Add SetFit model
Browse files- README.md +43 -86
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -9,12 +9,12 @@ base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
- text:
|
14 |
-
|
15 |
-
- text:
|
16 |
-
- text:
|
17 |
-
|
18 |
pipeline_tag: text-classification
|
19 |
inference: true
|
20 |
model-index:
|
@@ -29,7 +29,7 @@ model-index:
|
|
29 |
split: test
|
30 |
metrics:
|
31 |
- type: accuracy
|
32 |
-
value: 0.
|
33 |
name: Accuracy
|
34 |
---
|
35 |
|
@@ -61,20 +61,20 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
61 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
|
63 |
### Model Labels
|
64 |
-
| Label | Examples
|
65 |
-
|
66 |
-
| product
|
67 |
-
| order tracking | <ul><li>
|
68 |
-
|
|
69 |
-
|
|
70 |
-
| product
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
-
| **all** | 0.
|
78 |
|
79 |
## Uses
|
80 |
|
@@ -94,7 +94,7 @@ from setfit import SetFitModel
|
|
94 |
# Download from the 🤗 Hub
|
95 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
96 |
# Run inference
|
97 |
-
preds = model("What
|
98 |
```
|
99 |
|
100 |
<!--
|
@@ -124,17 +124,17 @@ preds = model("What is the policy for returning sneakers with a damaged box?")
|
|
124 |
## Training Details
|
125 |
|
126 |
### Training Set Metrics
|
127 |
-
| Training set | Min | Median
|
128 |
-
|
129 |
-
| Word count | 4 |
|
130 |
|
131 |
| Label | Training Sample Count |
|
132 |
|:------------------------|:----------------------|
|
133 |
-
| general faq |
|
134 |
-
| order tracking |
|
135 |
-
| product discoverability |
|
136 |
-
| product faq |
|
137 |
-
| product policy |
|
138 |
|
139 |
### Training Hyperparameters
|
140 |
- batch_size: (16, 16)
|
@@ -156,68 +156,25 @@ preds = model("What is the policy for returning sneakers with a damaged box?")
|
|
156 |
### Training Results
|
157 |
| Epoch | Step | Training Loss | Validation Loss |
|
158 |
|:------:|:----:|:-------------:|:---------------:|
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
|
|
170 |
-
|
|
171 |
-
|
|
172 |
-
|
|
173 |
-
|
|
174 |
-
|
|
175 |
-
|
|
176 |
-
|
|
177 |
-
|
|
178 |
-
| 0.6185 | 950 | 0.0002 | - |
|
179 |
-
| 0.6510 | 1000 | 0.0002 | - |
|
180 |
-
| 0.6836 | 1050 | 0.0001 | - |
|
181 |
-
| 0.7161 | 1100 | 0.0001 | - |
|
182 |
-
| 0.7487 | 1150 | 0.0001 | - |
|
183 |
-
| 0.7812 | 1200 | 0.0002 | - |
|
184 |
-
| 0.8138 | 1250 | 0.0001 | - |
|
185 |
-
| 0.8464 | 1300 | 0.0003 | - |
|
186 |
-
| 0.8789 | 1350 | 0.0002 | - |
|
187 |
-
| 0.9115 | 1400 | 0.0001 | - |
|
188 |
-
| 0.9440 | 1450 | 0.0001 | - |
|
189 |
-
| 0.9766 | 1500 | 0.0001 | - |
|
190 |
-
| 1.0091 | 1550 | 0.0001 | - |
|
191 |
-
| 1.0417 | 1600 | 0.0001 | - |
|
192 |
-
| 1.0742 | 1650 | 0.0001 | - |
|
193 |
-
| 1.1068 | 1700 | 0.0001 | - |
|
194 |
-
| 1.1393 | 1750 | 0.0001 | - |
|
195 |
-
| 1.1719 | 1800 | 0.0001 | - |
|
196 |
-
| 1.2044 | 1850 | 0.0001 | - |
|
197 |
-
| 1.2370 | 1900 | 0.0001 | - |
|
198 |
-
| 1.2695 | 1950 | 0.0001 | - |
|
199 |
-
| 1.3021 | 2000 | 0.0001 | - |
|
200 |
-
| 1.3346 | 2050 | 0.0001 | - |
|
201 |
-
| 1.3672 | 2100 | 0.0001 | - |
|
202 |
-
| 1.3997 | 2150 | 0.0001 | - |
|
203 |
-
| 1.4323 | 2200 | 0.0001 | - |
|
204 |
-
| 1.4648 | 2250 | 0.0001 | - |
|
205 |
-
| 1.4974 | 2300 | 0.0001 | - |
|
206 |
-
| 1.5299 | 2350 | 0.0001 | - |
|
207 |
-
| 1.5625 | 2400 | 0.0001 | - |
|
208 |
-
| 1.5951 | 2450 | 0.0001 | - |
|
209 |
-
| 1.6276 | 2500 | 0.0001 | - |
|
210 |
-
| 1.6602 | 2550 | 0.0001 | - |
|
211 |
-
| 1.6927 | 2600 | 0.0001 | - |
|
212 |
-
| 1.7253 | 2650 | 0.0001 | - |
|
213 |
-
| 1.7578 | 2700 | 0.0001 | - |
|
214 |
-
| 1.7904 | 2750 | 0.0001 | - |
|
215 |
-
| 1.8229 | 2800 | 0.0001 | - |
|
216 |
-
| 1.8555 | 2850 | 0.0001 | - |
|
217 |
-
| 1.8880 | 2900 | 0.0001 | - |
|
218 |
-
| 1.9206 | 2950 | 0.0001 | - |
|
219 |
-
| 1.9531 | 3000 | 0.0001 | - |
|
220 |
-
| 1.9857 | 3050 | 0.0001 | - |
|
221 |
|
222 |
### Framework Versions
|
223 |
- Python: 3.9.19
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: What makeup products do you have for eyes?
|
13 |
+
- text: How can I prevent acne if I have oily skin?
|
14 |
+
- text: What is the estimated delivery time for orders within the same country?
|
15 |
+
- text: Can you recommend a good moisturizer for winter skin care?
|
16 |
+
- text: Is the Beachy-Floral-Citrus Mini Eau De Parfum Gift Set suitable for all skin
|
17 |
+
types?
|
18 |
pipeline_tag: text-classification
|
19 |
inference: true
|
20 |
model-index:
|
|
|
29 |
split: test
|
30 |
metrics:
|
31 |
- type: accuracy
|
32 |
+
value: 0.9166666666666666
|
33 |
name: Accuracy
|
34 |
---
|
35 |
|
|
|
61 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
|
63 |
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| product discoverability | <ul><li>'Can you show me all the products for oily skin?'</li><li>'Do you have any makeup remover?'</li><li>'Can you show me all the products for dark spots?'</li></ul> |
|
67 |
+
| order tracking | <ul><li>'What is the estimated delivery time for orders within the same state?'</li><li>'I need to know the status of my recent order. Can you check if it has been dispatched?'</li><li>'I ordered the Cake Decorating Kit 4 days ago, can you provide the tracking information?'</li></ul> |
|
68 |
+
| product faq | <ul><li>'What are the different shades available in the Color Affair Nail Polish Pixie Dust Collection?'</li><li>'Is the Touch-N-Go Lip & Cheek Tint a vegan and cruelty-free product?'</li><li>'Is this product suitable for oily skin?'</li></ul> |
|
69 |
+
| general faq | <ul><li>'How often should I use exfoliants to reduce open pores?'</li><li>'What are the most effective ingredients for treating acne?'</li><li>'Are home remedies effective for severe acne?'</li></ul> |
|
70 |
+
| product policy | <ul><li>'Are your products suitable for sensitive skin?'</li><li>'How can I track my order on the Plum Goodness app?'</li><li>'What is the contact number for customer support?'</li></ul> |
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
+
| **all** | 0.9167 |
|
78 |
|
79 |
## Uses
|
80 |
|
|
|
94 |
# Download from the 🤗 Hub
|
95 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
96 |
# Run inference
|
97 |
+
preds = model("What makeup products do you have for eyes?")
|
98 |
```
|
99 |
|
100 |
<!--
|
|
|
124 |
## Training Details
|
125 |
|
126 |
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:-------|:----|
|
129 |
+
| Word count | 4 | 11.0 | 24 |
|
130 |
|
131 |
| Label | Training Sample Count |
|
132 |
|:------------------------|:----------------------|
|
133 |
+
| general faq | 20 |
|
134 |
+
| order tracking | 24 |
|
135 |
+
| product discoverability | 16 |
|
136 |
+
| product faq | 24 |
|
137 |
+
| product policy | 12 |
|
138 |
|
139 |
### Training Hyperparameters
|
140 |
- batch_size: (16, 16)
|
|
|
156 |
### Training Results
|
157 |
| Epoch | Step | Training Loss | Validation Loss |
|
158 |
|:------:|:----:|:-------------:|:---------------:|
|
159 |
+
| 0.0022 | 1 | 0.2082 | - |
|
160 |
+
| 0.1101 | 50 | 0.1229 | - |
|
161 |
+
| 0.2203 | 100 | 0.0262 | - |
|
162 |
+
| 0.3304 | 150 | 0.0015 | - |
|
163 |
+
| 0.4405 | 200 | 0.001 | - |
|
164 |
+
| 0.5507 | 250 | 0.0008 | - |
|
165 |
+
| 0.6608 | 300 | 0.0005 | - |
|
166 |
+
| 0.7709 | 350 | 0.0004 | - |
|
167 |
+
| 0.8811 | 400 | 0.0003 | - |
|
168 |
+
| 0.9912 | 450 | 0.0003 | - |
|
169 |
+
| 1.1013 | 500 | 0.0002 | - |
|
170 |
+
| 1.2115 | 550 | 0.0002 | - |
|
171 |
+
| 1.3216 | 600 | 0.0004 | - |
|
172 |
+
| 1.4317 | 650 | 0.0002 | - |
|
173 |
+
| 1.5419 | 700 | 0.0003 | - |
|
174 |
+
| 1.6520 | 750 | 0.0002 | - |
|
175 |
+
| 1.7621 | 800 | 0.0002 | - |
|
176 |
+
| 1.8722 | 850 | 0.0002 | - |
|
177 |
+
| 1.9824 | 900 | 0.0003 | - |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
### Framework Versions
|
180 |
- Python: 3.9.19
|
config_setfit.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
|
|
2 |
"labels": [
|
3 |
"general faq",
|
4 |
"order tracking",
|
5 |
"product discoverability",
|
6 |
"product faq",
|
7 |
"product policy"
|
8 |
-
]
|
9 |
-
"normalize_embeddings": false
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
"labels": [
|
4 |
"general faq",
|
5 |
"order tracking",
|
6 |
"product discoverability",
|
7 |
"product faq",
|
8 |
"product policy"
|
9 |
+
]
|
|
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1caeba2608edc6b7869c3de39a7813ce016ee8ac25adc740514b4e9de13fa33e
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 32063
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d97096e73dd647987d617a0ba9c7731c3a588bb1bd37dc22e0922bef5876bc0
|
3 |
size 32063
|