File size: 2,216 Bytes
d47e833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta-v3-large__sst2__train-16-8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large__sst2__train-16-8
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6915
- Accuracy: 0.6579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7129 | 1.0 | 7 | 0.7309 | 0.2857 |
| 0.6549 | 2.0 | 14 | 0.7316 | 0.4286 |
| 0.621 | 3.0 | 21 | 0.7131 | 0.5714 |
| 0.3472 | 4.0 | 28 | 0.5703 | 0.4286 |
| 0.2041 | 5.0 | 35 | 0.6675 | 0.5714 |
| 0.031 | 6.0 | 42 | 1.6750 | 0.5714 |
| 0.0141 | 7.0 | 49 | 1.8743 | 0.5714 |
| 0.0055 | 8.0 | 56 | 1.1778 | 0.5714 |
| 0.0024 | 9.0 | 63 | 1.0699 | 0.5714 |
| 0.0019 | 10.0 | 70 | 1.0933 | 0.5714 |
| 0.0012 | 11.0 | 77 | 1.1218 | 0.7143 |
| 0.0007 | 12.0 | 84 | 1.1468 | 0.7143 |
| 0.0006 | 13.0 | 91 | 1.1584 | 0.7143 |
| 0.0006 | 14.0 | 98 | 1.3092 | 0.7143 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
|