End of training
Browse files- README.md +59 -0
- all_results.json +8 -0
- eval_results.json +8 -0
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2-0.5B-Instruct
|
3 |
+
datasets: continual_data_debug_0
|
4 |
+
library_name: transformers
|
5 |
+
model_name: Qwen2-0.5B-Instruct_continual_data_debug_REWARD_0
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
- trl
|
9 |
+
- reward-trainer
|
10 |
+
licence: license
|
11 |
+
---
|
12 |
+
|
13 |
+
# Model Card for Qwen2-0.5B-Instruct_continual_data_debug_REWARD_0
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [continual_data_debug_0](https://huggingface.co/datasets/continual_data_debug_0) dataset.
|
16 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
17 |
+
|
18 |
+
## Quick start
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import pipeline
|
22 |
+
|
23 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
24 |
+
generator = pipeline("text-generation", model="Shahradmz/Qwen2-0.5B-Instruct_continual_data_debug_REWARD_0", device="cuda")
|
25 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
26 |
+
print(output["generated_text"])
|
27 |
+
```
|
28 |
+
|
29 |
+
## Training procedure
|
30 |
+
|
31 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/shahrad_m/huggingface/runs/76f337dj)
|
32 |
+
|
33 |
+
|
34 |
+
This model was trained with Reward.
|
35 |
+
|
36 |
+
### Framework versions
|
37 |
+
|
38 |
+
- TRL: 0.15.1
|
39 |
+
- Transformers: 4.49.0
|
40 |
+
- Pytorch: 2.3.0
|
41 |
+
- Datasets: 3.3.2
|
42 |
+
- Tokenizers: 0.21.0
|
43 |
+
|
44 |
+
## Citations
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
Cite TRL as:
|
49 |
+
|
50 |
+
```bibtex
|
51 |
+
@misc{vonwerra2022trl,
|
52 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
53 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
54 |
+
year = 2020,
|
55 |
+
journal = {GitHub repository},
|
56 |
+
publisher = {GitHub},
|
57 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
58 |
+
}
|
59 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 1.0,
|
4 |
+
"eval_loss": 0.42100343108177185,
|
5 |
+
"eval_runtime": 0.0672,
|
6 |
+
"eval_samples_per_second": 29.753,
|
7 |
+
"eval_steps_per_second": 14.876
|
8 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_accuracy": 1.0,
|
4 |
+
"eval_loss": 0.42100343108177185,
|
5 |
+
"eval_runtime": 0.0672,
|
6 |
+
"eval_samples_per_second": 29.753,
|
7 |
+
"eval_steps_per_second": 14.876
|
8 |
+
}
|