File size: 1,608 Bytes
2e6751c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
pipeline_tag: image-text-to-text
inference: false
license: apache-2.0
---

<br>
<br>

# LLaVA-Reasoner Model Card

## Model details

**Model type:**
LLaVA-Reasoner is an open-source image vision language model, fine-tuned from GPT4-o distilled chain-of-thought (CoT) reasoning data. 

This model is the **SFT** version, with additional math data compared to SFT-preview.

Base LLM: [Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)

**Model date:**
Trained on Sep, 2024.

**Paper or resources for more information:**

Paper: https://arxiv.org/abs/2410.16198

Code: https://github.com/RifleZhang/LLaVA-Reasoner-DPO/tree/main

## License
[Lin-Chen/open-llava-next-llama3-8b](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b) license.

**Where to send questions or comments about the model:**
https://github.com/RifleZhang/LLaVA-Reasoner-DPO/issues

## Intended use
**Primary intended uses:**
Image CoT reasoning

**Primary intended users:**
Researchers in artificial intelligence, large multimodal model, etc.

## Training dataset
[ShareGPT4o-Reasoning](https://huggingface.co/datasets/Share4oReasoning/sft_data) dataset.

## Evaluation
Follow https://github.com/RifleZhang/LLaVA-Reasoner-DPO/blob/main/README.md


## citation
```
@article{zhang2024improve,
  title={Improve vision language model chain-of-thought reasoning},
  author={Zhang, Ruohong and Zhang, Bowen and Li, Yanghao and Zhang, Haotian and Sun, Zhiqing and Gan, Zhe and Yang, Yinfei and Pang, Ruoming and Yang, Yiming},
  journal={arXiv preprint arXiv:2410.16198},
  year={2024}
}
```