSmoUaQ3glaAdN6ANoCEdAqSepI+W4VnV9lChoBkdAj/DiPZIxxmgHTegDaAhHQKkn4uL74zt1fZQoaAZHQHiEK9wm3ORoB03oA2gIR0CpK+3n6l+FdX2UKGgGR0B6cYvGp++eaAdN6ANoCEdAqTCMm+j/MnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ef88f108f4f609b8081d206de5fee5127e90222947fc92ee4cec28910f3ece5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2d51a3fba6074f8ac9f20ee141e63643a68ee1c370294ba76f3105580fe96c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a68cd3c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a68cd3ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a68cd3d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a68cd3dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a68cd3e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a68cd3ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a68cd3f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a68cd9040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a68cd90d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a68cd9160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a68cd91f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a68cd9280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a68cd16f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674741395556677561, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAM5e+z+JhIS/lvyBP/olE79K+1W/Dn6WPTyqdb9I2Go/lmsGvew5jTxz1Io+nIHXvMHSir/tIMc7ZRYuwBTJZjwssB1AmNHKO3+icsAizi89ZOFvvwIQBT2h0jVApoCxvIsTUT/8Dx0/z2cbwNnHsT6neA9ACRZfP3VwGb7t9YY/CNYJQNqF2r8sLC5ATj3LvyyvV78gAcU8CexRvhK16z/3KvY/GYLXv1O3wr/75pg/1WGQv7zQqzzdSiY/6yEKPX8XIr8tWUw/YpYsvpswvb85upy/YaHQv89nG8DZx7E+4QQRvp6eGz9YKOS/dUmMv2XCL7+Ihvk+/IoaP3tSqr6Rzr+/NMMiP+ARBz+MikG9nFA/v1B2jL9WPUQ/fksUQORXkL9jeKU8HUQFP56sOr6VGwdAS/JHQDx6E77mUx1AixNRP2Gh0L/V2tI+J1E4wKgZDj8NWYA/SaFOv0i4L78dPwi/S5OFPZtUTz87pkq/7UbSvyDwhr748d8/1gY/vSrbOD9PNCW/ABhVvg2JOD8nJJG/L9mdPRiJFz9YMpg84hjfviLtHj+dvEa+PCd2v4sTUT/8Dx0/1drSPtnHsT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADMsNU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0inbOwAAAABEj9q/AAAAAOGJjz0AAAAATI7nPwAAAAARxTU5AAAAAEsT2j8AAAAAaUNeuwAAAADGQ+W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARVLiNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIRzT70AAAAAZGjtvwAAAADeIBI+AAAAALbM+z8AAAAA1bgAPgAAAAAvGO0/AAAAABe69TwAAAAAL8fZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrukDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZo+S9AAAAAE9a778AAAAAb4CIvQAAAACPr90/AAAAAEVBkr0AAAAAY8nyPwAAAADTkpG9AAAAAB4bAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxQwO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+CnnPQAAAAC78/y/AAAAAGUFLjwAAAAAlrf+PwAAAADlNXK9AAAAAOIK3D8AAAAAQRSbvQAAAADLeuC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIczR/oaDPKMAWyUTegDjAF0lEdAp/Wt49ovjHV9lChoBkdAisPv5P/JeWgHTegDaAhHQKf16/BWPtF1fZQoaAZHQIc+IIQe3hJoB03oA2gIR0Cn+fiMglnidX2UKGgGR0CKURDsMRYjaAdN6ANoCEdAp/5eQwK0D3V9lChoBkdAi7a3Ov+wT2gHTegDaAhHQKgCJwe/5+J1fZQoaAZHQImMmoBJZntoB03oA2gIR0CoAmTiS7oTdX2UKGgGR0COQfhXKbKBaAdN6ANoCEdAqAaTOX3QD3V9lChoBkdAkD7VKPGQ0WgHTegDaAhHQKgLAA6uGK11fZQoaAZHQJFhzCVKPGRoB03oA2gIR0CoDr8e0XxfdX2UKGgGR0CQH2irksBiaAdN6ANoCEdAqA73tv4ub3V9lChoBkdAkKBRT4tYjmgHTegDaAhHQKgTAUyHmA91fZQoaAZHQJDeykk8ifRoB03oA2gIR0CoF4D50r9VdX2UKGgGR0CQ/PQjlgc+aAdN6ANoCEdAqBtFl9SdfHV9lChoBkdAkhXMDfWMCWgHTegDaAhHQKgbgTYdyT91fZQoaAZHQJGSBJJ5E+hoB03oA2gIR0CoH5srmQr+dX2UKGgGR0CRbyGecx0uaAdN6ANoCEdAqCQscfeUIXV9lChoBkdAiZ5Y2S+xnmgHTegDaAhHQKgn8NDMNc51fZQoaAZHQI/IKWJJoTRoB03oA2gIR0CoKCmJWNm2dX2UKGgGR0CGodR2r4nGaAdN6ANoCEdAqCw2U0Nz83V9lChoBkdAgCM68Yht+GgHTegDaAhHQKgwmYYR/Vl1fZQoaAZHQIci2gi/wiJoB03oA2gIR0CoNF/NZ/0/dX2UKGgGR0CFOeJLuhK2aAdN6ANoCEdAqDSbT2FnI3V9lChoBkdAhi16GgzxgGgHTegDaAhHQKg4npmmLtN1fZQoaAZHQH7cQdjoZAJoB03oA2gIR0CoPSSX+l0pdX2UKGgGR0B3xCoo/iYLaAdN6ANoCEdAqEEYtUXHinV9lChoBkdAhJ46mwaBJGgHTegDaAhHQKhBUj1wo9d1fZQoaAZHQImV21UlzEJoB03oA2gIR0CoRW5R8+ibdX2UKGgGR0CNzW384xUOaAdN6ANoCEdAqEnzwz+FUXV9lChoBkdAjdkYBvJiiWgHTegDaAhHQKhNobo8p1B1fZQoaAZHQJC1JAX2ugZoB03oA2gIR0CoTeAieNDMdX2UKGgGR0CKyq3n6l+FaAdN6ANoCEdAqFH841gpjXV9lChoBkdAjuOFr/Khc2gHTegDaAhHQKhWbkdV/+d1fZQoaAZHQIq9drhzeXRoB03oA2gIR0CoWi5D7ZWadX2UKGgGR0CQBc1RceKbaAdN6ANoCEdAqFpl8G9pRHV9lChoBkdAkIelFc6eXmgHTegDaAhHQKhegQEpy6t1fZQoaAZHQI7oalJpWWBoB03oA2gIR0CoYvWKVII4dX2UKGgGR0CNepfLLZBcaAdN6ANoCEdAqGbIgFHJ93V9lChoBkdAhRDyZ0CA+mgHTegDaAhHQKhnAna37UJ1fZQoaAZHQJKBYYLsrupoB03oA2gIR0CoaxJUxVQzdX2UKGgGR0CHfGSElE7XaAdN6ANoCEdAqG+Fz+3pfXV9lChoBkdAiq/wjt5UtWgHTegDaAhHQKhzNVJ+UhV1fZQoaAZHQInOpMDfWMFoB03oA2gIR0Coc27Lt/nXdX2UKGgGR0B/dypAD7qIaAdN6ANoCEdAqHeGQwK0D3V9lChoBkdAjMD6oddVvWgHTegDaAhHQKh8AmYSg5B1fZQoaAZHQIkqKrPt2LZoB03oA2gIR0CogGDfNzKcdX2UKGgGR0CLkGz/IbOvaAdN6ANoCEdAqIC5YA80UHV9lChoBkdAju1SHEdeY2gHTegDaAhHQKiHRMaCL/F1fZQoaAZHQIWlPBvaURpoB03oA2gIR0CojHwI+nqFdX2UKGgGR0CF3ftl7MPjaAdN6ANoCEdAqJBV9ORDC3V9lChoBkdAf+iqMWGh3GgHTegDaAhHQKiQkutfXwt1fZQoaAZHQH50e6mO2iNoB03oA2gIR0ColKkit7rtdX2UKGgGR0CL9uEPDpC8aAdN6ANoCEdAqJk9clgMMXV9lChoBkdAimUNrj5sTGgHTegDaAhHQKidAQjlgc91fZQoaAZHQIFRS4lQdjpoB03oA2gIR0ConTnQhOgydX2UKGgGR0B4FOoJiRW+aAdN6ANoCEdAqKFU8vEjxHV9lChoBkdAiXRBPj4pMGgHTegDaAhHQKil0oLofSx1fZQoaAZHQHsQ1mBe5WloB03oA2gIR0CoqZfqX4TLdX2UKGgGR0CAfyKGcnVoaAdN6ANoCEdAqKnTm6oVEnV9lChoBkdAgxTpdrwfAGgHTegDaAhHQKit39MsYl91fZQoaAZHQJFKXLns9jhoB03oA2gIR0CosldgF5fMdX2UKGgGR0CQbmBas6q9aAdN6ANoCEdAqLYbEJjUeHV9lChoBkdAiz4lMyrPt2gHTegDaAhHQKi2WtzS1E51fZQoaAZHQIYV/MGHHm1oB03oA2gIR0CouqfBvaUSdX2UKGgGR0B1ElpcophGaAdN6ANoCEdAqL83tlZownV9lChoBkdAjSyCBGx2S2gHTegDaAhHQKjC+2gFotd1fZQoaAZHQIZIe9nK4hFoB03oA2gIR0CowzXKB/ZvdX2UKGgGR0CCCZxwQ176aAdN6ANoCEdAqMdT9ZRsM3V9lChoBkdAg3wNgKF7D2gHTegDaAhHQKjL9DCP6sR1fZQoaAZHQIvEM9pyp71oB03oA2gIR0Coz68nmaH9dX2UKGgGR0CQ9KTl1bJPaAdN6ANoCEdAqM/m+ueSS3V9lChoBkdAkU3PHo5ggGgHTegDaAhHQKjT6NedCmd1fZQoaAZHQI9csoDxLChoB03oA2gIR0Co2GEwWWQfdX2UKGgGR0CI/o5paiblaAdN6ANoCEdAqNws3l0YCXV9lChoBkdAhqNUrCm/FmgHTegDaAhHQKjcZlq8Djl1fZQoaAZHQIG6jcbiqABoB03oA2gIR0Co4Ho3aSLZdX2UKGgGR0CRhRt1IRRNaAdN6ANoCEdAqOTt6w+t83V9lChoBkdAjxEuZTho/WgHTegDaAhHQKjor8F6iTN1fZQoaAZHQIw+rLEDQqtoB03oA2gIR0Co6Omxlg+hdX2UKGgGR0CIafQBPsRhaAdN6ANoCEdAqOz2UB4lhXV9lChoBkdAhGzYDDCP62gHTegDaAhHQKjxf2wmmch1fZQoaAZHQIlEdHxz7uVoB03oA2gIR0Co9VB9kSVXdX2UKGgGR0CEGesiB5HFaAdN6ANoCEdAqPWOKjzqbHV9lChoBkdAhF467EpAlmgHTegDaAhHQKj5nMTN+sp1fZQoaAZHQI6GA3zcynFoB03oA2gIR0Co/h9NN8E3dX2UKGgGR0CQ91NPgvUSaAdN6ANoCEdAqQHNHDrJKnV9lChoBkdAkCzjeoDPnmgHTegDaAhHQKkCBhYNiH91fZQoaAZHQJA9mLNwBHVoB03oA2gIR0CpBgm8mKIjdX2UKGgGR0CQ/Wzgdfb9aAdN6ANoCEdAqQqC2WpqAXV9lChoBkdAko2b7bcoIGgHTegDaAhHQKkOSmNzbN91fZQoaAZHQJIIQLiMo+hoB03oA2gIR0CpDoQ4CIUKdX2UKGgGR0CKwh4iX6ZZaAdN6ANoCEdAqRK14keIVXV9lChoBkdAhZru9vjwQWgHTegDaAhHQKkXNRIBikR1fZQoaAZHQHdr6neizs1oB03oA2gIR0CpGwOvECNkdX2UKGgGR0CQAGqe9SMtaAdN6ANoCEdAqRs+p84Pw3V9lChoBkdAk7aWGmDUVmgHTegDaAhHQKkfWBEroW51fZQoaAZHQIxKG9lEqlRoB03oA2gIR0CpI9dvbXYldX2UKGgGR0CSmoUaQ3glaAdN6ANoCEdAqSepI+W4VnV9lChoBkdAj/DiPZIxxmgHTegDaAhHQKkn4uL74zt1fZQoaAZHQHiEK9wm3ORoB03oA2gIR0CpK+3n6l+FdX2UKGgGR0B6cYvGp++eaAdN6ANoCEdAqTCMm+j/MnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789912d7f1ea4c7eb28195f2d7973bb519b305e4de441135b6766fa167ebe1d1
3
+ size 1024214
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1162.4100476585445, "std_reward": 150.56472208155432, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T14:51:18.640957"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c78f063ea16fe1bb75b0bcc435b4af428de48fa067f2e46edf62d2677e01f36
3
+ size 2136