Upload 12 files
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +118 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2548.33 +/- 83.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84c66edf6981d438627f537b740823298192f133760e3329a1b3ca562c55d208
|
3 |
+
size 131
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f11f90252d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11f9025360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11f90253f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11f9025480>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f11f9025510>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f11f90255a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11f9025630>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11f90256c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f11f9025750>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11f90257e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11f9025870>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11f9025900>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f11f90214c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVAwEAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXWMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
27 |
+
"net_arch": {
|
28 |
+
"pi": [
|
29 |
+
64,
|
30 |
+
64
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
64,
|
34 |
+
64
|
35 |
+
]
|
36 |
+
},
|
37 |
+
"log_std_init": -2,
|
38 |
+
"ortho_init": false,
|
39 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
40 |
+
"optimizer_kwargs": {
|
41 |
+
"alpha": 0.99,
|
42 |
+
"eps": 1e-05,
|
43 |
+
"weight_decay": 0
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"num_timesteps": 3000000,
|
47 |
+
"_total_timesteps": 3000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1688400277230719381,
|
52 |
+
"learning_rate": 0.00048,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFGMcUA+Qvs/YMW4P6d2DL8JQoY/G3mRPVRAcT/En6m9+Aw0PlOGxjpUHibA6mTmvFf0ZL98QYW70YhDQPWxyzwcSmI/r6gQPFZVLkBVwZk8rwYKvwbqKbz15zvAz5aRvLa4CsAXGS3AobikvwlJkr9RjHFA1kL7P2DFuD+ndgy/CUKGPxt5kT1UQHE/xJ+pvT3eB75ThsY6lVZAwOpk5rxOhRC/fEGFu2/mPUD1scs84BEdP6+oEDxoA05AVcGZPOdoO78G6im8PgZDwM+Wkby2uArAFxktwKG4pL8JSZK/UYxxQEFC+z9gxbg/p3YMvwlChj8beZE9VEBxP8Sfqb3fAXY8U4bGOuaOJsDqZOa8izl2v3xBhbvJD0hA9bHLPLH0Uz+vqBA8RQs6QFXBmTwZcgC/BuopvGr4J8DPlpG8trgKwBcZLcChuKS/CUmSv1GMcUBCQvs/YMW4P6d2DL8JQoY/G3mRPVRAcT/En6m91hxPvVOGxjqLtxrA6mTmvB9RNL98QYW769poQPWxyzx3lwg/r6gQPGKJP0BVwZk8d00HvwbqKbznLErAz5aRvLa4CsAXGS3AobikvwlJkr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrsmS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAadsgPAAAAAD+FADAAAAAACTfnL0AAAAAsnX6PwAAAAAVhwc9AAAAAINq7T8AAAAA1iQlvQAAAACJ8vK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6SvttQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC2nxbwAAAAAceT4vwAAAAAuxu69AAAAAC7H5z8AAAAAFQfRvQAAAAAD2/k/AAAAAATK8r0AAAAAoZXzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIoXBTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICW/rU9AAAAANr84b8AAAAAhWS2PQAAAABDEwBAAAAAACRjjz0AAAAA9u7bPwAAAADIdYm8AAAAAGovAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeVC02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/d8hPQAAAAD9Le6/AAAAAD0+HT0AAAAA7Lj1PwAAAAB4cRC6AAAAAJYo5T8AAAAAmuH+vQAAAAAMsADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
69 |
+
},
|
70 |
+
"_episode_num": 0,
|
71 |
+
"use_sde": true,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": 0.0,
|
74 |
+
"_stats_window_size": 100,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKOaOCFsYVKMAWyUTegDjAF0lEdAw5k97aZhKHV9lChoBkdAnyCPVd5Y5mgHTegDaAhHQMOZPhFmWdF1fZQoaAZHQKO3Q+nqFAVoB03oA2gIR0DDmT4z1scidX2UKGgGR0Ci3+dJBgNPaAdN6ANoCEdAw5k+VVPva3V9lChoBkdAo+ijCHh0hmgHTegDaAhHQMOcpU1hsqJ1fZQoaAZHQKSv9p2U0N1oB03oA2gIR0DDnKV9ph4MdX2UKGgGR0CjPq4KYzBRaAdN6ANoCEdAw5ylsqril3V9lChoBkdAorSKDkELY2gHTegDaAhHQMOcperELpl1fZQoaAZHQKLKvme18b9oB03oA2gIR0DDoSoSQHRkdX2UKGgGR0Cjsez3AVO9aAdN6ANoCEdAw6EqUrTYunV9lChoBkdAo7lZvP1L8WgHTegDaAhHQMOhKpLEk0J1fZQoaAZHQKIQOCvovBdoB03oA2gIR0DDoSrbYbsGdX2UKGgGR0CjaCvMjeKsaAdN6ANoCEdAw6SdfO2RaHV9lChoBkdApG929vjwQWgHTegDaAhHQMOknaRp1zR1fZQoaAZHQKM8ebG3nZFoB03oA2gIR0DDpJ3IsAeadX2UKGgGR0CjoiO5jH4oaAdN6ANoCEdAw6Sd8uSOinV9lChoBkdAopu5TwUg0WgHTegDaAhHQMOpCFfAsTZ1fZQoaAZHQKPcUwyIpH9oB03oA2gIR0DDqQh9iMHbdX2UKGgGR0CkEIYI8hcJaAdN6ANoCEdAw6kIois4k3V9lChoBkdAoUc3Hggow2gHTegDaAhHQMOpCM1KoQ51fZQoaAZHQKM5hPt2LYRoB03oA2gIR0DDrII71ZkkdX2UKGgGR0CjnshBzFMqaAdN6ANoCEdAw6yCdz4k/3V9lChoBkdAoeNsyFfzBmgHTegDaAhHQMOsgvEsJ6Z1fZQoaAZHQKRe+0jTrmhoB03oA2gIR0DDrIOs3hn8dX2UKGgGR0CinA7gTAWSaAdN6ANoCEdAw7EHqASWaHV9lChoBkdAo+c1mJ3xF2gHTegDaAhHQMOxB8pb2UV1fZQoaAZHQKSwVW5H3DhoB03oA2gIR0DDsQftfG+9dX2UKGgGR0CjEzavRqoIaAdN6ANoCEdAw7EIDq4YrXV9lChoBkdAo4dBHZsbemgHTegDaAhHQMO0ffM4cWF1fZQoaAZHQKKYqlByCFtoB03oA2gIR0DDtH4s052hdX2UKGgGR0CkvXNShrWRaAdN6ANoCEdAw7R+ZWJaaHV9lChoBkdApDflovi97GgHTegDaAhHQMO0fqG+K0l1fZQoaAZHQKMZ3dCVryloB03oA2gIR0DDuPAfOlfrdX2UKGgGR0CiHO+Y+jdpaAdN6ANoCEdAw7jwR9w3pHV9lChoBkdAo99683++/WgHTegDaAhHQMO48HHeaa11fZQoaAZHQKMlIn4wh4doB03oA2gIR0DDuPCeiBXkdX2UKGgGR0ChuOm3F1jiaAdN6ANoCEdAw7xvW8RL9XV9lChoBkdAosVM4HX2/WgHTegDaAhHQMO8b6j32251fZQoaAZHQKNi8T0QK8doB03oA2gIR0DDvG/xMFlkdX2UKGgGR0CjUK7f51vEaAdN6ANoCEdAw7xwPikwe3V9lChoBkdApDQGeHzpYGgHTegDaAhHQMPA9lrM1TB1fZQoaAZHQKQ4eq0dBB1oB03oA2gIR0DDwPaZ0CA+dX2UKGgGR0CjdZA8KXv6aAdN6ANoCEdAw8D25fdAPnV9lChoBkdApFCubmU4aWgHTegDaAhHQMPA9zYVZcN1fZQoaAZHQKRLQ2jO9nNoB03oA2gIR0DDxJw/eLvUdX2UKGgGR0Ci+BpcophGaAdN6ANoCEdAw8ScfIS13XV9lChoBkdAoJ3tr2xptmgHTegDaAhHQMPEnLYf4h51fZQoaAZHQKML4+yquKZoB03oA2gIR0DDxJzySV4YdX2UKGgGR0CibAlL39JjaAdN6ANoCEdAw8kD54W1t3V9lChoBkdAowOlstTUAmgHTegDaAhHQMPJBBTn7pF1fZQoaAZHQKMGBEMLF4toB03oA2gIR0DDyQRBJI1+dX2UKGgGR0Cjl8f4AS39aAdN6ANoCEdAw8kEarmyPnV9lChoBkdAoyUSoIfKZGgHTegDaAhHQMPMzW4NI9V1fZQoaAZHQKGo6GhVU+9oB03oA2gIR0DDzM2ZCv5hdX2UKGgGR0CkVGA+IMz/aAdN6ANoCEdAw8zN7hNucnV9lChoBkdApEDPjXFtK2gHTegDaAhHQMPMzkc81XN1fZQoaAZHQKJoEhhYvFpoB03oA2gIR0DD0REtmL9/dX2UKGgGR0CjtaqziS7oaAdN6ANoCEdAw9ERV7x/eHV9lChoBkdAowwlFc6eXmgHTegDaAhHQMPREYUN8Vp1fZQoaAZHQKJf42qDK5loB03oA2gIR0DD0RGwA2hqdX2UKGgGR0CjdCNXo1UEaAdN6ANoCEdAw9T0GMXJo3V9lChoBkdAoxIzE74i5mgHTegDaAhHQMPU9GDlHSZ1fZQoaAZHQKFnjO58Sf1oB03oA2gIR0DD1PSu8scydX2UKGgGR0CkP+Tnq3VkaAdN6ANoCEdAw9T1BBRht3V9lChoBkdAoyEuzY287WgHTegDaAhHQMPZGDtgKF91fZQoaAZHQKK0u4nWrfdoB03oA2gIR0DD2RhdjXnRdX2UKGgGR0CjZyEFfReDaAdN6ANoCEdAw9kYgPmPo3V9lChoBkdAoomMNDtw72gHTegDaAhHQMPZGKyOaOR1fZQoaAZHQKJCtg4OtnxoB03oA2gIR0DD3Pip97WvdX2UKGgGR0Cifm1XeWOZaAdN6ANoCEdAw9z4+bExZnV9lChoBkdAo4KTp9qk/WgHTegDaAhHQMPc+UxEfDF1fZQoaAZHQKNSEbz9S/FoB03oA2gIR0DD3PmeQMhHdX2UKGgGR0CjwEdwWFewaAdN6ANoCEdAw+EIM5wOv3V9lChoBkdAofVfvWpZOmgHTegDaAhHQMPhCF36hxp1fZQoaAZHQKLWL9FWn0loB03oA2gIR0DD4QiN83MqdX2UKGgGR0CiSA+/QBxQaAdN6ANoCEdAw+EIvL5h0HV9lChoBkdAo3265f+jumgHTegDaAhHQMPk6feUILR1fZQoaAZHQKQC2vCdjG1oB03oA2gIR0DD5OpOHnEEdX2UKGgGR0Cjlnq/20zCaAdN6ANoCEdAw+TqmJFb3XV9lChoBkdAoosNJOFg2WgHTegDaAhHQMPk6uby6MB1fZQoaAZHQKMycPsiSq5oB03oA2gIR0DD6OetZFG5dX2UKGgGR0CjN1Illbu/aAdN6ANoCEdAw+jn6LOzIHV9lChoBkdAoxrbxAjY7WgHTegDaAhHQMPo6CEQGwB1fZQoaAZHQKNGBrTH80loB03oA2gIR0DD6Oht1p0wdX2UKGgGR0CQRDbLlmvoaAdN6ANoCEdAw+z1iEQGwHV9lChoBkdAo83rl90A92gHTegDaAhHQMPs9etbLU11fZQoaAZHQKQTFOkcjqxoB03oA2gIR0DD7PZHqeK9dX2UKGgGR0CjJBd7ngYQaAdN6ANoCEdAw+z2pgkTpXV9lChoBkdApDYT9XLeRGgHTegDaAhHQMPw3CpWFOB1fZQoaAZHQKPQUbPQfIVoB03oA2gIR0DD8NxQm/nGdX2UKGgGR0CkAUUfHPu5aAdN6ANoCEdAw/Dcc4HX3HV9lChoBkdAotlQo3JgcGgHTegDaAhHQMPw3JhOP/91fZQoaAZHQKK1Z8wYcedoB03oA2gIR0DD9OFSAH3UdX2UKGgGR0ChEVKEWZZ0aAdN6ANoCEdAw/ThnGKhtnV9lChoBkdAopf8OCoS+WgHTegDaAhHQMP04ejEehh1fZQoaAZHQKLWuGkep4toB03oA2gIR0DD9OI2CNCJdX2UKGgGR0Ch74vci4axaAdN6ANoCEdAw/jPgQYk3XV9lChoBkdAo6y9xffGdmgHTegDaAhHQMP4z6X8fmt1fZQoaAZHQKLdf9S/CZZoB03oA2gIR0DD+M/OhTOxdX2UKGgGR0CjPdVPWQOnaAdN6ANoCEdAw/jP8+iaiXVlLg=="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 133196,
|
84 |
+
"n_steps": 8,
|
85 |
+
"gamma": 0.99,
|
86 |
+
"gae_lambda": 0.9,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.4,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"normalize_advantage": false,
|
91 |
+
"observation_space": {
|
92 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
93 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
94 |
+
"dtype": "float32",
|
95 |
+
"_shape": [
|
96 |
+
28
|
97 |
+
],
|
98 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
99 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
100 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
101 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
102 |
+
"_np_random": null
|
103 |
+
},
|
104 |
+
"action_space": {
|
105 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
106 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
107 |
+
"dtype": "float32",
|
108 |
+
"_shape": [
|
109 |
+
8
|
110 |
+
],
|
111 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
112 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
113 |
+
"bounded_below": "[ True True True True True True True True]",
|
114 |
+
"bounded_above": "[ True True True True True True True True]",
|
115 |
+
"_np_random": null
|
116 |
+
},
|
117 |
+
"n_envs": 4
|
118 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:051757e4e00d73d499d8e406cd636c11843d6b5b62d208731b3c3ae74afef6b4
|
3 |
+
size 130
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d68ed305cc8f23f711b90c3f5c36a1feaf35af9bf02880e23798cf687fae5ae7
|
3 |
+
size 130
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99153ed9b545f0f5af916841c8510b36c9a0a84e88f412678bced8aba994b482
|
3 |
+
size 128
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11f90252d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11f9025360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11f90253f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11f9025480>", "_build": "<function ActorCriticPolicy._build at 0x7f11f9025510>", "forward": "<function ActorCriticPolicy.forward at 0x7f11f90255a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11f9025630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11f90256c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f11f9025750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11f90257e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11f9025870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11f9025900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f11f90214c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVAwEAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXWMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": {"pi": [64, 64], "vf": [64, 64]}, "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688400277230719381, "learning_rate": 0.00048, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFGMcUA+Qvs/YMW4P6d2DL8JQoY/G3mRPVRAcT/En6m9+Aw0PlOGxjpUHibA6mTmvFf0ZL98QYW70YhDQPWxyzwcSmI/r6gQPFZVLkBVwZk8rwYKvwbqKbz15zvAz5aRvLa4CsAXGS3AobikvwlJkr9RjHFA1kL7P2DFuD+ndgy/CUKGPxt5kT1UQHE/xJ+pvT3eB75ThsY6lVZAwOpk5rxOhRC/fEGFu2/mPUD1scs84BEdP6+oEDxoA05AVcGZPOdoO78G6im8PgZDwM+Wkby2uArAFxktwKG4pL8JSZK/UYxxQEFC+z9gxbg/p3YMvwlChj8beZE9VEBxP8Sfqb3fAXY8U4bGOuaOJsDqZOa8izl2v3xBhbvJD0hA9bHLPLH0Uz+vqBA8RQs6QFXBmTwZcgC/BuopvGr4J8DPlpG8trgKwBcZLcChuKS/CUmSv1GMcUBCQvs/YMW4P6d2DL8JQoY/G3mRPVRAcT/En6m91hxPvVOGxjqLtxrA6mTmvB9RNL98QYW769poQPWxyzx3lwg/r6gQPGKJP0BVwZk8d00HvwbqKbznLErAz5aRvLa4CsAXGS3AobikvwlJkr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrsmS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAadsgPAAAAAD+FADAAAAAACTfnL0AAAAAsnX6PwAAAAAVhwc9AAAAAINq7T8AAAAA1iQlvQAAAACJ8vK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6SvttQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC2nxbwAAAAAceT4vwAAAAAuxu69AAAAAC7H5z8AAAAAFQfRvQAAAAAD2/k/AAAAAATK8r0AAAAAoZXzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIoXBTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICW/rU9AAAAANr84b8AAAAAhWS2PQAAAABDEwBAAAAAACRjjz0AAAAA9u7bPwAAAADIdYm8AAAAAGovAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeVC02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/d8hPQAAAAD9Le6/AAAAAD0+HT0AAAAA7Lj1PwAAAAB4cRC6AAAAAJYo5T8AAAAAmuH+vQAAAAAMsADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKOaOCFsYVKMAWyUTegDjAF0lEdAw5k97aZhKHV9lChoBkdAnyCPVd5Y5mgHTegDaAhHQMOZPhFmWdF1fZQoaAZHQKO3Q+nqFAVoB03oA2gIR0DDmT4z1scidX2UKGgGR0Ci3+dJBgNPaAdN6ANoCEdAw5k+VVPva3V9lChoBkdAo+ijCHh0hmgHTegDaAhHQMOcpU1hsqJ1fZQoaAZHQKSv9p2U0N1oB03oA2gIR0DDnKV9ph4MdX2UKGgGR0CjPq4KYzBRaAdN6ANoCEdAw5ylsqril3V9lChoBkdAorSKDkELY2gHTegDaAhHQMOcperELpl1fZQoaAZHQKLKvme18b9oB03oA2gIR0DDoSoSQHRkdX2UKGgGR0Cjsez3AVO9aAdN6ANoCEdAw6EqUrTYunV9lChoBkdAo7lZvP1L8WgHTegDaAhHQMOhKpLEk0J1fZQoaAZHQKIQOCvovBdoB03oA2gIR0DDoSrbYbsGdX2UKGgGR0CjaCvMjeKsaAdN6ANoCEdAw6SdfO2RaHV9lChoBkdApG929vjwQWgHTegDaAhHQMOknaRp1zR1fZQoaAZHQKM8ebG3nZFoB03oA2gIR0DDpJ3IsAeadX2UKGgGR0CjoiO5jH4oaAdN6ANoCEdAw6Sd8uSOinV9lChoBkdAopu5TwUg0WgHTegDaAhHQMOpCFfAsTZ1fZQoaAZHQKPcUwyIpH9oB03oA2gIR0DDqQh9iMHbdX2UKGgGR0CkEIYI8hcJaAdN6ANoCEdAw6kIois4k3V9lChoBkdAoUc3Hggow2gHTegDaAhHQMOpCM1KoQ51fZQoaAZHQKM5hPt2LYRoB03oA2gIR0DDrII71ZkkdX2UKGgGR0CjnshBzFMqaAdN6ANoCEdAw6yCdz4k/3V9lChoBkdAoeNsyFfzBmgHTegDaAhHQMOsgvEsJ6Z1fZQoaAZHQKRe+0jTrmhoB03oA2gIR0DDrIOs3hn8dX2UKGgGR0CinA7gTAWSaAdN6ANoCEdAw7EHqASWaHV9lChoBkdAo+c1mJ3xF2gHTegDaAhHQMOxB8pb2UV1fZQoaAZHQKSwVW5H3DhoB03oA2gIR0DDsQftfG+9dX2UKGgGR0CjEzavRqoIaAdN6ANoCEdAw7EIDq4YrXV9lChoBkdAo4dBHZsbemgHTegDaAhHQMO0ffM4cWF1fZQoaAZHQKKYqlByCFtoB03oA2gIR0DDtH4s052hdX2UKGgGR0CkvXNShrWRaAdN6ANoCEdAw7R+ZWJaaHV9lChoBkdApDflovi97GgHTegDaAhHQMO0fqG+K0l1fZQoaAZHQKMZ3dCVryloB03oA2gIR0DDuPAfOlfrdX2UKGgGR0CiHO+Y+jdpaAdN6ANoCEdAw7jwR9w3pHV9lChoBkdAo99683++/WgHTegDaAhHQMO48HHeaa11fZQoaAZHQKMlIn4wh4doB03oA2gIR0DDuPCeiBXkdX2UKGgGR0ChuOm3F1jiaAdN6ANoCEdAw7xvW8RL9XV9lChoBkdAosVM4HX2/WgHTegDaAhHQMO8b6j32251fZQoaAZHQKNi8T0QK8doB03oA2gIR0DDvG/xMFlkdX2UKGgGR0CjUK7f51vEaAdN6ANoCEdAw7xwPikwe3V9lChoBkdApDQGeHzpYGgHTegDaAhHQMPA9lrM1TB1fZQoaAZHQKQ4eq0dBB1oB03oA2gIR0DDwPaZ0CA+dX2UKGgGR0CjdZA8KXv6aAdN6ANoCEdAw8D25fdAPnV9lChoBkdApFCubmU4aWgHTegDaAhHQMPA9zYVZcN1fZQoaAZHQKRLQ2jO9nNoB03oA2gIR0DDxJw/eLvUdX2UKGgGR0Ci+BpcophGaAdN6ANoCEdAw8ScfIS13XV9lChoBkdAoJ3tr2xptmgHTegDaAhHQMPEnLYf4h51fZQoaAZHQKML4+yquKZoB03oA2gIR0DDxJzySV4YdX2UKGgGR0CibAlL39JjaAdN6ANoCEdAw8kD54W1t3V9lChoBkdAowOlstTUAmgHTegDaAhHQMPJBBTn7pF1fZQoaAZHQKMGBEMLF4toB03oA2gIR0DDyQRBJI1+dX2UKGgGR0Cjl8f4AS39aAdN6ANoCEdAw8kEarmyPnV9lChoBkdAoyUSoIfKZGgHTegDaAhHQMPMzW4NI9V1fZQoaAZHQKGo6GhVU+9oB03oA2gIR0DDzM2ZCv5hdX2UKGgGR0CkVGA+IMz/aAdN6ANoCEdAw8zN7hNucnV9lChoBkdApEDPjXFtK2gHTegDaAhHQMPMzkc81XN1fZQoaAZHQKJoEhhYvFpoB03oA2gIR0DD0REtmL9/dX2UKGgGR0CjtaqziS7oaAdN6ANoCEdAw9ERV7x/eHV9lChoBkdAowwlFc6eXmgHTegDaAhHQMPREYUN8Vp1fZQoaAZHQKJf42qDK5loB03oA2gIR0DD0RGwA2hqdX2UKGgGR0CjdCNXo1UEaAdN6ANoCEdAw9T0GMXJo3V9lChoBkdAoxIzE74i5mgHTegDaAhHQMPU9GDlHSZ1fZQoaAZHQKFnjO58Sf1oB03oA2gIR0DD1PSu8scydX2UKGgGR0CkP+Tnq3VkaAdN6ANoCEdAw9T1BBRht3V9lChoBkdAoyEuzY287WgHTegDaAhHQMPZGDtgKF91fZQoaAZHQKK0u4nWrfdoB03oA2gIR0DD2RhdjXnRdX2UKGgGR0CjZyEFfReDaAdN6ANoCEdAw9kYgPmPo3V9lChoBkdAoomMNDtw72gHTegDaAhHQMPZGKyOaOR1fZQoaAZHQKJCtg4OtnxoB03oA2gIR0DD3Pip97WvdX2UKGgGR0Cifm1XeWOZaAdN6ANoCEdAw9z4+bExZnV9lChoBkdAo4KTp9qk/WgHTegDaAhHQMPc+UxEfDF1fZQoaAZHQKNSEbz9S/FoB03oA2gIR0DD3PmeQMhHdX2UKGgGR0CjwEdwWFewaAdN6ANoCEdAw+EIM5wOv3V9lChoBkdAofVfvWpZOmgHTegDaAhHQMPhCF36hxp1fZQoaAZHQKLWL9FWn0loB03oA2gIR0DD4QiN83MqdX2UKGgGR0CiSA+/QBxQaAdN6ANoCEdAw+EIvL5h0HV9lChoBkdAo3265f+jumgHTegDaAhHQMPk6feUILR1fZQoaAZHQKQC2vCdjG1oB03oA2gIR0DD5OpOHnEEdX2UKGgGR0Cjlnq/20zCaAdN6ANoCEdAw+TqmJFb3XV9lChoBkdAoosNJOFg2WgHTegDaAhHQMPk6uby6MB1fZQoaAZHQKMycPsiSq5oB03oA2gIR0DD6OetZFG5dX2UKGgGR0CjN1Illbu/aAdN6ANoCEdAw+jn6LOzIHV9lChoBkdAoxrbxAjY7WgHTegDaAhHQMPo6CEQGwB1fZQoaAZHQKNGBrTH80loB03oA2gIR0DD6Oht1p0wdX2UKGgGR0CQRDbLlmvoaAdN6ANoCEdAw+z1iEQGwHV9lChoBkdAo83rl90A92gHTegDaAhHQMPs9etbLU11fZQoaAZHQKQTFOkcjqxoB03oA2gIR0DD7PZHqeK9dX2UKGgGR0CjJBd7ngYQaAdN6ANoCEdAw+z2pgkTpXV9lChoBkdApDYT9XLeRGgHTegDaAhHQMPw3CpWFOB1fZQoaAZHQKPQUbPQfIVoB03oA2gIR0DD8NxQm/nGdX2UKGgGR0CkAUUfHPu5aAdN6ANoCEdAw/Dcc4HX3HV9lChoBkdAotlQo3JgcGgHTegDaAhHQMPw3JhOP/91fZQoaAZHQKK1Z8wYcedoB03oA2gIR0DD9OFSAH3UdX2UKGgGR0ChEVKEWZZ0aAdN6ANoCEdAw/ThnGKhtnV9lChoBkdAopf8OCoS+WgHTegDaAhHQMP04ejEehh1fZQoaAZHQKLWuGkep4toB03oA2gIR0DD9OI2CNCJdX2UKGgGR0Ch74vci4axaAdN6ANoCEdAw/jPgQYk3XV9lChoBkdAo6y9xffGdmgHTegDaAhHQMP4z6X8fmt1fZQoaAZHQKLdf9S/CZZoB03oA2gIR0DD+M/OhTOxdX2UKGgGR0CjPdVPWQOnaAdN6ANoCEdAw/jP8+iaiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 133196, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2548.3274639207402, "std_reward": 83.37114007524761, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-03T17:48:30.568530"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43013c4adcecbd027f1f18fcf9244a0d8c1d9eb5912252d0f148e8f52370ef8c
|
3 |
+
size 129
|