Sim commited on
Commit
ef8b319
1 Parent(s): e117888

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - bleu
7
+ model-index:
8
+ - name: NLLB-600m-nlg_Latn-to-eng_Latn
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # NLLB-600m-nlg_Latn-to-eng_Latn
16
+
17
+ This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9402
20
+ - Bleu: 45.9717
21
+ - Gen Len: 42.476
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 6
45
+ - total_train_batch_size: 12
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - training_steps: 10000
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
55
+ | 2.5032 | 0.49 | 500 | 1.7451 | 24.369 | 42.66 |
56
+ | 1.732 | 0.98 | 1000 | 1.3896 | 31.9939 | 42.304 |
57
+ | 1.4344 | 1.47 | 1500 | 1.2333 | 36.4344 | 42.384 |
58
+ | 1.3141 | 1.96 | 2000 | 1.1442 | 38.5023 | 41.96 |
59
+ | 1.1877 | 2.45 | 2500 | 1.0936 | 41.3292 | 42.668 |
60
+ | 1.1355 | 2.94 | 3000 | 1.0460 | 43.1357 | 43.22 |
61
+ | 1.0623 | 3.43 | 3500 | 1.0197 | 43.2339 | 42.692 |
62
+ | 1.0353 | 3.93 | 4000 | 1.0010 | 43.8863 | 43.012 |
63
+ | 0.9786 | 4.42 | 4500 | 0.9899 | 44.2478 | 43.012 |
64
+ | 0.9682 | 4.91 | 5000 | 0.9731 | 44.9191 | 42.816 |
65
+ | 0.9184 | 5.4 | 5500 | 0.9690 | 44.908 | 42.496 |
66
+ | 0.9208 | 5.89 | 6000 | 0.9558 | 45.5488 | 42.772 |
67
+ | 0.8854 | 6.38 | 6500 | 0.9561 | 45.7261 | 42.844 |
68
+ | 0.8815 | 6.87 | 7000 | 0.9495 | 45.1231 | 42.38 |
69
+ | 0.8543 | 7.36 | 7500 | 0.9475 | 45.6717 | 42.56 |
70
+ | 0.8462 | 7.85 | 8000 | 0.9442 | 45.9782 | 42.652 |
71
+ | 0.8422 | 8.34 | 8500 | 0.9436 | 45.9353 | 42.628 |
72
+ | 0.8323 | 8.83 | 9000 | 0.9407 | 45.7945 | 42.492 |
73
+ | 0.8218 | 9.32 | 9500 | 0.9405 | 46.0215 | 42.472 |
74
+ | 0.8226 | 9.81 | 10000 | 0.9402 | 45.9717 | 42.476 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.21.3
80
+ - Pytorch 1.12.1+cu113
81
+ - Datasets 2.4.0
82
+ - Tokenizers 0.12.1