File size: 2,255 Bytes
98f81ec e0b9aa2 98f81ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: microsoft/deberta-v3-large
model-index:
- name: deberta-v3-large__sst2__train-16-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-4
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6329
- Accuracy: 0.6392
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 |
| 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 |
| 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 |
| 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 |
| 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 |
| 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 |
| 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 |
| 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 |
| 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 |
| 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 |
| 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 |
| 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 |
| 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 |
| 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|