---
pipeline_tag: image-text-to-text
inference: false
license: apache-2.0
---
# LLaVA-Reasoner Model Card
## Model details
**Model type:**
LLaVA-Reasoner is an open-source image vision language model, fine-tuned from GPT4-o distilled chain-of-thought (CoT) reasoning data.
This model is the **DPO-preview** version, trained from LLaVA-Reasoner-SFT-preview based on model generated CoT evaluated by outcome reward.
Base LLM: [Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)
**Model date:**
Trained on Sep, 2024.
**Paper or resources for more information:**
Paper: https://arxiv.org/abs/2410.16198
Code: https://github.com/RifleZhang/LLaVA-Reasoner-DPO/tree/main
## License
[Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b) license.
**Where to send questions or comments about the model:**
https://github.com/RifleZhang/LLaVA-Reasoner-DPO/issues
## Intended use
**Primary intended uses:**
Image CoT reasoning
**Primary intended users:**
Researchers in artificial intelligence, large multimodal model, etc.
## Training dataset
[ShareGPT4o-Reasoning](https://huggingface.co/datasets/Share4oReasoning/sft_data) dataset.
## Evaluation
Follow https://github.com/RifleZhang/LLaVA-Reasoner-DPO/blob/main/README.md
## citation
```
@article{zhang2024improve,
title={Improve vision language model chain-of-thought reasoning},
author={Zhang, Ruohong and Zhang, Bowen and Li, Yanghao and Zhang, Haotian and Sun, Zhiqing and Gan, Zhe and Yang, Yinfei and Pang, Ruoming and Yang, Yiming},
journal={arXiv preprint arXiv:2410.16198},
year={2024}
}
```