--- pipeline_tag: image-text-to-text inference: false license: apache-2.0 ---

# LLaVA-Reasoner Model Card ## Model details **Model type:** LLaVA-Reasoner is an open-source image vision language model, fine-tuned from GPT4-o distilled chain-of-thought (CoT) reasoning data. This model is the **DPO-preview** version, trained from LLaVA-Reasoner-SFT-preview based on model generated CoT evaluated by outcome reward. Base LLM: [Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b) **Model date:** Trained on Sep, 2024. **Paper or resources for more information:** Paper: https://arxiv.org/abs/2410.16198 Code: https://github.com/RifleZhang/LLaVA-Reasoner-DPO/tree/main ## License [Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b) license. **Where to send questions or comments about the model:** https://github.com/RifleZhang/LLaVA-Reasoner-DPO/issues ## Intended use **Primary intended uses:** Image CoT reasoning **Primary intended users:** Researchers in artificial intelligence, large multimodal model, etc. ## Training dataset [ShareGPT4o-Reasoning](https://huggingface.co/datasets/Share4oReasoning/sft_data) dataset. ## Evaluation Follow https://github.com/RifleZhang/LLaVA-Reasoner-DPO/blob/main/README.md ## citation ``` @article{zhang2024improve, title={Improve vision language model chain-of-thought reasoning}, author={Zhang, Ruohong and Zhang, Bowen and Li, Yanghao and Zhang, Haotian and Sun, Zhiqing and Gan, Zhe and Yang, Yinfei and Pang, Ruoming and Yang, Yiming}, journal={arXiv preprint arXiv:2410.16198}, year={2024} } ```