--- language: en tags: - t5 datasets: - squad license: mit --- # Question Generation Model ## Fine-tuning Dataset SQuAD 1.1 ## Demo https://huggingface.co/Sehong/t5-large-QuestionGeneration ## How to use ```python import torch from transformers import PreTrainedTokenizerFast from transformers import T5ForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained('Sehong/t5-large-QuestionGeneration') model = T5ForConditionalGeneration.from_pretrained('t5-large') text = "Saint Bern ##ade ##tte So ##ubi ##rous [SEP] Architectural ##ly , the school has a Catholic character . At ##op the Main Building ' s gold dome is a golden statue of the Virgin Mary . Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms up ##rai ##sed with the legend "" V ##eni ##te Ad Me O ##m ##nes "" . Next to the Main Building is the Basilica of the Sacred Heart . Immediately behind the b ##asi ##lica is the G ##rot ##to , a Marian place of prayer and reflection . It is a replica of the g ##rot ##to at Lou ##rdes , France where the Virgin Mary reputed ##ly appeared to Saint Bern ##ade ##tte So ##ubi ##rous in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold Dome ) , is a simple , modern stone statue of Mary ." raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id] summary_ids = model.generate(torch.tensor([input_ids])) decode = tokenizer.decode(summary_ids.squeeze().tolist(), skip_special_tokens=True) decode = decode.replace(' # # ', '').replace(' ', ' ').replace(' ##', '') print(decode) ``` ## Evalutation BLEU-1: 51.333 BLEU-2: 36.742 BLEU-3: 28.218 BLEU-4: 22.289 METEOR: 26.126 ROUGE-L: 51.069