Senura commited on
Commit
a368fd6
1 Parent(s): df0fe34

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1140.16 +/- 385.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6140fde58ad726503518e6d0b1c33e2cb27e25c0e89fe22d8072903a39ada7eb
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcce807fdc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcce807fe50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcce807fee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcce807ff70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcce8081040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcce80810d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcce8081160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcce80811f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcce8081280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcce8081310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcce80813a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcce8081430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fcce8083340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679238454783100651,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANh6CT9O4gi/o+RpPW9rnz//Eg4/2nH+vZ6ZHT9elB2/Ohjtv2nmvj4e0p2+BkljP800kT+QA+s/LrU/PnYLFkDRP6Y/wVChPzYGFr3ufQK/9lNUP/G/jj3cmKs/yfedP/SBz7/uqnY+gocbPyUWjD9oT2w+sI5CQOKakb/n6H4/J47fvoIMTz+HDUQ+6OPSvyT4Ob8pNB1A6JpCP0HnMUAYcT+/k7sKv3W1Pj+GVY+8nyWIPyUozr4/kZg+6Pj9vvYwUr8i0ho+sUM3P7/Ll7/0gc+/7qp2PoKHGz+g6Wm/wXUfv1hu2j7gazY/EfG0v4U/Sj/jPiw96HocQOgB8j97WKC/FlyEvYiAh7+Fkja+bLbgvxGvMb8BiVHAw8mjPd25rT8cNxU89YuZP44ZlTy3t02/MEdSvBo6yL9EMEC9iukdP+6qdj6Chxs/JRaMP8QyDb+wzrA+iF0vP/A0fD8QPpK+Zh15P7k3Ez5GOhm/SuApv1oXCD5fnMA+BE/JPtkXFb/Hf02/03ZDP0fkaL4s4Og+mmtnvxLaKT8prgs+NfHZvl0zhL8QQCq/jixOPIrpHT/uqnY+gocbP6Dpab+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS5000AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe+gHvgAAAADLc+K/AAAAAFtJ1r0AAAAAU87uPwAAAAACQLu9AAAAAATY8j8AAAAA9VyHvQAAAAD8meS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HvpNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJKH9z0AAAAAqF73vwAAAABJoMU9AAAAAP1V8T8AAAAAVXjAPAAAAADHL+o/AAAAADDMQ7wAAAAAvYT8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlgrzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRZbq8AAAAAMrS4L8AAAAA8aa3vQAAAABmkOg/AAAAAIakHrwAAAAAFEzbPwAAAAAo7Ay+AAAAAEFq9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKE8Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAML2pvQAAAAAduuO/AAAAAEi1Bz4AAAAAxiTvPwAAAACWyWi9AAAAALvY+z8AAAAAou0RPgAAAAC6++i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXRzFo+OfeMAWyUTegDjAF0lEdAqzVu74BV/HV9lChoBkdAkl7e/k/8mGgHTegDaAhHQKs6rc8DB/J1fZQoaAZHQJZSLJOnEVFoB03oA2gIR0CrPZ3nhbW3dX2UKGgGR0CW1bhbGFSLaAdN6ANoCEdAqz+WAbyYonV9lChoBkdAjYekKeCkGmgHTegDaAhHQKtDJVWjoIR1fZQoaAZHQJc7dc5bQkZoB03oA2gIR0CrRuPSlWOqdX2UKGgGR0CWXZBGx2SuaAdN6ANoCEdAq0mzN2TxG3V9lChoBkdAmNqjiXIEKWgHTegDaAhHQKtLvnTRYzV1fZQoaAZHQJWJfNliBoVoB03oA2gIR0CrUMLGza9LdX2UKGgGR0CXgtQkX1rZaAdN6ANoCEdAq1ba8DjioHV9lChoBkdAf9NEQoTfzmgHTegDaAhHQKtZxfxc3VF1fZQoaAZHQJihflyR0U5oB03oA2gIR0CrW8uoHcDbdX2UKGgGR0CT0qhd+ocaaAdN6ANoCEdAq19VQbdadXV9lChoBkdAmhHUH6dlNGgHTegDaAhHQKtjD5gw4851fZQoaAZHQJcboFs54npoB03oA2gIR0CrZd7HQyAQdX2UKGgGR0CY82tY0VJuaAdN6ANoCEdAq2flilSCOHV9lChoBkdAmF5XanJkoWgHTegDaAhHQKtsA6ErXlN1fZQoaAZHQJXMlT0g8r9oB03oA2gIR0CrchPq1PWQdX2UKGgGR0CVQR8WsRxtaAdN6ANoCEdAq3W3iPyTZHV9lChoBkdAk5KBDCxeLWgHTegDaAhHQKt3u3kPtlZ1fZQoaAZHQJkMzOiWVu9oB03oA2gIR0Cre1gQHzH0dX2UKGgGR0CZKbwPiDNAaAdN6ANoCEdAq377iwSrYHV9lChoBkdAl57o3aSLZWgHTegDaAhHQKuBxDO1OTJ1fZQoaAZHQI0sIJJGvwFoB03oA2gIR0Crg62cBltkdX2UKGgGR0CWGquloDgZaAdN6ANoCEdAq4clHtnf23V9lChoBkdAlyezQu27WmgHTegDaAhHQKuMPIjGDL91fZQoaAZHQJT3i6iCaqloB03oA2gIR0CrkNRhlUZOdX2UKGgGR0CWAKXpnpSraAdN6ANoCEdAq5MxOvdM03V9lChoBkdAmMpZ2ll9SmgHTegDaAhHQKuWrSk0rLB1fZQoaAZHQJSyLBl+VkdoB03oA2gIR0Crml4UN8VpdX2UKGgGR0CW4nMCtA9naAdN6ANoCEdAq50jM5fdAXV9lChoBkdAkm4OFQEZBWgHTegDaAhHQKufHISUTtd1fZQoaAZHQJTiaH31zyVoB03oA2gIR0CrorOJk5IZdX2UKGgGR0CXufDsdDIBaAdN6ANoCEdAq6b+ac7Qs3V9lChoBkdAiK7iDVYp2GgHTegDaAhHQKurlOyE+Pl1fZQoaAZHQJjLsuRLbpNoB03oA2gIR0CrruqC6H0sdX2UKGgGR0CYNAQdCE6DaAdN6ANoCEdAq7KiyD7Ik3V9lChoBkdAmsE1UyYXwmgHTegDaAhHQKu2Vepn6Ed1fZQoaAZHQJYpzphWo3toB03oA2gIR0CruTOtGNJfdX2UKGgGR0CW024k/r0KaAdN6ANoCEdAq7tA5myxA3V9lChoBkdAmlvZrYXfqGgHTegDaAhHQKu+4O7QLNR1fZQoaAZHQJNRtOpKjBVoB03oA2gIR0Crwqszl90BdX2UKGgGR0Ca7PXsw+MZaAdN6ANoCEdAq8aixTsIFHV9lChoBkdAlyA6Ss8xK2gHTegDaAhHQKvJ9ReC04R1fZQoaAZHQJMnJr433pRoB03oA2gIR0CrzsS6+WWydX2UKGgGR0CZP3xCpm29aAdN6ANoCEdAq9KunO0LMXV9lChoBkdAkfNGXokiU2gHTegDaAhHQKvVie2/i5x1fZQoaAZHQIni/xQSBbxoB03oA2gIR0Cr1433xnWbdX2UKGgGR0CTsqrpaA4GaAdN6ANoCEdAq9sn4TK1X3V9lChoBkdAlvFK24NI9WgHTegDaAhHQKvfEg+Qlrx1fZQoaAZHQJADOdH2AXloB03oA2gIR0Cr4ojyvs7ddX2UKGgGR0CUYLrPt2LYaAdN6ANoCEdAq+W2icoYvXV9lChoBkdAlZ92pVCHAWgHTegDaAhHQKvrQqAjIJZ1fZQoaAZHQJCJUqWkaddoB03oA2gIR0Cr7wLE1l5GdX2UKGgGR0CRtyyMkyDaaAdN6ANoCEdAq/H06YE4enV9lChoBkdAkEDYsEq2B2gHTegDaAhHQKv0HBlcyFh1fZQoaAZHQJBnoXUH6dloB03oA2gIR0Cr98MOoYNzdX2UKGgGR0CPGOHWSU1RaAdN6ANoCEdAq/t3ES/TLHV9lChoBkdAkoKybH6uXGgHTegDaAhHQKv+Qm5UcXF1fZQoaAZHQJO1YljVhCtoB03oA2gIR0CsASV7pmmMdX2UKGgGR0CVS7oVmBe5aAdN6ANoCEdArAcBXU6PsHV9lChoBkdAlaR0nLJSzmgHTegDaAhHQKwLUTZg5R11fZQoaAZHQJKEw1dgOSZoB03oA2gIR0CsDi7HQyAQdX2UKGgGR0CURKKQq7ROaAdN6ANoCEdArBAzjWCmM3V9lChoBkdAj/NN8E3bVWgHTegDaAhHQKwTvzkIX0p1fZQoaAZHQJEbRd7fHghoB03oA2gIR0CsF3EOy3TedX2UKGgGR0CROk0ZFXq8aAdN6ANoCEdArBpgzzmOl3V9lChoBkdAljsa0pmVaGgHTegDaAhHQKwcedT5wfh1fZQoaAZHQJPA3wob4rVoB03oA2gIR0CsIhsF2V3VdX2UKGgGR0CWMRuwHJLeaAdN6ANoCEdArCeDqv/za3V9lChoBkdAl9lIrBj4H2gHTegDaAhHQKwqYyyD7Il1fZQoaAZHQJEKGcPOIIpoB03oA2gIR0CsLHl8w5/9dX2UKGgGR0CUUZZ7ojfOaAdN6ANoCEdArDAn1g6U7nV9lChoBkdAmqTbCrLhaWgHTegDaAhHQKwz7yz5XU91fZQoaAZHQJrAwEKVpsZoB03oA2gIR0CsNtmx+rlvdX2UKGgGR0CYTdon8baRaAdN6ANoCEdArDjy5qdpZnV9lChoBkdAmEzJkGzKLmgHTegDaAhHQKw+FTZxrBV1fZQoaAZHQJkVeGXXyy5oB03oA2gIR0CsRDVTR6WxdX2UKGgGR0CW1b/xDst1aAdN6ANoCEdArEcllum78XV9lChoBkdAm9fw80UGmmgHTegDaAhHQKxJMVqveP91fZQoaAZHQJqJU6NlyzZoB03oA2gIR0CsTO/ZmI0qdX2UKGgGR0CaErgdwNsnaAdN6ANoCEdArFDAgieNDXV9lChoBkdAmU/Ih+vyLGgHTegDaAhHQKxTkfbKzRh1fZQoaAZHQJxZ2KbayrxoB03oA2gIR0CsVaNWluWKdX2UKGgGR0CYn4FSsKb8aAdN6ANoCEdArFoV2aDwpnV9lChoBkdAlvAkNvwVkGgHTegDaAhHQKxgWDDCP6t1fZQoaAZHQJVmeZlWfbtoB03oA2gIR0CsY9BkZrHmdX2UKGgGR0CYkcfJFLFoaAdN6ANoCEdArGXOTLW7OHV9lChoBkdAkxT6qn3tbGgHTegDaAhHQKxpW9Mbm2d1fZQoaAZHQJb0xd1MdtFoB03oA2gIR0CsbSpa7mMgdX2UKGgGR0CVucwn6VMVaAdN6ANoCEdArHAfr8iwCHV9lChoBkdAlYZSdjG1hWgHTegDaAhHQKxyO/dIoVp1fZQoaAZHQJZuZ5+pfhNoB03oA2gIR0CsdfW7FsHjdX2UKGgGR0CT5+Cqp97XaAdN6ANoCEdArHwisuFpPHV9lChoBkdAltlUYj0L+mgHTegDaAhHQKyAWdqcmSh1fZQoaAZHQJdm3zlLeyloB03oA2gIR0CsgmfrrxAjdX2UKGgGR0CVfaiZv1lHaAdN6ANoCEdArIYAxi5NGnV9lChoBkdAmgx8l1KXfWgHTegDaAhHQKyJ02cawUx1fZQoaAZHQJU/SP2f029oB03oA2gIR0CsjKvZZjhDdX2UKGgGR0CTb8MHbAUMaAdN6ANoCEdArI668Yht+HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:324aa010cfde40271fe50ba4596b7ad0bef152bb28654288f9fe790e9fc4da86
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b35de912d690ed9d6caf1ed1a34d906ec3222f7b2f54db7a46c693483f3ce5
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcce807fdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcce807fe50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcce807fee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcce807ff70>", "_build": "<function ActorCriticPolicy._build at 0x7fcce8081040>", "forward": "<function ActorCriticPolicy.forward at 0x7fcce80810d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcce8081160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcce80811f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcce8081280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcce8081310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcce80813a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcce8081430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcce8083340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679238454783100651, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANh6CT9O4gi/o+RpPW9rnz//Eg4/2nH+vZ6ZHT9elB2/Ohjtv2nmvj4e0p2+BkljP800kT+QA+s/LrU/PnYLFkDRP6Y/wVChPzYGFr3ufQK/9lNUP/G/jj3cmKs/yfedP/SBz7/uqnY+gocbPyUWjD9oT2w+sI5CQOKakb/n6H4/J47fvoIMTz+HDUQ+6OPSvyT4Ob8pNB1A6JpCP0HnMUAYcT+/k7sKv3W1Pj+GVY+8nyWIPyUozr4/kZg+6Pj9vvYwUr8i0ho+sUM3P7/Ll7/0gc+/7qp2PoKHGz+g6Wm/wXUfv1hu2j7gazY/EfG0v4U/Sj/jPiw96HocQOgB8j97WKC/FlyEvYiAh7+Fkja+bLbgvxGvMb8BiVHAw8mjPd25rT8cNxU89YuZP44ZlTy3t02/MEdSvBo6yL9EMEC9iukdP+6qdj6Chxs/JRaMP8QyDb+wzrA+iF0vP/A0fD8QPpK+Zh15P7k3Ez5GOhm/SuApv1oXCD5fnMA+BE/JPtkXFb/Hf02/03ZDP0fkaL4s4Og+mmtnvxLaKT8prgs+NfHZvl0zhL8QQCq/jixOPIrpHT/uqnY+gocbP6Dpab+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS5000AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe+gHvgAAAADLc+K/AAAAAFtJ1r0AAAAAU87uPwAAAAACQLu9AAAAAATY8j8AAAAA9VyHvQAAAAD8meS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HvpNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJKH9z0AAAAAqF73vwAAAABJoMU9AAAAAP1V8T8AAAAAVXjAPAAAAADHL+o/AAAAADDMQ7wAAAAAvYT8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlgrzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRZbq8AAAAAMrS4L8AAAAA8aa3vQAAAABmkOg/AAAAAIakHrwAAAAAFEzbPwAAAAAo7Ay+AAAAAEFq9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKE8Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAML2pvQAAAAAduuO/AAAAAEi1Bz4AAAAAxiTvPwAAAACWyWi9AAAAALvY+z8AAAAAou0RPgAAAAC6++i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXRzFo+OfeMAWyUTegDjAF0lEdAqzVu74BV/HV9lChoBkdAkl7e/k/8mGgHTegDaAhHQKs6rc8DB/J1fZQoaAZHQJZSLJOnEVFoB03oA2gIR0CrPZ3nhbW3dX2UKGgGR0CW1bhbGFSLaAdN6ANoCEdAqz+WAbyYonV9lChoBkdAjYekKeCkGmgHTegDaAhHQKtDJVWjoIR1fZQoaAZHQJc7dc5bQkZoB03oA2gIR0CrRuPSlWOqdX2UKGgGR0CWXZBGx2SuaAdN6ANoCEdAq0mzN2TxG3V9lChoBkdAmNqjiXIEKWgHTegDaAhHQKtLvnTRYzV1fZQoaAZHQJWJfNliBoVoB03oA2gIR0CrUMLGza9LdX2UKGgGR0CXgtQkX1rZaAdN6ANoCEdAq1ba8DjioHV9lChoBkdAf9NEQoTfzmgHTegDaAhHQKtZxfxc3VF1fZQoaAZHQJihflyR0U5oB03oA2gIR0CrW8uoHcDbdX2UKGgGR0CT0qhd+ocaaAdN6ANoCEdAq19VQbdadXV9lChoBkdAmhHUH6dlNGgHTegDaAhHQKtjD5gw4851fZQoaAZHQJcboFs54npoB03oA2gIR0CrZd7HQyAQdX2UKGgGR0CY82tY0VJuaAdN6ANoCEdAq2flilSCOHV9lChoBkdAmF5XanJkoWgHTegDaAhHQKtsA6ErXlN1fZQoaAZHQJXMlT0g8r9oB03oA2gIR0CrchPq1PWQdX2UKGgGR0CVQR8WsRxtaAdN6ANoCEdAq3W3iPyTZHV9lChoBkdAk5KBDCxeLWgHTegDaAhHQKt3u3kPtlZ1fZQoaAZHQJkMzOiWVu9oB03oA2gIR0Cre1gQHzH0dX2UKGgGR0CZKbwPiDNAaAdN6ANoCEdAq377iwSrYHV9lChoBkdAl57o3aSLZWgHTegDaAhHQKuBxDO1OTJ1fZQoaAZHQI0sIJJGvwFoB03oA2gIR0Crg62cBltkdX2UKGgGR0CWGquloDgZaAdN6ANoCEdAq4clHtnf23V9lChoBkdAlyezQu27WmgHTegDaAhHQKuMPIjGDL91fZQoaAZHQJT3i6iCaqloB03oA2gIR0CrkNRhlUZOdX2UKGgGR0CWAKXpnpSraAdN6ANoCEdAq5MxOvdM03V9lChoBkdAmMpZ2ll9SmgHTegDaAhHQKuWrSk0rLB1fZQoaAZHQJSyLBl+VkdoB03oA2gIR0Crml4UN8VpdX2UKGgGR0CW4nMCtA9naAdN6ANoCEdAq50jM5fdAXV9lChoBkdAkm4OFQEZBWgHTegDaAhHQKufHISUTtd1fZQoaAZHQJTiaH31zyVoB03oA2gIR0CrorOJk5IZdX2UKGgGR0CXufDsdDIBaAdN6ANoCEdAq6b+ac7Qs3V9lChoBkdAiK7iDVYp2GgHTegDaAhHQKurlOyE+Pl1fZQoaAZHQJjLsuRLbpNoB03oA2gIR0CrruqC6H0sdX2UKGgGR0CYNAQdCE6DaAdN6ANoCEdAq7KiyD7Ik3V9lChoBkdAmsE1UyYXwmgHTegDaAhHQKu2Vepn6Ed1fZQoaAZHQJYpzphWo3toB03oA2gIR0CruTOtGNJfdX2UKGgGR0CW024k/r0KaAdN6ANoCEdAq7tA5myxA3V9lChoBkdAmlvZrYXfqGgHTegDaAhHQKu+4O7QLNR1fZQoaAZHQJNRtOpKjBVoB03oA2gIR0Crwqszl90BdX2UKGgGR0Ca7PXsw+MZaAdN6ANoCEdAq8aixTsIFHV9lChoBkdAlyA6Ss8xK2gHTegDaAhHQKvJ9ReC04R1fZQoaAZHQJMnJr433pRoB03oA2gIR0CrzsS6+WWydX2UKGgGR0CZP3xCpm29aAdN6ANoCEdAq9KunO0LMXV9lChoBkdAkfNGXokiU2gHTegDaAhHQKvVie2/i5x1fZQoaAZHQIni/xQSBbxoB03oA2gIR0Cr1433xnWbdX2UKGgGR0CTsqrpaA4GaAdN6ANoCEdAq9sn4TK1X3V9lChoBkdAlvFK24NI9WgHTegDaAhHQKvfEg+Qlrx1fZQoaAZHQJADOdH2AXloB03oA2gIR0Cr4ojyvs7ddX2UKGgGR0CUYLrPt2LYaAdN6ANoCEdAq+W2icoYvXV9lChoBkdAlZ92pVCHAWgHTegDaAhHQKvrQqAjIJZ1fZQoaAZHQJCJUqWkaddoB03oA2gIR0Cr7wLE1l5GdX2UKGgGR0CRtyyMkyDaaAdN6ANoCEdAq/H06YE4enV9lChoBkdAkEDYsEq2B2gHTegDaAhHQKv0HBlcyFh1fZQoaAZHQJBnoXUH6dloB03oA2gIR0Cr98MOoYNzdX2UKGgGR0CPGOHWSU1RaAdN6ANoCEdAq/t3ES/TLHV9lChoBkdAkoKybH6uXGgHTegDaAhHQKv+Qm5UcXF1fZQoaAZHQJO1YljVhCtoB03oA2gIR0CsASV7pmmMdX2UKGgGR0CVS7oVmBe5aAdN6ANoCEdArAcBXU6PsHV9lChoBkdAlaR0nLJSzmgHTegDaAhHQKwLUTZg5R11fZQoaAZHQJKEw1dgOSZoB03oA2gIR0CsDi7HQyAQdX2UKGgGR0CURKKQq7ROaAdN6ANoCEdArBAzjWCmM3V9lChoBkdAj/NN8E3bVWgHTegDaAhHQKwTvzkIX0p1fZQoaAZHQJEbRd7fHghoB03oA2gIR0CsF3EOy3TedX2UKGgGR0CROk0ZFXq8aAdN6ANoCEdArBpgzzmOl3V9lChoBkdAljsa0pmVaGgHTegDaAhHQKwcedT5wfh1fZQoaAZHQJPA3wob4rVoB03oA2gIR0CsIhsF2V3VdX2UKGgGR0CWMRuwHJLeaAdN6ANoCEdArCeDqv/za3V9lChoBkdAl9lIrBj4H2gHTegDaAhHQKwqYyyD7Il1fZQoaAZHQJEKGcPOIIpoB03oA2gIR0CsLHl8w5/9dX2UKGgGR0CUUZZ7ojfOaAdN6ANoCEdArDAn1g6U7nV9lChoBkdAmqTbCrLhaWgHTegDaAhHQKwz7yz5XU91fZQoaAZHQJrAwEKVpsZoB03oA2gIR0CsNtmx+rlvdX2UKGgGR0CYTdon8baRaAdN6ANoCEdArDjy5qdpZnV9lChoBkdAmEzJkGzKLmgHTegDaAhHQKw+FTZxrBV1fZQoaAZHQJkVeGXXyy5oB03oA2gIR0CsRDVTR6WxdX2UKGgGR0CW1b/xDst1aAdN6ANoCEdArEcllum78XV9lChoBkdAm9fw80UGmmgHTegDaAhHQKxJMVqveP91fZQoaAZHQJqJU6NlyzZoB03oA2gIR0CsTO/ZmI0qdX2UKGgGR0CaErgdwNsnaAdN6ANoCEdArFDAgieNDXV9lChoBkdAmU/Ih+vyLGgHTegDaAhHQKxTkfbKzRh1fZQoaAZHQJxZ2KbayrxoB03oA2gIR0CsVaNWluWKdX2UKGgGR0CYn4FSsKb8aAdN6ANoCEdArFoV2aDwpnV9lChoBkdAlvAkNvwVkGgHTegDaAhHQKxgWDDCP6t1fZQoaAZHQJVmeZlWfbtoB03oA2gIR0CsY9BkZrHmdX2UKGgGR0CYkcfJFLFoaAdN6ANoCEdArGXOTLW7OHV9lChoBkdAkxT6qn3tbGgHTegDaAhHQKxpW9Mbm2d1fZQoaAZHQJb0xd1MdtFoB03oA2gIR0CsbSpa7mMgdX2UKGgGR0CVucwn6VMVaAdN6ANoCEdArHAfr8iwCHV9lChoBkdAlYZSdjG1hWgHTegDaAhHQKxyO/dIoVp1fZQoaAZHQJZuZ5+pfhNoB03oA2gIR0CsdfW7FsHjdX2UKGgGR0CT5+Cqp97XaAdN6ANoCEdArHwisuFpPHV9lChoBkdAltlUYj0L+mgHTegDaAhHQKyAWdqcmSh1fZQoaAZHQJdm3zlLeyloB03oA2gIR0CsgmfrrxAjdX2UKGgGR0CVfaiZv1lHaAdN6ANoCEdArIYAxi5NGnV9lChoBkdAmgx8l1KXfWgHTegDaAhHQKyJ02cawUx1fZQoaAZHQJU/SP2f029oB03oA2gIR0CsjKvZZjhDdX2UKGgGR0CTb8MHbAUMaAdN6ANoCEdArI668Yht+HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (266 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1140.16437499467, "std_reward": 385.577763052258, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T16:10:26.962209"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ff3b8a1d5936b215bca78027f219a1ad84013acf822c17af6bc768090ed195e
3
+ size 2136