File size: 2,997 Bytes
f5546d8 9168029 f5546d8 9168029 f5546d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.2
tags:
- generated_from_trainer
model-index:
- name: Mistral-7B-Instruct-v0.2-absa-MT-laptops
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-absa-MT-laptops
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 1200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8786 | 0.13 | 40 | 0.1392 |
| 0.0627 | 0.25 | 80 | 0.0165 |
| 0.0162 | 0.38 | 120 | 0.0143 |
| 0.0139 | 0.5 | 160 | 0.0125 |
| 0.0131 | 0.63 | 200 | 0.0110 |
| 0.0115 | 0.75 | 240 | 0.0106 |
| 0.0111 | 0.88 | 280 | 0.0105 |
| 0.0091 | 1.0 | 320 | 0.0093 |
| 0.0073 | 1.13 | 360 | 0.0090 |
| 0.0079 | 1.25 | 400 | 0.0090 |
| 0.0068 | 1.38 | 440 | 0.0083 |
| 0.0065 | 1.5 | 480 | 0.0076 |
| 0.0071 | 1.63 | 520 | 0.0076 |
| 0.0062 | 1.75 | 560 | 0.0077 |
| 0.0062 | 1.88 | 600 | 0.0069 |
| 0.0058 | 2.0 | 640 | 0.0069 |
| 0.0034 | 2.13 | 680 | 0.0070 |
| 0.0034 | 2.25 | 720 | 0.0066 |
| 0.0034 | 2.38 | 760 | 0.0071 |
| 0.0038 | 2.5 | 800 | 0.0064 |
| 0.0032 | 2.63 | 840 | 0.0070 |
| 0.0031 | 2.75 | 880 | 0.0062 |
| 0.0032 | 2.88 | 920 | 0.0058 |
| 0.0026 | 3.0 | 960 | 0.0059 |
| 0.0018 | 3.13 | 1000 | 0.0058 |
| 0.0014 | 3.26 | 1040 | 0.0059 |
| 0.0014 | 3.38 | 1080 | 0.0060 |
| 0.0012 | 3.51 | 1120 | 0.0060 |
| 0.0014 | 3.63 | 1160 | 0.0060 |
| 0.001 | 3.76 | 1200 | 0.0060 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|