--- license: llama3 library_name: xtuner datasets: - Lin-Chen/ShareGPT4V pipeline_tag: image-text-to-text --- --- **Notice:** This repository hosts the `llava-llama-3-8b-v1_1-hf` model, which has been specifically modified to address compatibility issues with the pure `transformers` library. The original model configuration and index files have been manually adjusted to ensure seamless integration and functionality with the `transformers` setup. These adjustments have not altered the model weights. --- ## QuickStart ### Chat with lmdeploy 1. Installation ``` pip install 'lmdeploy>=0.4.0' pip install git+https://github.com/haotian-liu/LLaVA.git ``` 2. Run Running with pure `transformers` library ```python from transformers import ( LlavaProcessor, LlavaForConditionalGeneration, ) import torch from PIL import Image import requests MODEL_NAME = "Seungyoun/llava-llama-3-8b-hf" processor = LlavaProcessor.from_pretrained(MODEL_NAME) # add 128257 , processor.tokenizer.add_tokens(["<|image|>", ""], special_tokens=True) model = LlavaForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda:0") # resize embeddings model.resize_token_embeddings(len(processor.tokenizer)) # prepare image and text prompt, using the appropriate prompt template url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTd4g61TSw890IYKBbPMgXPyWAKdVOpWWUAF0-FGzgX2Q&s" image = Image.open(requests.get(url, stream=True).raw) prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <|image|>\nWhat is shown in this image? ASSISTANT:" # FIX : Chat template inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") # autoregressively complete prompt output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) # What is shown in this image? ASSISTANT: The image shows a heartwarming scene of two dogs sitting together on a couch. The dogs are of different breeds, one being a golden retriever and the other being a tabby cat. The dogs are sitting close together, indicating a strong bond between them. The image captures a beautiful moment of companionship between two different species. sit on couch. golden retriever and tabby cat. dogs are sitting together. companionship between two different species. ``` --- ## Model llava-llama-3-8b-v1_1-hf is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner). ## Details | Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset | | :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: | | LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) | | LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) | | LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) | ## Results
Image
| Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar | | :-------------------- | :---------------: | :---------------: | :---------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: | | LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 | | LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 | | LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 | ## Citation ```bibtex @misc{2023xtuner, title={XTuner: A Toolkit for Efficiently Fine-tuning LLM}, author={XTuner Contributors}, howpublished = {\url{https://github.com/InternLM/xtuner}}, year={2023} } ```